1 /* $NetBSD: kern_event.c,v 1.152 2026/01/04 01:33:13 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon (at) FreeBSD.org> 34 * Copyright (c) 2009 Apple, Inc 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp 59 */ 60 61 #ifdef _KERNEL_OPT 62 #include "opt_ddb.h" 63 #endif /* _KERNEL_OPT */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.152 2026/01/04 01:33:13 riastradh Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/types.h> 70 71 #include <sys/atomic.h> 72 #include <sys/conf.h> 73 #include <sys/event.h> 74 #include <sys/eventvar.h> 75 #include <sys/file.h> 76 #include <sys/filedesc.h> 77 #include <sys/kauth.h> 78 #include <sys/kernel.h> 79 #include <sys/kmem.h> 80 #include <sys/poll.h> 81 #include <sys/proc.h> 82 #include <sys/queue.h> 83 #include <sys/sdt.h> 84 #include <sys/select.h> 85 #include <sys/stat.h> 86 #include <sys/syscallargs.h> 87 #include <sys/systm.h> 88 #include <sys/wait.h> 89 90 static int kqueue_scan(file_t *, size_t, struct kevent *, 91 const struct timespec *, register_t *, 92 const struct kevent_ops *, struct kevent *, 93 size_t); 94 static int kqueue_ioctl(file_t *, u_long, void *); 95 static int kqueue_fcntl(file_t *, u_int, void *); 96 static int kqueue_poll(file_t *, int); 97 static int kqueue_kqfilter(file_t *, struct knote *); 98 static int kqueue_stat(file_t *, struct stat *); 99 static int kqueue_close(file_t *); 100 static void kqueue_restart(file_t *); 101 static int kqueue_fpathconf(file_t *, int, register_t *); 102 static int kqueue_register(struct kqueue *, struct kevent *); 103 static void kqueue_doclose(struct kqueue *, struct klist *, int); 104 105 static void knote_detach(struct knote *, filedesc_t *fdp, bool); 106 static void knote_enqueue(struct knote *); 107 static void knote_activate(struct knote *); 108 static void knote_activate_locked(struct knote *); 109 static void knote_deactivate_locked(struct knote *); 110 111 static void filt_kqdetach(struct knote *); 112 static int filt_kqueue(struct knote *, long hint); 113 static int filt_procattach(struct knote *); 114 static void filt_procdetach(struct knote *); 115 static int filt_proc(struct knote *, long hint); 116 static int filt_fileattach(struct knote *); 117 static void filt_timerexpire(void *x); 118 static int filt_timerattach(struct knote *); 119 static void filt_timerdetach(struct knote *); 120 static int filt_timer(struct knote *, long hint); 121 static int filt_timertouch(struct knote *, struct kevent *, long type); 122 static int filt_userattach(struct knote *); 123 static void filt_userdetach(struct knote *); 124 static int filt_user(struct knote *, long hint); 125 static int filt_usertouch(struct knote *, struct kevent *, long type); 126 127 /* 128 * Private knote state that should never be exposed outside 129 * of kern_event.c 130 * 131 * Field locking: 132 * 133 * q kn_kq->kq_lock 134 */ 135 struct knote_impl { 136 struct knote ki_knote; 137 unsigned int ki_influx; /* q: in-flux counter */ 138 kmutex_t ki_foplock; /* for kn_filterops */ 139 }; 140 141 #define KIMPL_TO_KNOTE(kip) (&(kip)->ki_knote) 142 #define KNOTE_TO_KIMPL(knp) container_of((knp), struct knote_impl, ki_knote) 143 144 static inline struct knote * 145 knote_alloc(bool sleepok) 146 { 147 struct knote_impl *ki; 148 149 ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP); 150 mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE); 151 152 return KIMPL_TO_KNOTE(ki); 153 } 154 155 static inline void 156 knote_free(struct knote *kn) 157 { 158 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 159 160 mutex_destroy(&ki->ki_foplock); 161 kmem_free(ki, sizeof(*ki)); 162 } 163 164 static inline void 165 knote_foplock_enter(struct knote *kn) 166 { 167 mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock); 168 } 169 170 static inline void 171 knote_foplock_exit(struct knote *kn) 172 { 173 mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock); 174 } 175 176 static inline bool __diagused 177 knote_foplock_owned(struct knote *kn) 178 { 179 return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock); 180 } 181 182 static const struct fileops kqueueops = { 183 .fo_name = "kqueue", 184 .fo_read = (void *)enxio, 185 .fo_write = (void *)enxio, 186 .fo_ioctl = kqueue_ioctl, 187 .fo_fcntl = kqueue_fcntl, 188 .fo_poll = kqueue_poll, 189 .fo_stat = kqueue_stat, 190 .fo_close = kqueue_close, 191 .fo_kqfilter = kqueue_kqfilter, 192 .fo_restart = kqueue_restart, 193 .fo_fpathconf = kqueue_fpathconf, 194 }; 195 196 static void 197 filt_nopdetach(struct knote *kn __unused) 198 { 199 } 200 201 static int 202 filt_nopevent(struct knote *kn __unused, long hint __unused) 203 { 204 return 0; 205 } 206 207 static const struct filterops nop_fd_filtops = { 208 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 209 .f_attach = NULL, 210 .f_detach = filt_nopdetach, 211 .f_event = filt_nopevent, 212 }; 213 214 static const struct filterops nop_filtops = { 215 .f_flags = FILTEROP_MPSAFE, 216 .f_attach = NULL, 217 .f_detach = filt_nopdetach, 218 .f_event = filt_nopevent, 219 }; 220 221 static const struct filterops kqread_filtops = { 222 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 223 .f_attach = NULL, 224 .f_detach = filt_kqdetach, 225 .f_event = filt_kqueue, 226 }; 227 228 static const struct filterops proc_filtops = { 229 .f_flags = FILTEROP_MPSAFE, 230 .f_attach = filt_procattach, 231 .f_detach = filt_procdetach, 232 .f_event = filt_proc, 233 }; 234 235 /* 236 * file_filtops is not marked MPSAFE because it's going to call 237 * fileops::fo_kqfilter(), which might not be. That function, 238 * however, will override the knote's filterops, and thus will 239 * inherit the MPSAFE-ness of the back-end at that time. 240 */ 241 static const struct filterops file_filtops = { 242 .f_flags = FILTEROP_ISFD, 243 .f_attach = filt_fileattach, 244 .f_detach = NULL, 245 .f_event = NULL, 246 }; 247 248 static const struct filterops timer_filtops = { 249 .f_flags = FILTEROP_MPSAFE, 250 .f_attach = filt_timerattach, 251 .f_detach = filt_timerdetach, 252 .f_event = filt_timer, 253 .f_touch = filt_timertouch, 254 }; 255 256 static const struct filterops user_filtops = { 257 .f_flags = FILTEROP_MPSAFE, 258 .f_attach = filt_userattach, 259 .f_detach = filt_userdetach, 260 .f_event = filt_user, 261 .f_touch = filt_usertouch, 262 }; 263 264 static u_int kq_ncallouts = 0; 265 static int kq_calloutmax = (4 * 1024); 266 267 #define KN_HASHSIZE 64 /* XXX should be tunable */ 268 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 269 270 extern const struct filterops fs_filtops; /* vfs_syscalls.c */ 271 extern const struct filterops sig_filtops; /* kern_sig.c */ 272 273 /* 274 * Table for all system-defined filters. 275 * These should be listed in the numeric order of the EVFILT_* defines. 276 * If filtops is NULL, the filter isn't implemented in NetBSD. 277 * End of list is when name is NULL. 278 * 279 * Note that 'refcnt' is meaningless for built-in filters. 280 */ 281 struct kfilter { 282 const char *name; /* name of filter */ 283 uint32_t filter; /* id of filter */ 284 unsigned refcnt; /* reference count */ 285 const struct filterops *filtops;/* operations for filter */ 286 size_t namelen; /* length of name string */ 287 }; 288 289 /* System defined filters */ 290 static struct kfilter sys_kfilters[] = { 291 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 }, 292 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, }, 293 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 }, 294 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 }, 295 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 }, 296 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 }, 297 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 }, 298 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 }, 299 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 }, 300 { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 }, 301 { NULL, 0, 0, NULL, 0 }, 302 }; 303 304 /* User defined kfilters */ 305 static struct kfilter *user_kfilters; /* array */ 306 static int user_kfilterc; /* current offset */ 307 static int user_kfiltermaxc; /* max size so far */ 308 static size_t user_kfiltersz; /* size of allocated memory */ 309 310 /* 311 * Global Locks. 312 * 313 * Lock order: 314 * 315 * kqueue_filter_lock 316 * -> kn_kq->kq_fdp->fd_lock 317 * -> knote foplock (if taken) 318 * -> object lock (e.g., device driver lock, &c.) 319 * -> kn_kq->kq_lock 320 * 321 * Locking rules. ==> indicates the lock is acquired by the backing 322 * object, locks prior are acquired before calling filter ops: 323 * 324 * f_attach: fdp->fd_lock -> knote foplock -> 325 * (maybe) KERNEL_LOCK ==> backing object lock 326 * 327 * f_detach: fdp->fd_lock -> knote foplock -> 328 * (maybe) KERNEL_LOCK ==> backing object lock 329 * 330 * f_event via kevent: fdp->fd_lock -> knote foplock -> 331 * (maybe) KERNEL_LOCK ==> backing object lock 332 * N.B. NOTE_SUBMIT will never be set in the "hint" argument 333 * in this case. 334 * 335 * f_event via knote (via backing object: Whatever caller guarantees. 336 * Typically: 337 * f_event(NOTE_SUBMIT): caller has already acquired backing 338 * object lock. 339 * f_event(!NOTE_SUBMIT): caller has not acquired backing object, 340 * lock or has possibly acquired KERNEL_LOCK. Backing object 341 * lock may or may not be acquired as-needed. 342 * N.B. the knote foplock will **not** be acquired in this case. The 343 * caller guarantees that klist_fini() will not be called concurrently 344 * with knote(). 345 * 346 * f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock) 347 * N.B. knote foplock is **not** acquired in this case and 348 * the caller must guarantee that klist_fini() will never 349 * be called. kevent_register() restricts filters that 350 * provide f_touch to known-safe cases. 351 * 352 * klist_fini(): Caller must guarantee that no more knotes can 353 * be attached to the klist, and must **not** hold the backing 354 * object's lock; klist_fini() itself will acquire the foplock 355 * of each knote on the klist. 356 * 357 * Locking rules when detaching knotes: 358 * 359 * There are some situations where knote submission may require dropping 360 * locks (see knote_proc_fork()). In order to support this, it's possible 361 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to 362 * be detached while it remains in-flux. Because it will not be detached, 363 * locks can be dropped so e.g. memory can be allocated, locks on other 364 * data structures can be acquired, etc. During this time, any attempt to 365 * detach an in-flux knote must wait until the knote is no longer in-flux. 366 * When this happens, the knote is marked for death (KN_WILLDETACH) and the 367 * LWP who gets to finish the detach operation is recorded in the knote's 368 * 'udata' field (which is no longer required for its original purpose once 369 * a knote is so marked). Code paths that lead to knote_detach() must ensure 370 * that their LWP is the one tasked with its final demise after waiting for 371 * the in-flux status of the knote to clear. Note that once a knote is 372 * marked KN_WILLDETACH, no code paths may put it into an in-flux state. 373 * 374 * Once the special circumstances have been handled, the locks are re- 375 * acquired in the proper order (object lock -> kq_lock), the knote taken 376 * out of flux, and any waiters are notified. Because waiters must have 377 * also dropped *their* locks in order to safely block, they must re- 378 * validate all of their assumptions; see knote_detach_quiesce(). See also 379 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT) 380 * cases. 381 * 382 * When kqueue_scan() encounters an in-flux knote, the situation is 383 * treated like another LWP's list marker. 384 * 385 * LISTEN WELL: It is important to not hold knotes in flux for an 386 * extended period of time! In-flux knotes effectively block any 387 * progress of the kqueue_scan() operation. Any code paths that place 388 * knotes in-flux should be careful to not block for indefinite periods 389 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but 390 * KM_SLEEP is not). 391 */ 392 static krwlock_t kqueue_filter_lock; /* lock on filter lists */ 393 394 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock) 395 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv) 396 397 static inline bool 398 kn_in_flux(struct knote *kn) 399 { 400 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 401 return KNOTE_TO_KIMPL(kn)->ki_influx != 0; 402 } 403 404 static inline bool 405 kn_enter_flux(struct knote *kn) 406 { 407 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 408 409 if (kn->kn_status & KN_WILLDETACH) { 410 return false; 411 } 412 413 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 414 KASSERT(ki->ki_influx < UINT_MAX); 415 ki->ki_influx++; 416 417 return true; 418 } 419 420 static inline bool 421 kn_leave_flux(struct knote *kn) 422 { 423 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 424 425 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 426 KASSERT(ki->ki_influx > 0); 427 ki->ki_influx--; 428 return ki->ki_influx == 0; 429 } 430 431 static void 432 kn_wait_flux(struct knote *kn, bool can_loop) 433 { 434 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 435 bool loop; 436 437 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 438 439 /* 440 * It may not be safe for us to touch the knote again after 441 * dropping the kq_lock. The caller has let us know in 442 * 'can_loop'. 443 */ 444 for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) { 445 KQ_FLUX_WAIT(kn->kn_kq); 446 } 447 } 448 449 #define KNOTE_WILLDETACH(kn) \ 450 do { \ 451 (kn)->kn_status |= KN_WILLDETACH; \ 452 (kn)->kn_kevent.udata = curlwp; \ 453 } while (/*CONSTCOND*/0) 454 455 /* 456 * Wait until the specified knote is in a quiescent state and 457 * safe to detach. Returns true if we potentially blocked (and 458 * thus dropped our locks). 459 */ 460 static bool 461 knote_detach_quiesce(struct knote *kn) 462 { 463 struct kqueue *kq = kn->kn_kq; 464 filedesc_t *fdp = kq->kq_fdp; 465 466 KASSERT(mutex_owned(&fdp->fd_lock)); 467 468 mutex_spin_enter(&kq->kq_lock); 469 /* 470 * There are two cases where we might see KN_WILLDETACH here: 471 * 472 * 1. Someone else has already started detaching the knote but 473 * had to wait for it to settle first. 474 * 475 * 2. We had to wait for it to settle, and had to come back 476 * around after re-acquiring the locks. 477 * 478 * When KN_WILLDETACH is set, we also set the LWP that claimed 479 * the prize of finishing the detach in the 'udata' field of the 480 * knote (which will never be used again for its usual purpose 481 * once the note is in this state). If it doesn't point to us, 482 * we must drop the locks and let them in to finish the job. 483 * 484 * Otherwise, once we have claimed the knote for ourselves, we 485 * can finish waiting for it to settle. The is the only scenario 486 * where touching a detaching knote is safe after dropping the 487 * locks. 488 */ 489 if ((kn->kn_status & KN_WILLDETACH) != 0 && 490 kn->kn_kevent.udata != curlwp) { 491 /* 492 * N.B. it is NOT safe for us to touch the knote again 493 * after dropping the locks here. The caller must go 494 * back around and re-validate everything. However, if 495 * the knote is in-flux, we want to block to minimize 496 * busy-looping. 497 */ 498 mutex_exit(&fdp->fd_lock); 499 if (kn_in_flux(kn)) { 500 kn_wait_flux(kn, false); 501 mutex_spin_exit(&kq->kq_lock); 502 return true; 503 } 504 mutex_spin_exit(&kq->kq_lock); 505 preempt_point(); 506 return true; 507 } 508 /* 509 * If we get here, we know that we will be claiming the 510 * detach responsibilies, or that we already have and 511 * this is the second attempt after re-validation. 512 */ 513 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 514 kn->kn_kevent.udata == curlwp); 515 /* 516 * Similarly, if we get here, either we are just claiming it 517 * and may have to wait for it to settle, or if this is the 518 * second attempt after re-validation that no other code paths 519 * have put it in-flux. 520 */ 521 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 522 kn_in_flux(kn) == false); 523 KNOTE_WILLDETACH(kn); 524 if (kn_in_flux(kn)) { 525 mutex_exit(&fdp->fd_lock); 526 kn_wait_flux(kn, true); 527 /* 528 * It is safe for us to touch the knote again after 529 * dropping the locks, but the caller must still 530 * re-validate everything because other aspects of 531 * the environment may have changed while we blocked. 532 */ 533 KASSERT(kn_in_flux(kn) == false); 534 mutex_spin_exit(&kq->kq_lock); 535 return true; 536 } 537 mutex_spin_exit(&kq->kq_lock); 538 539 return false; 540 } 541 542 /* 543 * Calls into the filterops need to be resilient against things which 544 * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid 545 * chasing garbage pointers (to data, or even potentially code in a 546 * module about to be unloaded). To that end, we acquire the 547 * knote foplock before calling into the filter ops. When a driver 548 * (or anything else) is tearing down its klist, klist_fini() enumerates 549 * each knote, acquires its foplock, and replaces the filterops with a 550 * nop stub, allowing knote detach (when descriptors are closed) to safely 551 * proceed. 552 */ 553 554 static int 555 filter_attach(struct knote *kn) 556 { 557 int rv; 558 559 KASSERT(knote_foplock_owned(kn)); 560 KASSERT(kn->kn_fop != NULL); 561 KASSERT(kn->kn_fop->f_attach != NULL); 562 563 /* 564 * N.B. that kn->kn_fop may change as the result of calling 565 * f_attach(). After f_attach() returns, kn->kn_fop may not 566 * be modified by code outside of klist_fini(). 567 */ 568 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 569 rv = kn->kn_fop->f_attach(kn); 570 } else { 571 KERNEL_LOCK(1, NULL); 572 rv = kn->kn_fop->f_attach(kn); 573 KERNEL_UNLOCK_ONE(NULL); 574 } 575 576 return rv; 577 } 578 579 static void 580 filter_detach(struct knote *kn) 581 { 582 583 KASSERT(knote_foplock_owned(kn)); 584 KASSERT(kn->kn_fop != NULL); 585 KASSERT(kn->kn_fop->f_detach != NULL); 586 587 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 588 kn->kn_fop->f_detach(kn); 589 } else { 590 KERNEL_LOCK(1, NULL); 591 kn->kn_fop->f_detach(kn); 592 KERNEL_UNLOCK_ONE(NULL); 593 } 594 } 595 596 static int 597 filter_event(struct knote *kn, long hint, bool submitting) 598 { 599 int rv; 600 601 /* See knote(). */ 602 KASSERT(submitting || knote_foplock_owned(kn)); 603 KASSERT(kn->kn_fop != NULL); 604 KASSERT(kn->kn_fop->f_event != NULL); 605 606 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 607 rv = kn->kn_fop->f_event(kn, hint); 608 } else { 609 KERNEL_LOCK(1, NULL); 610 rv = kn->kn_fop->f_event(kn, hint); 611 KERNEL_UNLOCK_ONE(NULL); 612 } 613 614 return rv; 615 } 616 617 static int 618 filter_touch(struct knote *kn, struct kevent *kev, long type) 619 { 620 621 /* 622 * XXX We cannot assert that the knote foplock is held here 623 * XXX beause we cannot safely acquire it in all cases 624 * XXX where "touch" will be used in kqueue_scan(). We just 625 * XXX have to assume that f_touch will always be safe to call, 626 * XXX and kqueue_register() allows only the two known-safe 627 * XXX users of that op. 628 */ 629 630 KASSERT(kn->kn_fop != NULL); 631 KASSERT(kn->kn_fop->f_touch != NULL); 632 633 return kn->kn_fop->f_touch(kn, kev, type); 634 } 635 636 static kauth_listener_t kqueue_listener; 637 638 static int 639 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 640 void *arg0, void *arg1, void *arg2, void *arg3) 641 { 642 struct proc *p; 643 int result; 644 645 result = KAUTH_RESULT_DEFER; 646 p = arg0; 647 648 if (action != KAUTH_PROCESS_KEVENT_FILTER) 649 return result; 650 651 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) || 652 ISSET(p->p_flag, PK_SUGID))) 653 return result; 654 655 result = KAUTH_RESULT_ALLOW; 656 657 return result; 658 } 659 660 /* 661 * Initialize the kqueue subsystem. 662 */ 663 void 664 kqueue_init(void) 665 { 666 667 rw_init(&kqueue_filter_lock); 668 669 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 670 kqueue_listener_cb, NULL); 671 } 672 673 /* 674 * Find kfilter entry by name, or NULL if not found. 675 */ 676 static struct kfilter * 677 kfilter_byname_sys(const char *name) 678 { 679 int i; 680 681 KASSERT(rw_lock_held(&kqueue_filter_lock)); 682 683 for (i = 0; sys_kfilters[i].name != NULL; i++) { 684 if (strcmp(name, sys_kfilters[i].name) == 0) 685 return &sys_kfilters[i]; 686 } 687 return NULL; 688 } 689 690 static struct kfilter * 691 kfilter_byname_user(const char *name) 692 { 693 int i; 694 695 KASSERT(rw_lock_held(&kqueue_filter_lock)); 696 697 /* user filter slots have a NULL name if previously deregistered */ 698 for (i = 0; i < user_kfilterc ; i++) { 699 if (user_kfilters[i].name != NULL && 700 strcmp(name, user_kfilters[i].name) == 0) 701 return &user_kfilters[i]; 702 } 703 return NULL; 704 } 705 706 static struct kfilter * 707 kfilter_byname(const char *name) 708 { 709 struct kfilter *kfilter; 710 711 KASSERT(rw_lock_held(&kqueue_filter_lock)); 712 713 if ((kfilter = kfilter_byname_sys(name)) != NULL) 714 return kfilter; 715 716 return kfilter_byname_user(name); 717 } 718 719 /* 720 * Find kfilter entry by filter id, or NULL if not found. 721 * Assumes entries are indexed in filter id order, for speed. 722 */ 723 static struct kfilter * 724 kfilter_byfilter(uint32_t filter) 725 { 726 struct kfilter *kfilter; 727 728 KASSERT(rw_lock_held(&kqueue_filter_lock)); 729 730 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 731 kfilter = &sys_kfilters[filter]; 732 else if (user_kfilters != NULL && 733 filter < EVFILT_SYSCOUNT + user_kfilterc) 734 /* it's a user filter */ 735 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 736 else 737 return (NULL); /* out of range */ 738 KASSERT(kfilter->filter == filter); /* sanity check! */ 739 return (kfilter); 740 } 741 742 /* 743 * Register a new kfilter. Stores the entry in user_kfilters. 744 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 745 * If retfilter != NULL, the new filterid is returned in it. 746 */ 747 int 748 kfilter_register(const char *name, const struct filterops *filtops, 749 int *retfilter) 750 { 751 struct kfilter *kfilter; 752 size_t len; 753 int i; 754 755 if (name == NULL || name[0] == '\0' || filtops == NULL) 756 return SET_ERROR(EINVAL); /* invalid args */ 757 758 rw_enter(&kqueue_filter_lock, RW_WRITER); 759 if (kfilter_byname(name) != NULL) { 760 rw_exit(&kqueue_filter_lock); 761 return SET_ERROR(EEXIST); /* already exists */ 762 } 763 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) { 764 rw_exit(&kqueue_filter_lock); 765 return SET_ERROR(EINVAL); /* too many */ 766 } 767 768 for (i = 0; i < user_kfilterc; i++) { 769 kfilter = &user_kfilters[i]; 770 if (kfilter->name == NULL) { 771 /* Previously deregistered slot. Reuse. */ 772 goto reuse; 773 } 774 } 775 776 /* check if need to grow user_kfilters */ 777 if (user_kfilterc + 1 > user_kfiltermaxc) { 778 /* Grow in KFILTER_EXTENT chunks. */ 779 user_kfiltermaxc += KFILTER_EXTENT; 780 len = user_kfiltermaxc * sizeof(*kfilter); 781 kfilter = kmem_alloc(len, KM_SLEEP); 782 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz); 783 if (user_kfilters != NULL) { 784 memcpy(kfilter, user_kfilters, user_kfiltersz); 785 kmem_free(user_kfilters, user_kfiltersz); 786 } 787 user_kfiltersz = len; 788 user_kfilters = kfilter; 789 } 790 /* Adding new slot */ 791 kfilter = &user_kfilters[user_kfilterc++]; 792 reuse: 793 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP); 794 795 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; 796 797 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP); 798 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops)); 799 800 if (retfilter != NULL) 801 *retfilter = kfilter->filter; 802 rw_exit(&kqueue_filter_lock); 803 804 return (0); 805 } 806 807 /* 808 * Unregister a kfilter previously registered with kfilter_register. 809 * This retains the filter id, but clears the name and frees filtops (filter 810 * operations), so that the number isn't reused during a boot. 811 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 812 */ 813 int 814 kfilter_unregister(const char *name) 815 { 816 struct kfilter *kfilter; 817 818 if (name == NULL || name[0] == '\0') 819 return SET_ERROR(EINVAL); /* invalid name */ 820 821 rw_enter(&kqueue_filter_lock, RW_WRITER); 822 if (kfilter_byname_sys(name) != NULL) { 823 rw_exit(&kqueue_filter_lock); 824 return SET_ERROR(EINVAL); /* can't detach system filters */ 825 } 826 827 kfilter = kfilter_byname_user(name); 828 if (kfilter == NULL) { 829 rw_exit(&kqueue_filter_lock); 830 return SET_ERROR(ENOENT); 831 } 832 if (kfilter->refcnt != 0) { 833 rw_exit(&kqueue_filter_lock); 834 return SET_ERROR(EBUSY); 835 } 836 837 /* Cast away const (but we know it's safe. */ 838 kmem_free(__UNCONST(kfilter->name), kfilter->namelen); 839 kfilter->name = NULL; /* mark as `not implemented' */ 840 841 if (kfilter->filtops != NULL) { 842 /* Cast away const (but we know it's safe. */ 843 kmem_free(__UNCONST(kfilter->filtops), 844 sizeof(*kfilter->filtops)); 845 kfilter->filtops = NULL; /* mark as `not implemented' */ 846 } 847 rw_exit(&kqueue_filter_lock); 848 849 return (0); 850 } 851 852 853 /* 854 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 855 * descriptors. Calls fileops kqfilter method for given file descriptor. 856 */ 857 static int 858 filt_fileattach(struct knote *kn) 859 { 860 file_t *fp; 861 862 fp = kn->kn_obj; 863 864 return (*fp->f_ops->fo_kqfilter)(fp, kn); 865 } 866 867 /* 868 * Filter detach method for EVFILT_READ on kqueue descriptor. 869 */ 870 static void 871 filt_kqdetach(struct knote *kn) 872 { 873 struct kqueue *kq; 874 875 kq = ((file_t *)kn->kn_obj)->f_kqueue; 876 877 mutex_spin_enter(&kq->kq_lock); 878 selremove_knote(&kq->kq_sel, kn); 879 mutex_spin_exit(&kq->kq_lock); 880 } 881 882 /* 883 * Filter event method for EVFILT_READ on kqueue descriptor. 884 */ 885 /*ARGSUSED*/ 886 static int 887 filt_kqueue(struct knote *kn, long hint) 888 { 889 struct kqueue *kq; 890 int rv; 891 892 kq = ((file_t *)kn->kn_obj)->f_kqueue; 893 894 if (hint != NOTE_SUBMIT) 895 mutex_spin_enter(&kq->kq_lock); 896 kn->kn_data = KQ_COUNT(kq); 897 rv = (kn->kn_data > 0); 898 if (hint != NOTE_SUBMIT) 899 mutex_spin_exit(&kq->kq_lock); 900 901 return rv; 902 } 903 904 /* 905 * Filter attach method for EVFILT_PROC. 906 */ 907 static int 908 filt_procattach(struct knote *kn) 909 { 910 struct proc *p; 911 912 mutex_enter(&proc_lock); 913 p = proc_find(kn->kn_id); 914 if (p == NULL) { 915 mutex_exit(&proc_lock); 916 return SET_ERROR(ESRCH); 917 } 918 919 /* 920 * Fail if it's not owned by you, or the last exec gave us 921 * setuid/setgid privs (unless you're root). 922 */ 923 mutex_enter(p->p_lock); 924 mutex_exit(&proc_lock); 925 if (kauth_authorize_process(curlwp->l_cred, 926 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) { 927 mutex_exit(p->p_lock); 928 return SET_ERROR(EACCES); 929 } 930 931 kn->kn_obj = p; 932 kn->kn_flags |= EV_CLEAR; /* automatically set */ 933 934 /* 935 * NOTE_CHILD is only ever generated internally; don't let it 936 * leak in from user-space. See knote_proc_fork_track(). 937 */ 938 kn->kn_sfflags &= ~NOTE_CHILD; 939 940 klist_insert(&p->p_klist, kn); 941 mutex_exit(p->p_lock); 942 943 return 0; 944 } 945 946 /* 947 * Filter detach method for EVFILT_PROC. 948 * 949 * The knote may be attached to a different process, which may exit, 950 * leaving nothing for the knote to be attached to. So when the process 951 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 952 * it will be deleted when read out. However, as part of the knote deletion, 953 * this routine is called, so a check is needed to avoid actually performing 954 * a detach, because the original process might not exist any more. 955 */ 956 static void 957 filt_procdetach(struct knote *kn) 958 { 959 struct kqueue *kq = kn->kn_kq; 960 struct proc *p; 961 962 /* 963 * We have to synchronize with knote_proc_exit(), but we 964 * are forced to acquire the locks in the wrong order here 965 * because we can't be sure kn->kn_obj is valid unless 966 * KN_DETACHED is not set. 967 */ 968 again: 969 mutex_spin_enter(&kq->kq_lock); 970 if ((kn->kn_status & KN_DETACHED) == 0) { 971 p = kn->kn_obj; 972 if (!mutex_tryenter(p->p_lock)) { 973 mutex_spin_exit(&kq->kq_lock); 974 preempt_point(); 975 goto again; 976 } 977 kn->kn_status |= KN_DETACHED; 978 klist_remove(&p->p_klist, kn); 979 mutex_exit(p->p_lock); 980 } 981 mutex_spin_exit(&kq->kq_lock); 982 } 983 984 /* 985 * Filter event method for EVFILT_PROC. 986 * 987 * Due to some of the complexities of process locking, we have special 988 * entry points for delivering knote submissions. filt_proc() is used 989 * only to check for activation from kqueue_register() and kqueue_scan(). 990 */ 991 static int 992 filt_proc(struct knote *kn, long hint) 993 { 994 struct kqueue *kq = kn->kn_kq; 995 uint32_t fflags; 996 997 /* 998 * Because we share the same klist with signal knotes, just 999 * ensure that we're not being invoked for the proc-related 1000 * submissions. 1001 */ 1002 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0); 1003 1004 mutex_spin_enter(&kq->kq_lock); 1005 fflags = kn->kn_fflags; 1006 mutex_spin_exit(&kq->kq_lock); 1007 1008 return fflags != 0; 1009 } 1010 1011 void 1012 knote_proc_exec(struct proc *p) 1013 { 1014 struct knote *kn, *tmpkn; 1015 struct kqueue *kq; 1016 uint32_t fflags; 1017 1018 mutex_enter(p->p_lock); 1019 1020 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) { 1021 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1022 if (kn->kn_fop == &sig_filtops) { 1023 continue; 1024 } 1025 KASSERT(kn->kn_fop == &proc_filtops); 1026 1027 kq = kn->kn_kq; 1028 mutex_spin_enter(&kq->kq_lock); 1029 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC)); 1030 if (fflags) { 1031 knote_activate_locked(kn); 1032 } 1033 mutex_spin_exit(&kq->kq_lock); 1034 } 1035 1036 mutex_exit(p->p_lock); 1037 } 1038 1039 static int __noinline 1040 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn) 1041 { 1042 struct kqueue *kq = okn->kn_kq; 1043 1044 KASSERT(mutex_owned(&kq->kq_lock)); 1045 KASSERT(mutex_owned(p1->p_lock)); 1046 1047 /* 1048 * We're going to put this knote into flux while we drop 1049 * the locks and create and attach a new knote to track the 1050 * child. If we are not able to enter flux, then this knote 1051 * is about to go away, so skip the notification. 1052 */ 1053 if (!kn_enter_flux(okn)) { 1054 return 0; 1055 } 1056 1057 mutex_spin_exit(&kq->kq_lock); 1058 mutex_exit(p1->p_lock); 1059 1060 /* 1061 * We actually have to register *two* new knotes: 1062 * 1063 * ==> One for the NOTE_CHILD notification. This is a forced 1064 * ONESHOT note. 1065 * 1066 * ==> One to actually track the child process as it subsequently 1067 * forks, execs, and, ultimately, exits. 1068 * 1069 * If we only register a single knote, then it's possible for 1070 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single 1071 * notification if the child exits before the tracking process 1072 * has received the NOTE_CHILD notification, which applications 1073 * aren't expecting (the event's 'data' field would be clobbered, 1074 * for example). 1075 * 1076 * To do this, what we have here is an **extremely** stripped-down 1077 * version of kqueue_register() that has the following properties: 1078 * 1079 * ==> Does not block to allocate memory. If we are unable 1080 * to allocate memory, we return ENOMEM. 1081 * 1082 * ==> Does not search for existing knotes; we know there 1083 * are not any because this is a new process that isn't 1084 * even visible to other processes yet. 1085 * 1086 * ==> Assumes that the knhash for our kq's descriptor table 1087 * already exists (after all, we're already tracking 1088 * processes with knotes if we got here). 1089 * 1090 * ==> Directly attaches the new tracking knote to the child 1091 * process. 1092 * 1093 * The whole point is to do the minimum amount of work while the 1094 * knote is held in-flux, and to avoid doing extra work in general 1095 * (we already have the new child process; why bother looking it 1096 * up again?). 1097 */ 1098 filedesc_t *fdp = kq->kq_fdp; 1099 struct knote *knchild, *kntrack; 1100 int error = 0; 1101 1102 knchild = knote_alloc(false); 1103 kntrack = knote_alloc(false); 1104 if (__predict_false(knchild == NULL || kntrack == NULL)) { 1105 error = SET_ERROR(ENOMEM); 1106 goto out; 1107 } 1108 1109 kntrack->kn_obj = p2; 1110 kntrack->kn_id = p2->p_pid; 1111 kntrack->kn_kq = kq; 1112 kntrack->kn_fop = okn->kn_fop; 1113 kntrack->kn_kfilter = okn->kn_kfilter; 1114 kntrack->kn_sfflags = okn->kn_sfflags; 1115 kntrack->kn_sdata = p1->p_pid; 1116 1117 kntrack->kn_kevent.ident = p2->p_pid; 1118 kntrack->kn_kevent.filter = okn->kn_filter; 1119 kntrack->kn_kevent.flags = 1120 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR; 1121 kntrack->kn_kevent.fflags = 0; 1122 kntrack->kn_kevent.data = 0; 1123 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */ 1124 1125 /* 1126 * The child note does not need to be attached to the 1127 * new proc's klist at all. 1128 */ 1129 *knchild = *kntrack; 1130 knchild->kn_status = KN_DETACHED; 1131 knchild->kn_sfflags = 0; 1132 knchild->kn_kevent.flags |= EV_ONESHOT; 1133 knchild->kn_kevent.fflags = NOTE_CHILD; 1134 knchild->kn_kevent.data = p1->p_pid; /* parent */ 1135 1136 mutex_enter(&fdp->fd_lock); 1137 1138 /* 1139 * We need to check to see if the kq is closing, and skip 1140 * attaching the knote if so. Normally, this isn't necessary 1141 * when coming in the front door because the file descriptor 1142 * layer will synchronize this. 1143 * 1144 * It's safe to test KQ_CLOSING without taking the kq_lock 1145 * here because that flag is only ever set when the fd_lock 1146 * is also held. 1147 */ 1148 if (__predict_false(kq->kq_count & KQ_CLOSING)) { 1149 mutex_exit(&fdp->fd_lock); 1150 goto out; 1151 } 1152 1153 /* 1154 * We do the "insert into FD table" and "attach to klist" steps 1155 * in the opposite order of kqueue_register() here to avoid 1156 * having to take p2->p_lock twice. But this is OK because we 1157 * hold fd_lock across the entire operation. 1158 */ 1159 1160 mutex_enter(p2->p_lock); 1161 error = kauth_authorize_process(curlwp->l_cred, 1162 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL); 1163 if (__predict_false(error != 0)) { 1164 mutex_exit(p2->p_lock); 1165 mutex_exit(&fdp->fd_lock); 1166 error = SET_ERROR(EACCES); 1167 goto out; 1168 } 1169 klist_insert(&p2->p_klist, kntrack); 1170 mutex_exit(p2->p_lock); 1171 1172 KASSERT(fdp->fd_knhashmask != 0); 1173 KASSERT(fdp->fd_knhash != NULL); 1174 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id, 1175 fdp->fd_knhashmask)]; 1176 SLIST_INSERT_HEAD(list, kntrack, kn_link); 1177 SLIST_INSERT_HEAD(list, knchild, kn_link); 1178 1179 /* This adds references for knchild *and* kntrack. */ 1180 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2); 1181 1182 knote_activate(knchild); 1183 1184 kntrack = NULL; 1185 knchild = NULL; 1186 1187 mutex_exit(&fdp->fd_lock); 1188 1189 out: 1190 if (__predict_false(knchild != NULL)) { 1191 knote_free(knchild); 1192 } 1193 if (__predict_false(kntrack != NULL)) { 1194 knote_free(kntrack); 1195 } 1196 mutex_enter(p1->p_lock); 1197 mutex_spin_enter(&kq->kq_lock); 1198 1199 if (kn_leave_flux(okn)) { 1200 KQ_FLUX_WAKEUP(kq); 1201 } 1202 1203 return error; 1204 } 1205 1206 void 1207 knote_proc_fork(struct proc *p1, struct proc *p2) 1208 { 1209 struct knote *kn; 1210 struct kqueue *kq; 1211 uint32_t fflags; 1212 1213 mutex_enter(p1->p_lock); 1214 1215 /* 1216 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we 1217 * don't want to pre-fetch the next knote; in the event we 1218 * have to drop p_lock, we will have put the knote in-flux, 1219 * meaning that no one will be able to detach it until we 1220 * have taken the knote out of flux. However, that does 1221 * NOT stop someone else from detaching the next note in the 1222 * list while we have it unlocked. Thus, we want to fetch 1223 * the next note in the list only after we have re-acquired 1224 * the lock, and using SLIST_FOREACH() will satisfy that. 1225 */ 1226 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) { 1227 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1228 if (kn->kn_fop == &sig_filtops) { 1229 continue; 1230 } 1231 KASSERT(kn->kn_fop == &proc_filtops); 1232 1233 kq = kn->kn_kq; 1234 mutex_spin_enter(&kq->kq_lock); 1235 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK); 1236 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) { 1237 /* 1238 * This will drop kq_lock and p_lock and 1239 * re-acquire them before it returns. 1240 */ 1241 if (knote_proc_fork_track(p1, p2, kn)) { 1242 kn->kn_fflags |= NOTE_TRACKERR; 1243 } 1244 KASSERT(mutex_owned(p1->p_lock)); 1245 KASSERT(mutex_owned(&kq->kq_lock)); 1246 } 1247 fflags = kn->kn_fflags; 1248 if (fflags) { 1249 knote_activate_locked(kn); 1250 } 1251 mutex_spin_exit(&kq->kq_lock); 1252 } 1253 1254 mutex_exit(p1->p_lock); 1255 } 1256 1257 void 1258 knote_proc_exit(struct proc *p) 1259 { 1260 struct knote *kn; 1261 struct kqueue *kq; 1262 1263 KASSERT(mutex_owned(p->p_lock)); 1264 1265 while (!SLIST_EMPTY(&p->p_klist)) { 1266 kn = SLIST_FIRST(&p->p_klist); 1267 kq = kn->kn_kq; 1268 1269 KASSERT(kn->kn_obj == p); 1270 1271 mutex_spin_enter(&kq->kq_lock); 1272 kn->kn_data = P_WAITSTATUS(p); 1273 /* 1274 * Mark as ONESHOT, so that the knote is g/c'ed 1275 * when read. 1276 */ 1277 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1278 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT; 1279 1280 /* 1281 * Detach the knote from the process and mark it as such. 1282 * N.B. EVFILT_SIGNAL are also on p_klist, but by the 1283 * time we get here, all open file descriptors for this 1284 * process have been released, meaning that signal knotes 1285 * will have already been detached. 1286 * 1287 * We need to synchronize this with filt_procdetach(). 1288 */ 1289 KASSERT(kn->kn_fop == &proc_filtops); 1290 if ((kn->kn_status & KN_DETACHED) == 0) { 1291 kn->kn_status |= KN_DETACHED; 1292 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext); 1293 } 1294 1295 /* 1296 * Always activate the knote for NOTE_EXIT regardless 1297 * of whether or not the listener cares about it. 1298 * This matches historical behavior. 1299 */ 1300 knote_activate_locked(kn); 1301 mutex_spin_exit(&kq->kq_lock); 1302 } 1303 } 1304 1305 #define FILT_TIMER_NOSCHED ((uintptr_t)-1) 1306 1307 static int 1308 filt_timercompute(struct kevent *kev, uintptr_t *tticksp) 1309 { 1310 struct timespec ts; 1311 uintptr_t tticks; 1312 1313 if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) { 1314 return SET_ERROR(EINVAL); 1315 } 1316 1317 /* 1318 * Convert the event 'data' to a timespec, then convert the 1319 * timespec to callout ticks. 1320 */ 1321 switch (kev->fflags & NOTE_TIMER_UNITMASK) { 1322 case NOTE_SECONDS: 1323 ts.tv_sec = kev->data; 1324 ts.tv_nsec = 0; 1325 break; 1326 1327 case NOTE_MSECONDS: /* == historical value 0 */ 1328 ts.tv_sec = kev->data / 1000; 1329 ts.tv_nsec = (kev->data % 1000) * 1000000; 1330 break; 1331 1332 case NOTE_USECONDS: 1333 ts.tv_sec = kev->data / 1000000; 1334 ts.tv_nsec = (kev->data % 1000000) * 1000; 1335 break; 1336 1337 case NOTE_NSECONDS: 1338 ts.tv_sec = kev->data / 1000000000; 1339 ts.tv_nsec = kev->data % 1000000000; 1340 break; 1341 1342 default: 1343 return SET_ERROR(EINVAL); 1344 } 1345 1346 if (kev->fflags & NOTE_ABSTIME) { 1347 struct timespec deadline = ts; 1348 1349 /* 1350 * Get current time. 1351 * 1352 * XXX This is CLOCK_REALTIME. There is no way to 1353 * XXX specify CLOCK_MONOTONIC. 1354 */ 1355 nanotime(&ts); 1356 1357 /* Absolute timers do not repeat. */ 1358 kev->data = FILT_TIMER_NOSCHED; 1359 1360 /* If we're past the deadline, then the event will fire. */ 1361 if (timespeccmp(&deadline, &ts, <=)) { 1362 tticks = FILT_TIMER_NOSCHED; 1363 goto out; 1364 } 1365 1366 /* Calculate how much time is left. */ 1367 timespecsub(&deadline, &ts, &ts); 1368 } else { 1369 /* EV_CLEAR automatically set for relative timers. */ 1370 kev->flags |= EV_CLEAR; 1371 } 1372 1373 tticks = tstohz(&ts); 1374 1375 /* if the supplied value is under our resolution, use 1 tick */ 1376 if (tticks == 0) { 1377 if (kev->data == 0) 1378 return SET_ERROR(EINVAL); 1379 tticks = 1; 1380 } else if (tticks > INT_MAX) { 1381 return SET_ERROR(EINVAL); 1382 } 1383 1384 if ((kev->flags & EV_ONESHOT) != 0) { 1385 /* Timer does not repeat. */ 1386 kev->data = FILT_TIMER_NOSCHED; 1387 } else { 1388 KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED); 1389 kev->data = tticks; 1390 } 1391 1392 out: 1393 *tticksp = tticks; 1394 1395 return 0; 1396 } 1397 1398 static void 1399 filt_timerexpire(void *knx) 1400 { 1401 struct knote *kn = knx; 1402 struct kqueue *kq = kn->kn_kq; 1403 1404 mutex_spin_enter(&kq->kq_lock); 1405 kn->kn_data++; 1406 knote_activate_locked(kn); 1407 if (kn->kn_sdata != FILT_TIMER_NOSCHED) { 1408 KASSERT(kn->kn_sdata > 0); 1409 KASSERT(kn->kn_sdata <= INT_MAX); 1410 callout_schedule((callout_t *)kn->kn_hook, 1411 (int)kn->kn_sdata); 1412 } 1413 mutex_spin_exit(&kq->kq_lock); 1414 } 1415 1416 static inline void 1417 filt_timerstart(struct knote *kn, uintptr_t tticks) 1418 { 1419 callout_t *calloutp = kn->kn_hook; 1420 1421 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1422 KASSERT(!callout_pending(calloutp)); 1423 1424 if (__predict_false(tticks == FILT_TIMER_NOSCHED)) { 1425 kn->kn_data = 1; 1426 } else { 1427 KASSERT(tticks <= INT_MAX); 1428 callout_reset(calloutp, (int)tticks, filt_timerexpire, kn); 1429 } 1430 } 1431 1432 static int 1433 filt_timerattach(struct knote *kn) 1434 { 1435 callout_t *calloutp; 1436 struct kqueue *kq; 1437 uintptr_t tticks; 1438 int error; 1439 1440 struct kevent kev = { 1441 .flags = kn->kn_flags, 1442 .fflags = kn->kn_sfflags, 1443 .data = kn->kn_sdata, 1444 }; 1445 1446 error = filt_timercompute(&kev, &tticks); 1447 if (error) { 1448 return error; 1449 } 1450 1451 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax || 1452 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) { 1453 atomic_dec_uint(&kq_ncallouts); 1454 return SET_ERROR(ENOMEM); 1455 } 1456 callout_init(calloutp, CALLOUT_MPSAFE); 1457 1458 kq = kn->kn_kq; 1459 mutex_spin_enter(&kq->kq_lock); 1460 1461 kn->kn_sdata = kev.data; 1462 kn->kn_flags = kev.flags; 1463 KASSERT(kn->kn_sfflags == kev.fflags); 1464 kn->kn_hook = calloutp; 1465 1466 filt_timerstart(kn, tticks); 1467 1468 mutex_spin_exit(&kq->kq_lock); 1469 1470 return (0); 1471 } 1472 1473 static void 1474 filt_timerdetach(struct knote *kn) 1475 { 1476 callout_t *calloutp; 1477 struct kqueue *kq = kn->kn_kq; 1478 1479 /* prevent rescheduling when we expire */ 1480 mutex_spin_enter(&kq->kq_lock); 1481 kn->kn_sdata = FILT_TIMER_NOSCHED; 1482 mutex_spin_exit(&kq->kq_lock); 1483 1484 calloutp = (callout_t *)kn->kn_hook; 1485 1486 /* 1487 * Attempt to stop the callout. This will block if it's 1488 * already running. 1489 */ 1490 callout_halt(calloutp, NULL); 1491 1492 callout_destroy(calloutp); 1493 kmem_free(calloutp, sizeof(*calloutp)); 1494 atomic_dec_uint(&kq_ncallouts); 1495 } 1496 1497 static int 1498 filt_timertouch(struct knote *kn, struct kevent *kev, long type) 1499 { 1500 struct kqueue *kq = kn->kn_kq; 1501 callout_t *calloutp; 1502 uintptr_t tticks; 1503 int error; 1504 1505 KASSERT(mutex_owned(&kq->kq_lock)); 1506 1507 switch (type) { 1508 case EVENT_REGISTER: 1509 /* Only relevant for EV_ADD. */ 1510 if ((kev->flags & EV_ADD) == 0) { 1511 return 0; 1512 } 1513 1514 /* 1515 * Stop the timer, under the assumption that if 1516 * an application is re-configuring the timer, 1517 * they no longer care about the old one. We 1518 * can safely drop the kq_lock while we wait 1519 * because fdp->fd_lock will be held throughout, 1520 * ensuring that no one can sneak in with an 1521 * EV_DELETE or close the kq. 1522 */ 1523 KASSERT(mutex_owned(&kq->kq_fdp->fd_lock)); 1524 1525 calloutp = kn->kn_hook; 1526 callout_halt(calloutp, &kq->kq_lock); 1527 KASSERT(mutex_owned(&kq->kq_lock)); 1528 knote_deactivate_locked(kn); 1529 kn->kn_data = 0; 1530 1531 error = filt_timercompute(kev, &tticks); 1532 if (error) { 1533 return error; 1534 } 1535 kn->kn_sdata = kev->data; 1536 kn->kn_flags = kev->flags; 1537 kn->kn_sfflags = kev->fflags; 1538 filt_timerstart(kn, tticks); 1539 break; 1540 1541 case EVENT_PROCESS: 1542 *kev = kn->kn_kevent; 1543 break; 1544 1545 default: 1546 panic("%s: invalid type (%ld)", __func__, type); 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int 1553 filt_timer(struct knote *kn, long hint) 1554 { 1555 struct kqueue *kq = kn->kn_kq; 1556 int rv; 1557 1558 mutex_spin_enter(&kq->kq_lock); 1559 rv = (kn->kn_data != 0); 1560 mutex_spin_exit(&kq->kq_lock); 1561 1562 return rv; 1563 } 1564 1565 static int 1566 filt_userattach(struct knote *kn) 1567 { 1568 struct kqueue *kq = kn->kn_kq; 1569 1570 /* 1571 * EVFILT_USER knotes are not attached to anything in the kernel. 1572 */ 1573 mutex_spin_enter(&kq->kq_lock); 1574 kn->kn_hook = NULL; 1575 if (kn->kn_fflags & NOTE_TRIGGER) 1576 kn->kn_hookid = 1; 1577 else 1578 kn->kn_hookid = 0; 1579 mutex_spin_exit(&kq->kq_lock); 1580 return (0); 1581 } 1582 1583 static void 1584 filt_userdetach(struct knote *kn) 1585 { 1586 1587 /* 1588 * EVFILT_USER knotes are not attached to anything in the kernel. 1589 */ 1590 } 1591 1592 static int 1593 filt_user(struct knote *kn, long hint) 1594 { 1595 struct kqueue *kq = kn->kn_kq; 1596 int hookid; 1597 1598 mutex_spin_enter(&kq->kq_lock); 1599 hookid = kn->kn_hookid; 1600 mutex_spin_exit(&kq->kq_lock); 1601 1602 return hookid; 1603 } 1604 1605 static int 1606 filt_usertouch(struct knote *kn, struct kevent *kev, long type) 1607 { 1608 int ffctrl; 1609 1610 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1611 1612 switch (type) { 1613 case EVENT_REGISTER: 1614 if (kev->fflags & NOTE_TRIGGER) 1615 kn->kn_hookid = 1; 1616 1617 ffctrl = kev->fflags & NOTE_FFCTRLMASK; 1618 kev->fflags &= NOTE_FFLAGSMASK; 1619 switch (ffctrl) { 1620 case NOTE_FFNOP: 1621 break; 1622 1623 case NOTE_FFAND: 1624 kn->kn_sfflags &= kev->fflags; 1625 break; 1626 1627 case NOTE_FFOR: 1628 kn->kn_sfflags |= kev->fflags; 1629 break; 1630 1631 case NOTE_FFCOPY: 1632 kn->kn_sfflags = kev->fflags; 1633 break; 1634 1635 default: 1636 /* XXX Return error? */ 1637 break; 1638 } 1639 kn->kn_sdata = kev->data; 1640 if (kev->flags & EV_CLEAR) { 1641 kn->kn_hookid = 0; 1642 kn->kn_data = 0; 1643 kn->kn_fflags = 0; 1644 } 1645 break; 1646 1647 case EVENT_PROCESS: 1648 *kev = kn->kn_kevent; 1649 kev->fflags = kn->kn_sfflags; 1650 kev->data = kn->kn_sdata; 1651 if (kn->kn_flags & EV_CLEAR) { 1652 kn->kn_hookid = 0; 1653 kn->kn_data = 0; 1654 kn->kn_fflags = 0; 1655 } 1656 break; 1657 1658 default: 1659 panic("filt_usertouch() - invalid type (%ld)", type); 1660 break; 1661 } 1662 1663 return 0; 1664 } 1665 1666 /* 1667 * filt_seltrue: 1668 * 1669 * This filter "event" routine simulates seltrue(). 1670 */ 1671 int 1672 filt_seltrue(struct knote *kn, long hint) 1673 { 1674 1675 /* 1676 * We don't know how much data can be read/written, 1677 * but we know that it *can* be. This is about as 1678 * good as select/poll does as well. 1679 */ 1680 kn->kn_data = 0; 1681 return (1); 1682 } 1683 1684 /* 1685 * This provides full kqfilter entry for device switch tables, which 1686 * has same effect as filter using filt_seltrue() as filter method. 1687 */ 1688 static void 1689 filt_seltruedetach(struct knote *kn) 1690 { 1691 /* Nothing to do */ 1692 } 1693 1694 const struct filterops seltrue_filtops = { 1695 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 1696 .f_attach = NULL, 1697 .f_detach = filt_seltruedetach, 1698 .f_event = filt_seltrue, 1699 }; 1700 1701 int 1702 seltrue_kqfilter(dev_t dev, struct knote *kn) 1703 { 1704 switch (kn->kn_filter) { 1705 case EVFILT_READ: 1706 case EVFILT_WRITE: 1707 kn->kn_fop = &seltrue_filtops; 1708 break; 1709 default: 1710 return SET_ERROR(EINVAL); 1711 } 1712 1713 /* Nothing more to do */ 1714 return (0); 1715 } 1716 1717 /* 1718 * kqueue(2) system call. 1719 */ 1720 static int 1721 kqueue1(struct lwp *l, int flags, register_t *retval) 1722 { 1723 struct kqueue *kq; 1724 file_t *fp; 1725 int fd, error; 1726 1727 if ((error = fd_allocfile(&fp, &fd)) != 0) 1728 return error; 1729 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE)); 1730 fp->f_type = DTYPE_KQUEUE; 1731 fp->f_ops = &kqueueops; 1732 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP); 1733 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED); 1734 cv_init(&kq->kq_cv, "kqueue"); 1735 selinit(&kq->kq_sel); 1736 TAILQ_INIT(&kq->kq_head); 1737 fp->f_kqueue = kq; 1738 *retval = fd; 1739 kq->kq_fdp = curlwp->l_fd; 1740 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1741 fd_affix(curproc, fp, fd); 1742 return error; 1743 } 1744 1745 /* 1746 * kqueue(2) system call. 1747 */ 1748 int 1749 sys_kqueue(struct lwp *l, const void *v, register_t *retval) 1750 { 1751 return kqueue1(l, 0, retval); 1752 } 1753 1754 int 1755 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap, 1756 register_t *retval) 1757 { 1758 /* { 1759 syscallarg(int) flags; 1760 } */ 1761 return kqueue1(l, SCARG(uap, flags), retval); 1762 } 1763 1764 /* 1765 * kevent(2) system call. 1766 */ 1767 int 1768 kevent_fetch_changes(void *ctx, const struct kevent *changelist, 1769 struct kevent *changes, size_t index, int n) 1770 { 1771 1772 return copyin(changelist + index, changes, n * sizeof(*changes)); 1773 } 1774 1775 int 1776 kevent_put_events(void *ctx, struct kevent *events, 1777 struct kevent *eventlist, size_t index, int n) 1778 { 1779 1780 return copyout(events, eventlist + index, n * sizeof(*events)); 1781 } 1782 1783 static const struct kevent_ops kevent_native_ops = { 1784 .keo_private = NULL, 1785 .keo_fetch_timeout = copyin, 1786 .keo_fetch_changes = kevent_fetch_changes, 1787 .keo_put_events = kevent_put_events, 1788 }; 1789 1790 int 1791 sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap, 1792 register_t *retval) 1793 { 1794 /* { 1795 syscallarg(int) fd; 1796 syscallarg(const struct kevent *) changelist; 1797 syscallarg(size_t) nchanges; 1798 syscallarg(struct kevent *) eventlist; 1799 syscallarg(size_t) nevents; 1800 syscallarg(const struct timespec *) timeout; 1801 } */ 1802 1803 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist), 1804 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), 1805 SCARG(uap, timeout), &kevent_native_ops); 1806 } 1807 1808 int 1809 kevent1(register_t *retval, int fd, 1810 const struct kevent *changelist, size_t nchanges, 1811 struct kevent *eventlist, size_t nevents, 1812 const struct timespec *timeout, 1813 const struct kevent_ops *keops) 1814 { 1815 struct kevent *kevp; 1816 struct kqueue *kq; 1817 struct timespec ts; 1818 size_t i, n, ichange; 1819 int nerrors, error; 1820 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */ 1821 file_t *fp; 1822 1823 /* check that we're dealing with a kq */ 1824 fp = fd_getfile(fd); 1825 if (fp == NULL) 1826 return SET_ERROR(EBADF); 1827 1828 if (fp->f_type != DTYPE_KQUEUE) { 1829 fd_putfile(fd); 1830 return SET_ERROR(EBADF); 1831 } 1832 1833 if (timeout != NULL) { 1834 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); 1835 if (error) 1836 goto done; 1837 timeout = &ts; 1838 } 1839 1840 kq = fp->f_kqueue; 1841 nerrors = 0; 1842 ichange = 0; 1843 1844 /* traverse list of events to register */ 1845 while (nchanges > 0) { 1846 n = MIN(nchanges, __arraycount(kevbuf)); 1847 error = (*keops->keo_fetch_changes)(keops->keo_private, 1848 changelist, kevbuf, ichange, n); 1849 if (error) 1850 goto done; 1851 for (i = 0; i < n; i++) { 1852 kevp = &kevbuf[i]; 1853 kevp->flags &= ~EV_SYSFLAGS; 1854 /* register each knote */ 1855 error = kqueue_register(kq, kevp); 1856 if (!error && !(kevp->flags & EV_RECEIPT)) 1857 continue; 1858 if (nevents == 0) 1859 goto done; 1860 kevp->flags = EV_ERROR; 1861 kevp->data = error; 1862 error = (*keops->keo_put_events) 1863 (keops->keo_private, kevp, 1864 eventlist, nerrors, 1); 1865 if (error) 1866 goto done; 1867 nevents--; 1868 nerrors++; 1869 } 1870 nchanges -= n; /* update the results */ 1871 ichange += n; 1872 } 1873 if (nerrors) { 1874 *retval = nerrors; 1875 error = 0; 1876 goto done; 1877 } 1878 1879 /* actually scan through the events */ 1880 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops, 1881 kevbuf, __arraycount(kevbuf)); 1882 done: 1883 fd_putfile(fd); 1884 return (error); 1885 } 1886 1887 /* 1888 * Register a given kevent kev onto the kqueue 1889 */ 1890 static int 1891 kqueue_register(struct kqueue *kq, struct kevent *kev) 1892 { 1893 struct kfilter *kfilter; 1894 filedesc_t *fdp; 1895 file_t *fp; 1896 fdfile_t *ff; 1897 struct knote *kn, *newkn; 1898 struct klist *list; 1899 int error, fd, rv; 1900 1901 fdp = kq->kq_fdp; 1902 fp = NULL; 1903 kn = NULL; 1904 error = 0; 1905 fd = 0; 1906 1907 newkn = knote_alloc(true); 1908 1909 rw_enter(&kqueue_filter_lock, RW_READER); 1910 kfilter = kfilter_byfilter(kev->filter); 1911 if (kfilter == NULL || kfilter->filtops == NULL) { 1912 /* filter not found nor implemented */ 1913 rw_exit(&kqueue_filter_lock); 1914 knote_free(newkn); 1915 return SET_ERROR(EINVAL); 1916 } 1917 1918 /* search if knote already exists */ 1919 if (kfilter->filtops->f_flags & FILTEROP_ISFD) { 1920 /* monitoring a file descriptor */ 1921 /* validate descriptor */ 1922 if (kev->ident > INT_MAX 1923 || (fp = fd_getfile(fd = kev->ident)) == NULL) { 1924 rw_exit(&kqueue_filter_lock); 1925 knote_free(newkn); 1926 return SET_ERROR(EBADF); 1927 } 1928 mutex_enter(&fdp->fd_lock); 1929 ff = fdp->fd_dt->dt_ff[fd]; 1930 if (ff->ff_refcnt & FR_CLOSING) { 1931 error = SET_ERROR(EBADF); 1932 goto doneunlock; 1933 } 1934 if (fd <= fdp->fd_lastkqfile) { 1935 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) { 1936 if (kq == kn->kn_kq && 1937 kev->filter == kn->kn_filter) 1938 break; 1939 } 1940 } 1941 } else { 1942 /* 1943 * not monitoring a file descriptor, so 1944 * lookup knotes in internal hash table 1945 */ 1946 mutex_enter(&fdp->fd_lock); 1947 if (fdp->fd_knhashmask != 0) { 1948 list = &fdp->fd_knhash[ 1949 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 1950 SLIST_FOREACH(kn, list, kn_link) { 1951 if (kev->ident == kn->kn_id && 1952 kq == kn->kn_kq && 1953 kev->filter == kn->kn_filter) 1954 break; 1955 } 1956 } 1957 } 1958 1959 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */ 1960 KASSERT(mutex_owned(&fdp->fd_lock)); 1961 KASSERT((kq->kq_count & KQ_CLOSING) == 0); 1962 1963 /* 1964 * kn now contains the matching knote, or NULL if no match 1965 */ 1966 if (kn == NULL) { 1967 if (kev->flags & EV_ADD) { 1968 /* create new knote */ 1969 kn = newkn; 1970 newkn = NULL; 1971 kn->kn_obj = fp; 1972 kn->kn_id = kev->ident; 1973 kn->kn_kq = kq; 1974 kn->kn_fop = kfilter->filtops; 1975 kn->kn_kfilter = kfilter; 1976 kn->kn_sfflags = kev->fflags; 1977 kn->kn_sdata = kev->data; 1978 kev->fflags = 0; 1979 kev->data = 0; 1980 kn->kn_kevent = *kev; 1981 1982 KASSERT(kn->kn_fop != NULL); 1983 /* 1984 * XXX Allow only known-safe users of f_touch. 1985 * XXX See filter_touch() for details. 1986 */ 1987 if (kn->kn_fop->f_touch != NULL && 1988 kn->kn_fop != &timer_filtops && 1989 kn->kn_fop != &user_filtops) { 1990 error = SET_ERROR(ENOTSUP); 1991 goto fail_ev_add; 1992 } 1993 1994 /* 1995 * apply reference count to knote structure, and 1996 * do not release it at the end of this routine. 1997 */ 1998 fp = NULL; 1999 2000 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) { 2001 /* 2002 * If knote is not on an fd, store on 2003 * internal hash table. 2004 */ 2005 if (fdp->fd_knhashmask == 0) { 2006 /* XXXAD can block with fd_lock held */ 2007 fdp->fd_knhash = hashinit(KN_HASHSIZE, 2008 HASH_LIST, true, 2009 &fdp->fd_knhashmask); 2010 } 2011 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, 2012 fdp->fd_knhashmask)]; 2013 } else { 2014 /* Otherwise, knote is on an fd. */ 2015 list = (struct klist *) 2016 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2017 if ((int)kn->kn_id > fdp->fd_lastkqfile) 2018 fdp->fd_lastkqfile = kn->kn_id; 2019 } 2020 SLIST_INSERT_HEAD(list, kn, kn_link); 2021 2022 /* 2023 * N.B. kn->kn_fop may change as the result 2024 * of filter_attach()! 2025 */ 2026 knote_foplock_enter(kn); 2027 error = filter_attach(kn); 2028 if (error != 0) { 2029 #ifdef DEBUG 2030 struct proc *p = curlwp->l_proc; 2031 const file_t *ft = kn->kn_obj; 2032 printf("%s: %s[%d]: event type %d not " 2033 "supported for file type %d/%s " 2034 "(error %d)\n", __func__, 2035 p->p_comm, p->p_pid, 2036 kn->kn_filter, ft ? ft->f_type : -1, 2037 ft ? ft->f_ops->fo_name : "?", error); 2038 #endif 2039 2040 fail_ev_add: 2041 /* 2042 * N.B. no need to check for this note to 2043 * be in-flux, since it was never visible 2044 * to the monitored object. 2045 * 2046 * knote_detach() drops fdp->fd_lock 2047 */ 2048 knote_foplock_exit(kn); 2049 mutex_enter(&kq->kq_lock); 2050 KNOTE_WILLDETACH(kn); 2051 KASSERT(kn_in_flux(kn) == false); 2052 mutex_exit(&kq->kq_lock); 2053 knote_detach(kn, fdp, false); 2054 goto done; 2055 } 2056 atomic_inc_uint(&kfilter->refcnt); 2057 goto done_ev_add; 2058 } else { 2059 /* No matching knote and the EV_ADD flag is not set. */ 2060 error = SET_ERROR(ENOENT); 2061 goto doneunlock; 2062 } 2063 } 2064 2065 if (kev->flags & EV_DELETE) { 2066 /* 2067 * Let the world know that this knote is about to go 2068 * away, and wait for it to settle if it's currently 2069 * in-flux. 2070 */ 2071 mutex_spin_enter(&kq->kq_lock); 2072 if (kn->kn_status & KN_WILLDETACH) { 2073 /* 2074 * This knote is already on its way out, 2075 * so just be done. 2076 */ 2077 mutex_spin_exit(&kq->kq_lock); 2078 goto doneunlock; 2079 } 2080 KNOTE_WILLDETACH(kn); 2081 if (kn_in_flux(kn)) { 2082 mutex_exit(&fdp->fd_lock); 2083 /* 2084 * It's safe for us to conclusively wait for 2085 * this knote to settle because we know we'll 2086 * be completing the detach. 2087 */ 2088 kn_wait_flux(kn, true); 2089 KASSERT(kn_in_flux(kn) == false); 2090 mutex_spin_exit(&kq->kq_lock); 2091 mutex_enter(&fdp->fd_lock); 2092 } else { 2093 mutex_spin_exit(&kq->kq_lock); 2094 } 2095 2096 /* knote_detach() drops fdp->fd_lock */ 2097 knote_detach(kn, fdp, true); 2098 goto done; 2099 } 2100 2101 /* 2102 * The user may change some filter values after the 2103 * initial EV_ADD, but doing so will not reset any 2104 * filter which have already been triggered. 2105 */ 2106 knote_foplock_enter(kn); 2107 kn->kn_kevent.udata = kev->udata; 2108 KASSERT(kn->kn_fop != NULL); 2109 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2110 kn->kn_fop->f_touch != NULL) { 2111 mutex_spin_enter(&kq->kq_lock); 2112 error = filter_touch(kn, kev, EVENT_REGISTER); 2113 mutex_spin_exit(&kq->kq_lock); 2114 if (__predict_false(error != 0)) { 2115 /* Never a new knote (which would consume newkn). */ 2116 KASSERT(newkn != NULL); 2117 knote_foplock_exit(kn); 2118 goto doneunlock; 2119 } 2120 } else { 2121 kn->kn_sfflags = kev->fflags; 2122 kn->kn_sdata = kev->data; 2123 } 2124 2125 /* 2126 * We can get here if we are trying to attach 2127 * an event to a file descriptor that does not 2128 * support events, and the attach routine is 2129 * broken and does not return an error. 2130 */ 2131 done_ev_add: 2132 rv = filter_event(kn, 0, false); 2133 if (rv) 2134 knote_activate(kn); 2135 2136 knote_foplock_exit(kn); 2137 2138 /* disable knote */ 2139 if ((kev->flags & EV_DISABLE)) { 2140 mutex_spin_enter(&kq->kq_lock); 2141 if ((kn->kn_status & KN_DISABLED) == 0) 2142 kn->kn_status |= KN_DISABLED; 2143 mutex_spin_exit(&kq->kq_lock); 2144 } 2145 2146 /* enable knote */ 2147 if ((kev->flags & EV_ENABLE)) { 2148 knote_enqueue(kn); 2149 } 2150 doneunlock: 2151 mutex_exit(&fdp->fd_lock); 2152 done: 2153 rw_exit(&kqueue_filter_lock); 2154 if (newkn != NULL) 2155 knote_free(newkn); 2156 if (fp != NULL) 2157 fd_putfile(fd); 2158 return (error); 2159 } 2160 2161 #define KN_FMT(buf, kn) \ 2162 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf) 2163 2164 #if defined(DDB) 2165 void 2166 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...)) 2167 { 2168 const struct knote *kn; 2169 u_int count; 2170 int nmarker; 2171 char buf[128]; 2172 2173 count = 0; 2174 nmarker = 0; 2175 2176 (*pr)("kqueue %p (restart=%d count=%u):\n", kq, 2177 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq)); 2178 (*pr)(" Queued knotes:\n"); 2179 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2180 if (kn->kn_status & KN_MARKER) { 2181 nmarker++; 2182 } else { 2183 count++; 2184 } 2185 (*pr)(" knote %p: kq=%p status=%s\n", 2186 kn, kn->kn_kq, KN_FMT(buf, kn)); 2187 (*pr)(" id=0x%lx (%lu) filter=%d\n", 2188 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter); 2189 if (kn->kn_kq != kq) { 2190 (*pr)(" !!! kn->kn_kq != kq\n"); 2191 } 2192 } 2193 if (count != KQ_COUNT(kq)) { 2194 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n", 2195 count, KQ_COUNT(kq)); 2196 } 2197 } 2198 #endif /* DDB */ 2199 2200 #if defined(DEBUG) 2201 static void 2202 kqueue_check(const char *func, size_t line, const struct kqueue *kq) 2203 { 2204 const struct knote *kn; 2205 u_int count; 2206 int nmarker; 2207 char buf[128]; 2208 2209 KASSERT(mutex_owned(&kq->kq_lock)); 2210 2211 count = 0; 2212 nmarker = 0; 2213 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2214 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) { 2215 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s", 2216 func, line, kq, kn, KN_FMT(buf, kn)); 2217 } 2218 if ((kn->kn_status & KN_MARKER) == 0) { 2219 if (kn->kn_kq != kq) { 2220 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s", 2221 func, line, kq, kn, kn->kn_kq, 2222 KN_FMT(buf, kn)); 2223 } 2224 if ((kn->kn_status & KN_ACTIVE) == 0) { 2225 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s", 2226 func, line, kq, kn, KN_FMT(buf, kn)); 2227 } 2228 count++; 2229 if (count > KQ_COUNT(kq)) { 2230 panic("%s,%zu: kq=%p kq->kq_count(%u) != " 2231 "count(%d), nmarker=%d", 2232 func, line, kq, KQ_COUNT(kq), count, 2233 nmarker); 2234 } 2235 } else { 2236 nmarker++; 2237 } 2238 } 2239 } 2240 #define kq_check(a) kqueue_check(__func__, __LINE__, (a)) 2241 #else /* defined(DEBUG) */ 2242 #define kq_check(a) /* nothing */ 2243 #endif /* defined(DEBUG) */ 2244 2245 static void 2246 kqueue_restart(file_t *fp) 2247 { 2248 struct kqueue *kq = fp->f_kqueue; 2249 KASSERT(kq != NULL); 2250 2251 mutex_spin_enter(&kq->kq_lock); 2252 kq->kq_count |= KQ_RESTART; 2253 cv_broadcast(&kq->kq_cv); 2254 mutex_spin_exit(&kq->kq_lock); 2255 } 2256 2257 static int 2258 kqueue_fpathconf(struct file *fp, int name, register_t *retval) 2259 { 2260 2261 return SET_ERROR(EINVAL); 2262 } 2263 2264 /* 2265 * Scan through the list of events on fp (for a maximum of maxevents), 2266 * returning the results in to ulistp. Timeout is determined by tsp; if 2267 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 2268 * as appropriate. 2269 */ 2270 static int 2271 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp, 2272 const struct timespec *tsp, register_t *retval, 2273 const struct kevent_ops *keops, struct kevent *kevbuf, 2274 size_t kevcnt) 2275 { 2276 struct kqueue *kq; 2277 struct kevent *kevp; 2278 struct timespec ats, sleepts; 2279 struct knote *kn, *marker; 2280 struct knote_impl morker; 2281 size_t count, nkev, nevents; 2282 int timeout, error, touch, rv, influx; 2283 filedesc_t *fdp; 2284 2285 fdp = curlwp->l_fd; 2286 kq = fp->f_kqueue; 2287 count = maxevents; 2288 nkev = nevents = error = 0; 2289 if (count == 0) { 2290 *retval = 0; 2291 return 0; 2292 } 2293 2294 if (tsp) { /* timeout supplied */ 2295 ats = *tsp; 2296 if (inittimeleft(&ats, &sleepts) == -1) { 2297 *retval = maxevents; 2298 return SET_ERROR(EINVAL); 2299 } 2300 timeout = tstohz(&ats); 2301 if (timeout <= 0) 2302 timeout = -1; /* do poll */ 2303 } else { 2304 /* no timeout, wait forever */ 2305 timeout = 0; 2306 } 2307 2308 memset(&morker, 0, sizeof(morker)); 2309 marker = &morker.ki_knote; 2310 marker->kn_kq = kq; 2311 marker->kn_status = KN_MARKER; 2312 mutex_spin_enter(&kq->kq_lock); 2313 retry: 2314 kevp = kevbuf; 2315 if (KQ_COUNT(kq) == 0) { 2316 if (timeout >= 0) { 2317 error = cv_timedwait_sig(&kq->kq_cv, 2318 &kq->kq_lock, timeout); 2319 if (error == 0) { 2320 if (KQ_COUNT(kq) == 0 && 2321 (kq->kq_count & KQ_RESTART)) { 2322 /* return to clear file reference */ 2323 error = SET_ERROR(ERESTART); 2324 } else if (tsp == NULL || (timeout = 2325 gettimeleft(&ats, &sleepts)) > 0) { 2326 goto retry; 2327 } 2328 } else { 2329 /* don't restart after signals... */ 2330 if (error == ERESTART) 2331 error = SET_ERROR(EINTR); 2332 if (error == EWOULDBLOCK) 2333 error = 0; 2334 } 2335 } 2336 mutex_spin_exit(&kq->kq_lock); 2337 goto done; 2338 } 2339 2340 /* mark end of knote list */ 2341 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 2342 influx = 0; 2343 2344 /* 2345 * Acquire the fdp->fd_lock interlock to avoid races with 2346 * file creation/destruction from other threads. 2347 */ 2348 mutex_spin_exit(&kq->kq_lock); 2349 relock: 2350 mutex_enter(&fdp->fd_lock); 2351 mutex_spin_enter(&kq->kq_lock); 2352 2353 while (count != 0) { 2354 /* 2355 * Get next knote. We are guaranteed this will never 2356 * be NULL because of the marker we inserted above. 2357 */ 2358 kn = TAILQ_FIRST(&kq->kq_head); 2359 2360 bool kn_is_other_marker = 2361 (kn->kn_status & KN_MARKER) != 0 && kn != marker; 2362 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0; 2363 bool kn_is_in_flux = kn_in_flux(kn); 2364 2365 /* 2366 * If we found a marker that's not ours, or this knote 2367 * is in a state of flux, then wait for everything to 2368 * settle down and go around again. 2369 */ 2370 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) { 2371 if (influx) { 2372 influx = 0; 2373 KQ_FLUX_WAKEUP(kq); 2374 } 2375 mutex_exit(&fdp->fd_lock); 2376 if (kn_is_other_marker || kn_is_in_flux) { 2377 KQ_FLUX_WAIT(kq); 2378 mutex_spin_exit(&kq->kq_lock); 2379 } else { 2380 /* 2381 * Detaching but not in-flux? Someone is 2382 * actively trying to finish the job; just 2383 * go around and try again. 2384 */ 2385 KASSERT(kn_is_detaching); 2386 mutex_spin_exit(&kq->kq_lock); 2387 preempt_point(); 2388 } 2389 goto relock; 2390 } 2391 2392 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2393 if (kn == marker) { 2394 /* it's our marker, stop */ 2395 KQ_FLUX_WAKEUP(kq); 2396 if (count == maxevents) { 2397 mutex_exit(&fdp->fd_lock); 2398 goto retry; 2399 } 2400 break; 2401 } 2402 KASSERT((kn->kn_status & KN_BUSY) == 0); 2403 2404 kq_check(kq); 2405 kn->kn_status &= ~KN_QUEUED; 2406 kn->kn_status |= KN_BUSY; 2407 kq_check(kq); 2408 if (kn->kn_status & KN_DISABLED) { 2409 kn->kn_status &= ~KN_BUSY; 2410 kq->kq_count--; 2411 /* don't want disabled events */ 2412 continue; 2413 } 2414 if ((kn->kn_flags & EV_ONESHOT) == 0) { 2415 mutex_spin_exit(&kq->kq_lock); 2416 KASSERT(mutex_owned(&fdp->fd_lock)); 2417 knote_foplock_enter(kn); 2418 rv = filter_event(kn, 0, false); 2419 knote_foplock_exit(kn); 2420 mutex_spin_enter(&kq->kq_lock); 2421 /* Re-poll if note was re-enqueued. */ 2422 if ((kn->kn_status & KN_QUEUED) != 0) { 2423 kn->kn_status &= ~KN_BUSY; 2424 /* Re-enqueue raised kq_count, lower it again */ 2425 kq->kq_count--; 2426 influx = 1; 2427 continue; 2428 } 2429 if (rv == 0) { 2430 /* 2431 * non-ONESHOT event that hasn't triggered 2432 * again, so it will remain de-queued. 2433 */ 2434 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2435 kq->kq_count--; 2436 influx = 1; 2437 continue; 2438 } 2439 } else { 2440 /* 2441 * Must NOT drop kq_lock until we can do 2442 * the KNOTE_WILLDETACH() below. 2443 */ 2444 } 2445 KASSERT(kn->kn_fop != NULL); 2446 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2447 kn->kn_fop->f_touch != NULL); 2448 /* XXXAD should be got from f_event if !oneshot. */ 2449 KASSERT((kn->kn_status & KN_WILLDETACH) == 0); 2450 if (touch) { 2451 (void)filter_touch(kn, kevp, EVENT_PROCESS); 2452 } else { 2453 *kevp = kn->kn_kevent; 2454 } 2455 kevp++; 2456 nkev++; 2457 influx = 1; 2458 if (kn->kn_flags & EV_ONESHOT) { 2459 /* delete ONESHOT events after retrieval */ 2460 KNOTE_WILLDETACH(kn); 2461 kn->kn_status &= ~KN_BUSY; 2462 kq->kq_count--; 2463 KASSERT(kn_in_flux(kn) == false); 2464 KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2465 KASSERT(kn->kn_kevent.udata == curlwp); 2466 mutex_spin_exit(&kq->kq_lock); 2467 knote_detach(kn, fdp, true); 2468 mutex_enter(&fdp->fd_lock); 2469 mutex_spin_enter(&kq->kq_lock); 2470 } else if (kn->kn_flags & EV_CLEAR) { 2471 /* clear state after retrieval */ 2472 kn->kn_data = 0; 2473 kn->kn_fflags = 0; 2474 /* 2475 * Manually clear knotes who weren't 2476 * 'touch'ed. 2477 */ 2478 if (touch == 0) { 2479 kn->kn_data = 0; 2480 kn->kn_fflags = 0; 2481 } 2482 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2483 kq->kq_count--; 2484 } else if (kn->kn_flags & EV_DISPATCH) { 2485 kn->kn_status |= KN_DISABLED; 2486 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2487 kq->kq_count--; 2488 } else { 2489 /* add event back on list */ 2490 kq_check(kq); 2491 kn->kn_status |= KN_QUEUED; 2492 kn->kn_status &= ~KN_BUSY; 2493 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2494 kq_check(kq); 2495 } 2496 2497 if (nkev == kevcnt) { 2498 /* do copyouts in kevcnt chunks */ 2499 influx = 0; 2500 KQ_FLUX_WAKEUP(kq); 2501 mutex_spin_exit(&kq->kq_lock); 2502 mutex_exit(&fdp->fd_lock); 2503 error = (*keops->keo_put_events) 2504 (keops->keo_private, 2505 kevbuf, ulistp, nevents, nkev); 2506 mutex_enter(&fdp->fd_lock); 2507 mutex_spin_enter(&kq->kq_lock); 2508 nevents += nkev; 2509 nkev = 0; 2510 kevp = kevbuf; 2511 } 2512 count--; 2513 if (error != 0 || count == 0) { 2514 /* remove marker */ 2515 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 2516 break; 2517 } 2518 } 2519 KQ_FLUX_WAKEUP(kq); 2520 mutex_spin_exit(&kq->kq_lock); 2521 mutex_exit(&fdp->fd_lock); 2522 2523 done: 2524 if (nkev != 0) { 2525 /* copyout remaining events */ 2526 error = (*keops->keo_put_events)(keops->keo_private, 2527 kevbuf, ulistp, nevents, nkev); 2528 } 2529 *retval = maxevents - count; 2530 2531 return error; 2532 } 2533 2534 /* 2535 * fileops ioctl method for a kqueue descriptor. 2536 * 2537 * Two ioctls are currently supported. They both use struct kfilter_mapping: 2538 * KFILTER_BYNAME find name for filter, and return result in 2539 * name, which is of size len. 2540 * KFILTER_BYFILTER find filter for name. len is ignored. 2541 */ 2542 /*ARGSUSED*/ 2543 static int 2544 kqueue_ioctl(file_t *fp, u_long com, void *data) 2545 { 2546 struct kfilter_mapping *km; 2547 const struct kfilter *kfilter; 2548 char *name; 2549 int error; 2550 2551 km = data; 2552 error = 0; 2553 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP); 2554 2555 switch (com) { 2556 case KFILTER_BYFILTER: /* convert filter -> name */ 2557 rw_enter(&kqueue_filter_lock, RW_READER); 2558 kfilter = kfilter_byfilter(km->filter); 2559 if (kfilter != NULL) { 2560 strlcpy(name, kfilter->name, KFILTER_MAXNAME); 2561 rw_exit(&kqueue_filter_lock); 2562 error = copyoutstr(name, km->name, km->len, NULL); 2563 } else { 2564 rw_exit(&kqueue_filter_lock); 2565 error = SET_ERROR(ENOENT); 2566 } 2567 break; 2568 2569 case KFILTER_BYNAME: /* convert name -> filter */ 2570 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 2571 if (error) { 2572 break; 2573 } 2574 rw_enter(&kqueue_filter_lock, RW_READER); 2575 kfilter = kfilter_byname(name); 2576 if (kfilter != NULL) 2577 km->filter = kfilter->filter; 2578 else 2579 error = SET_ERROR(ENOENT); 2580 rw_exit(&kqueue_filter_lock); 2581 break; 2582 2583 default: 2584 error = SET_ERROR(ENOTTY); 2585 break; 2586 2587 } 2588 kmem_free(name, KFILTER_MAXNAME); 2589 return (error); 2590 } 2591 2592 /* 2593 * fileops fcntl method for a kqueue descriptor. 2594 */ 2595 static int 2596 kqueue_fcntl(file_t *fp, u_int com, void *data) 2597 { 2598 2599 return SET_ERROR(ENOTTY); 2600 } 2601 2602 /* 2603 * fileops poll method for a kqueue descriptor. 2604 * Determine if kqueue has events pending. 2605 */ 2606 static int 2607 kqueue_poll(file_t *fp, int events) 2608 { 2609 struct kqueue *kq; 2610 int revents; 2611 2612 kq = fp->f_kqueue; 2613 2614 revents = 0; 2615 if (events & (POLLIN | POLLRDNORM)) { 2616 mutex_spin_enter(&kq->kq_lock); 2617 if (KQ_COUNT(kq) != 0) { 2618 revents |= events & (POLLIN | POLLRDNORM); 2619 } else { 2620 selrecord(curlwp, &kq->kq_sel); 2621 } 2622 kq_check(kq); 2623 mutex_spin_exit(&kq->kq_lock); 2624 } 2625 2626 return revents; 2627 } 2628 2629 /* 2630 * fileops stat method for a kqueue descriptor. 2631 * Returns dummy info, with st_size being number of events pending. 2632 */ 2633 static int 2634 kqueue_stat(file_t *fp, struct stat *st) 2635 { 2636 struct kqueue *kq; 2637 2638 kq = fp->f_kqueue; 2639 2640 memset(st, 0, sizeof(*st)); 2641 st->st_size = KQ_COUNT(kq); 2642 st->st_blksize = sizeof(struct kevent); 2643 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 2644 st->st_blocks = 1; 2645 st->st_uid = kauth_cred_geteuid(fp->f_cred); 2646 st->st_gid = kauth_cred_getegid(fp->f_cred); 2647 2648 return 0; 2649 } 2650 2651 static void 2652 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd) 2653 { 2654 struct knote *kn; 2655 filedesc_t *fdp; 2656 2657 fdp = kq->kq_fdp; 2658 2659 KASSERT(mutex_owned(&fdp->fd_lock)); 2660 2661 again: 2662 for (kn = SLIST_FIRST(list); kn != NULL;) { 2663 if (kq != kn->kn_kq) { 2664 kn = SLIST_NEXT(kn, kn_link); 2665 continue; 2666 } 2667 if (knote_detach_quiesce(kn)) { 2668 mutex_enter(&fdp->fd_lock); 2669 goto again; 2670 } 2671 knote_detach(kn, fdp, true); 2672 mutex_enter(&fdp->fd_lock); 2673 kn = SLIST_FIRST(list); 2674 } 2675 } 2676 2677 /* 2678 * fileops close method for a kqueue descriptor. 2679 */ 2680 static int 2681 kqueue_close(file_t *fp) 2682 { 2683 struct kqueue *kq; 2684 filedesc_t *fdp; 2685 fdfile_t *ff; 2686 int i; 2687 2688 kq = fp->f_kqueue; 2689 fp->f_kqueue = NULL; 2690 fp->f_type = 0; 2691 fdp = curlwp->l_fd; 2692 2693 KASSERT(kq->kq_fdp == fdp); 2694 2695 mutex_enter(&fdp->fd_lock); 2696 2697 /* 2698 * We're doing to drop the fd_lock multiple times while 2699 * we detach knotes. During this time, attempts to register 2700 * knotes via the back door (e.g. knote_proc_fork_track()) 2701 * need to fail, lest they sneak in to attach a knote after 2702 * we've already drained the list it's destined for. 2703 * 2704 * We must acquire kq_lock here to set KQ_CLOSING (to serialize 2705 * with other code paths that modify kq_count without holding 2706 * the fd_lock), but once this bit is set, it's only safe to 2707 * test it while holding the fd_lock, and holding kq_lock while 2708 * doing so is not necessary. 2709 */ 2710 mutex_enter(&kq->kq_lock); 2711 kq->kq_count |= KQ_CLOSING; 2712 mutex_exit(&kq->kq_lock); 2713 2714 for (i = 0; i <= fdp->fd_lastkqfile; i++) { 2715 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL) 2716 continue; 2717 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i); 2718 } 2719 if (fdp->fd_knhashmask != 0) { 2720 for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 2721 kqueue_doclose(kq, &fdp->fd_knhash[i], -1); 2722 } 2723 } 2724 2725 mutex_exit(&fdp->fd_lock); 2726 2727 #if defined(DEBUG) 2728 mutex_enter(&kq->kq_lock); 2729 kq_check(kq); 2730 mutex_exit(&kq->kq_lock); 2731 #endif /* DEBUG */ 2732 KASSERT(TAILQ_EMPTY(&kq->kq_head)); 2733 KASSERT(KQ_COUNT(kq) == 0); 2734 mutex_destroy(&kq->kq_lock); 2735 cv_destroy(&kq->kq_cv); 2736 seldestroy(&kq->kq_sel); 2737 kmem_free(kq, sizeof(*kq)); 2738 2739 return (0); 2740 } 2741 2742 /* 2743 * struct fileops kqfilter method for a kqueue descriptor. 2744 * Event triggered when monitored kqueue changes. 2745 */ 2746 static int 2747 kqueue_kqfilter(file_t *fp, struct knote *kn) 2748 { 2749 struct kqueue *kq; 2750 2751 kq = ((file_t *)kn->kn_obj)->f_kqueue; 2752 2753 KASSERT(fp == kn->kn_obj); 2754 2755 if (kn->kn_filter != EVFILT_READ) 2756 return SET_ERROR(EINVAL); 2757 2758 kn->kn_fop = &kqread_filtops; 2759 mutex_enter(&kq->kq_lock); 2760 selrecord_knote(&kq->kq_sel, kn); 2761 mutex_exit(&kq->kq_lock); 2762 2763 return 0; 2764 } 2765 2766 2767 /* 2768 * Walk down a list of knotes, activating them if their event has 2769 * triggered. The caller's object lock (e.g. device driver lock) 2770 * must be held. 2771 */ 2772 void 2773 knote(struct klist *list, long hint) 2774 { 2775 struct knote *kn, *tmpkn; 2776 2777 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) { 2778 /* 2779 * We assume here that the backing object's lock is 2780 * already held if we're traversing the klist, and 2781 * so acquiring the knote foplock would create a 2782 * deadlock scenario. But we also know that the klist 2783 * won't disappear on us while we're here, so not 2784 * acquiring it is safe. 2785 */ 2786 if (filter_event(kn, hint, true)) { 2787 knote_activate(kn); 2788 } 2789 } 2790 } 2791 2792 /* 2793 * Remove all knotes referencing a specified fd 2794 */ 2795 void 2796 knote_fdclose(int fd) 2797 { 2798 struct klist *list; 2799 struct knote *kn; 2800 filedesc_t *fdp; 2801 2802 again: 2803 fdp = curlwp->l_fd; 2804 mutex_enter(&fdp->fd_lock); 2805 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist; 2806 while ((kn = SLIST_FIRST(list)) != NULL) { 2807 if (knote_detach_quiesce(kn)) { 2808 goto again; 2809 } 2810 knote_detach(kn, fdp, true); 2811 mutex_enter(&fdp->fd_lock); 2812 } 2813 mutex_exit(&fdp->fd_lock); 2814 } 2815 2816 /* 2817 * Drop knote. Called with fdp->fd_lock held, and will drop before 2818 * returning. 2819 */ 2820 static void 2821 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop) 2822 { 2823 struct klist *list; 2824 struct kqueue *kq; 2825 2826 kq = kn->kn_kq; 2827 2828 KASSERT((kn->kn_status & KN_MARKER) == 0); 2829 KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2830 KASSERT(kn->kn_fop != NULL); 2831 KASSERT(mutex_owned(&fdp->fd_lock)); 2832 2833 /* Remove from monitored object. */ 2834 if (dofop) { 2835 knote_foplock_enter(kn); 2836 filter_detach(kn); 2837 knote_foplock_exit(kn); 2838 } 2839 2840 /* Remove from descriptor table. */ 2841 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2842 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2843 else 2844 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 2845 2846 SLIST_REMOVE(list, kn, knote, kn_link); 2847 2848 /* Remove from kqueue. */ 2849 again: 2850 mutex_spin_enter(&kq->kq_lock); 2851 KASSERT(kn_in_flux(kn) == false); 2852 if ((kn->kn_status & KN_QUEUED) != 0) { 2853 kq_check(kq); 2854 KASSERT(KQ_COUNT(kq) != 0); 2855 kq->kq_count--; 2856 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2857 kn->kn_status &= ~KN_QUEUED; 2858 kq_check(kq); 2859 } else if (kn->kn_status & KN_BUSY) { 2860 mutex_spin_exit(&kq->kq_lock); 2861 goto again; 2862 } 2863 mutex_spin_exit(&kq->kq_lock); 2864 2865 mutex_exit(&fdp->fd_lock); 2866 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2867 fd_putfile(kn->kn_id); 2868 atomic_dec_uint(&kn->kn_kfilter->refcnt); 2869 knote_free(kn); 2870 } 2871 2872 /* 2873 * Queue new event for knote. 2874 */ 2875 static void 2876 knote_enqueue(struct knote *kn) 2877 { 2878 struct kqueue *kq; 2879 2880 KASSERT((kn->kn_status & KN_MARKER) == 0); 2881 2882 kq = kn->kn_kq; 2883 2884 mutex_spin_enter(&kq->kq_lock); 2885 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2886 /* Don't bother enqueueing a dying knote. */ 2887 goto out; 2888 } 2889 if ((kn->kn_status & KN_DISABLED) != 0) { 2890 kn->kn_status &= ~KN_DISABLED; 2891 } 2892 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) { 2893 kq_check(kq); 2894 kn->kn_status |= KN_QUEUED; 2895 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2896 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2897 kq->kq_count++; 2898 kq_check(kq); 2899 cv_broadcast(&kq->kq_cv); 2900 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2901 } 2902 out: 2903 mutex_spin_exit(&kq->kq_lock); 2904 } 2905 /* 2906 * Queue new event for knote. 2907 */ 2908 static void 2909 knote_activate_locked(struct knote *kn) 2910 { 2911 struct kqueue *kq; 2912 2913 KASSERT((kn->kn_status & KN_MARKER) == 0); 2914 2915 kq = kn->kn_kq; 2916 2917 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2918 /* Don't bother enqueueing a dying knote. */ 2919 return; 2920 } 2921 kn->kn_status |= KN_ACTIVE; 2922 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) { 2923 kq_check(kq); 2924 kn->kn_status |= KN_QUEUED; 2925 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2926 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2927 kq->kq_count++; 2928 kq_check(kq); 2929 cv_broadcast(&kq->kq_cv); 2930 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2931 } 2932 } 2933 2934 static void 2935 knote_activate(struct knote *kn) 2936 { 2937 struct kqueue *kq = kn->kn_kq; 2938 2939 mutex_spin_enter(&kq->kq_lock); 2940 knote_activate_locked(kn); 2941 mutex_spin_exit(&kq->kq_lock); 2942 } 2943 2944 static void 2945 knote_deactivate_locked(struct knote *kn) 2946 { 2947 struct kqueue *kq = kn->kn_kq; 2948 2949 if (kn->kn_status & KN_QUEUED) { 2950 kq_check(kq); 2951 kn->kn_status &= ~KN_QUEUED; 2952 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2953 KASSERT(KQ_COUNT(kq) > 0); 2954 kq->kq_count--; 2955 kq_check(kq); 2956 } 2957 kn->kn_status &= ~KN_ACTIVE; 2958 } 2959 2960 /* 2961 * Set EV_EOF on the specified knote. Also allows additional 2962 * EV_* flags to be set (e.g. EV_ONESHOT). 2963 */ 2964 void 2965 knote_set_eof(struct knote *kn, uint32_t flags) 2966 { 2967 struct kqueue *kq = kn->kn_kq; 2968 2969 mutex_spin_enter(&kq->kq_lock); 2970 kn->kn_flags |= EV_EOF | flags; 2971 mutex_spin_exit(&kq->kq_lock); 2972 } 2973 2974 /* 2975 * Clear EV_EOF on the specified knote. 2976 */ 2977 void 2978 knote_clear_eof(struct knote *kn) 2979 { 2980 struct kqueue *kq = kn->kn_kq; 2981 2982 mutex_spin_enter(&kq->kq_lock); 2983 kn->kn_flags &= ~EV_EOF; 2984 mutex_spin_exit(&kq->kq_lock); 2985 } 2986 2987 /* 2988 * Initialize a klist. 2989 */ 2990 void 2991 klist_init(struct klist *list) 2992 { 2993 SLIST_INIT(list); 2994 } 2995 2996 /* 2997 * Finalize a klist. 2998 */ 2999 void 3000 klist_fini(struct klist *list) 3001 { 3002 struct knote *kn; 3003 3004 /* 3005 * Neuter all existing knotes on the klist because the list is 3006 * being destroyed. The caller has guaranteed that no additional 3007 * knotes will be added to the list, that the backing object's 3008 * locks are not held (otherwise there is a locking order issue 3009 * with acquiring the knote foplock ), and that we can traverse 3010 * the list safely in this state. 3011 */ 3012 SLIST_FOREACH(kn, list, kn_selnext) { 3013 knote_foplock_enter(kn); 3014 KASSERT(kn->kn_fop != NULL); 3015 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 3016 kn->kn_fop = &nop_fd_filtops; 3017 } else { 3018 kn->kn_fop = &nop_filtops; 3019 } 3020 knote_foplock_exit(kn); 3021 } 3022 } 3023 3024 /* 3025 * Insert a knote into a klist. 3026 */ 3027 void 3028 klist_insert(struct klist *list, struct knote *kn) 3029 { 3030 SLIST_INSERT_HEAD(list, kn, kn_selnext); 3031 } 3032 3033 /* 3034 * Remove a knote from a klist. Returns true if the last 3035 * knote was removed and the list is now empty. 3036 */ 3037 bool 3038 klist_remove(struct klist *list, struct knote *kn) 3039 { 3040 SLIST_REMOVE(list, kn, knote, kn_selnext); 3041 return SLIST_EMPTY(list); 3042 } 3043