Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $	*/
      2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
      3 
      4 /*
      5  * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org>
      6  * Copyright (c) 2003, 2004 Theo de Raadt
      7  * Copyright (c) 2003 Jason Wright
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*
     23  * Driver for the security block on the AMD Geode LX processors
     24  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $");
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/device.h>
     33 #include <sys/malloc.h>
     34 #include <sys/mbuf.h>
     35 #include <sys/types.h>
     36 #include <sys/callout.h>
     37 #include <sys/bus.h>
     38 #include <sys/cprng.h>
     39 #include <sys/rndsource.h>
     40 
     41 #include <machine/cpufunc.h>
     42 
     43 #include <dev/pci/pcivar.h>
     44 #include <dev/pci/pcidevs.h>
     45 
     46 #include <opencrypto/cryptodev.h>
     47 
     48 #define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
     49 #define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
     50 #define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
     51 #define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
     52 #define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
     53 #define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
     54 #define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
     55 
     56 						/* For GLD_MSR_CTRL: */
     57 #define SB_GMC_DIV0		0x0000		/* AES update divisor values */
     58 #define SB_GMC_DIV1		0x0001
     59 #define SB_GMC_DIV2		0x0002
     60 #define SB_GMC_DIV3		0x0003
     61 #define SB_GMC_DIV_MASK		0x0003
     62 #define SB_GMC_SBI		0x0004		/* AES swap bits */
     63 #define SB_GMC_SBY		0x0008		/* AES swap bytes */
     64 #define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
     65 #define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
     66 #define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
     67 #define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
     68 #define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
     69 #define SB_GMC_T_SEL_MASK	0x0300
     70 #define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
     71 #define SB_GMC_T_TM		0x0800		/* RNG test mode */
     72 						/*     (deterministic) */
     73 
     74 /* Security Block configuration/control registers (offsets from base) */
     75 
     76 #define SB_CTL_A		0x0000		/* RW - SB Control A */
     77 #define SB_CTL_B		0x0004		/* RW - SB Control B */
     78 #define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
     79 #define SB_SOURCE_A		0x0010		/* RW - Source A */
     80 #define SB_DEST_A		0x0014		/* RW - Destination A */
     81 #define SB_LENGTH_A		0x0018		/* RW - Length A */
     82 #define SB_SOURCE_B		0x0020		/* RW - Source B */
     83 #define SB_DEST_B		0x0024		/* RW - Destination B */
     84 #define SB_LENGTH_B		0x0028		/* RW - Length B */
     85 #define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
     86 #define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
     87 #define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
     88 #define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
     89 #define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
     90 #define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
     91 #define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
     92 #define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
     93 #define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
     94 #define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
     95 #define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
     96 #define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
     97 #define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
     98 #define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
     99 #define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
    100 #define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
    101 
    102 						/* For SB_CTL_A and _B */
    103 #define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
    104 #define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
    105 #define SB_CTL_DEC		0x0000		/* Decrypt */
    106 #define SB_CTL_WK		0x0004		/* Use writable key (we set) */
    107 #define SB_CTL_DC		0x0008		/* Destination coherent */
    108 #define SB_CTL_SC		0x0010		/* Source coherent */
    109 #define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
    110 
    111 						/* For SB_AES_INT */
    112 #define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
    113 #define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
    114 #define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
    115 #define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
    116 #define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
    117 #define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
    118 #define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
    119 #define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
    120 #define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
    121 
    122 #define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
    123 
    124 #define SB_MEM_SIZE		0x0810		/* Size of memory block */
    125 
    126 #define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
    127 						/* must be 16-byte aligned */
    128 #define SB_AES_BLOCK_SIZE	0x0010
    129 
    130 /*
    131  * The Geode LX security block AES acceleration doesn't perform scatter-
    132  * gather: it just takes source and destination addresses.  Therefore the
    133  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
    134  * a buffer for both, and accept the overhead of copying in and out.  If
    135  * the number of bytes in one operation is bigger than allowed for by the
    136  * buffer (buffer is twice the size of the max length, as it has both input
    137  * and output) then we have to perform multiple encryptions/decryptions.
    138  */
    139 #define GLXSB_MAX_AES_LEN	16384
    140 
    141 struct glxsb_dma_map {
    142 	bus_dmamap_t		dma_map;
    143 	bus_dma_segment_t	dma_seg;
    144 	int			dma_nsegs;
    145 	int			dma_size;
    146 	void *			dma_vaddr;
    147 	uint32_t		dma_paddr;
    148 };
    149 struct glxsb_session {
    150 	uint32_t	ses_key[4];
    151 	int		ses_klen;
    152 	int		ses_used;
    153 };
    154 
    155 struct glxsb_softc {
    156 	device_t		sc_dev;
    157 	bus_space_tag_t		sc_iot;
    158 	bus_space_handle_t	sc_ioh;
    159 	struct callout		sc_co;
    160 
    161 	bus_dma_tag_t		sc_dmat;
    162 	struct glxsb_dma_map	sc_dma;
    163 	int32_t			sc_cid;
    164 	int			sc_nsessions;
    165 	struct glxsb_session	*sc_sessions;
    166 
    167 	krndsource_t	sc_rnd_source;
    168 };
    169 
    170 int	glxsb_match(device_t, cfdata_t, void *);
    171 void	glxsb_attach(device_t, device_t, void *);
    172 void	glxsb_rnd(void *);
    173 
    174 CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
    175     glxsb_match, glxsb_attach, NULL, NULL);
    176 
    177 #define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
    178 #define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
    179 
    180 int glxsb_crypto_setup(struct glxsb_softc *);
    181 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
    182 int glxsb_crypto_process(void *, struct cryptop *, int);
    183 void glxsb_crypto_freesession(void *, uint64_t);
    184 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
    185     uint32_t, void *, int, void *);
    186 
    187 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
    188 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
    189 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
    190 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
    191 
    192 int
    193 glxsb_match(device_t parent, cfdata_t match, void *aux)
    194 {
    195 	struct pci_attach_args *pa = aux;
    196 
    197 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
    198 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
    199 		return (1);
    200 
    201 	return (0);
    202 }
    203 
    204 void
    205 glxsb_attach(device_t parent, device_t self, void *aux)
    206 {
    207 	struct glxsb_softc *sc = device_private(self);
    208 	struct pci_attach_args *pa = aux;
    209 	bus_addr_t membase;
    210 	bus_size_t memsize;
    211 	uint64_t msr;
    212 	uint32_t intr;
    213 
    214 	msr = rdmsr(SB_GLD_MSR_CAP);
    215 	if ((msr & 0xFFFF00) != 0x130400) {
    216 		aprint_error(": unknown ID 0x%x\n",
    217 		    (int)((msr & 0xFFFF00) >> 16));
    218 		return;
    219 	}
    220 
    221 	/* printf(": revision %d", (int) (msr & 0xFF)); */
    222 
    223 	/* Map in the security block configuration/control registers */
    224 	if (pci_mapreg_map(pa, PCI_MAPREG_START,
    225 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
    226 	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
    227 		aprint_error(": can't find mem space\n");
    228 		return;
    229 	}
    230 
    231 	sc->sc_dev = self;
    232 
    233 	/*
    234 	 * Configure the Security Block.
    235 	 *
    236 	 * We want to enable the noise generator (T_NE), and enable the
    237 	 * linear feedback shift register and whitener post-processing
    238 	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
    239 	 * is disabled.
    240 	 */
    241 	msr = rdmsr(SB_GLD_MSR_CTRL);
    242 	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
    243 	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
    244 #if 0
    245 	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
    246 #endif
    247 	wrmsr(SB_GLD_MSR_CTRL, msr);
    248 
    249 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
    250 			  RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE);
    251 
    252 	/* Install a periodic collector for the "true" (AMD's word) RNG */
    253 	callout_init(&sc->sc_co, 0);
    254 	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
    255 	glxsb_rnd(sc);
    256 	aprint_normal(": RNG");
    257 
    258 	/* We don't have an interrupt handler, so disable completion INTs */
    259 	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
    260 	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
    261 	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
    262 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
    263 
    264 	sc->sc_dmat = pa->pa_dmat;
    265 
    266 	if (glxsb_crypto_setup(sc))
    267 		aprint_normal(" AES");
    268 
    269 	aprint_normal("\n");
    270 }
    271 
    272 void
    273 glxsb_rnd(void *v)
    274 {
    275 	struct glxsb_softc *sc = v;
    276 	uint32_t status, value;
    277 	extern int hz;
    278 
    279 	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
    280 	if (status & SB_RNS_TRNG_VALID) {
    281 		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
    282 		rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value),
    283 			     sizeof(value) * NBBY);
    284 	}
    285 
    286 	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
    287 }
    288 
    289 int
    290 glxsb_crypto_setup(struct glxsb_softc *sc)
    291 {
    292 
    293 	/* Allocate a contiguous DMA-able buffer to work in */
    294 	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
    295 		return 0;
    296 
    297 	sc->sc_cid = crypto_get_driverid(0);
    298 	if (sc->sc_cid < 0)
    299 		return 0;
    300 
    301 	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
    302 	    glxsb_crypto_newsession, glxsb_crypto_freesession,
    303 	    glxsb_crypto_process, sc);
    304 
    305 	sc->sc_nsessions = 0;
    306 
    307 	return 1;
    308 }
    309 
    310 int
    311 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
    312 {
    313 	struct glxsb_softc *sc = aux;
    314 	struct glxsb_session *ses = NULL;
    315 	int sesn;
    316 
    317 	if (cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
    318 	    cri->cri_klen != 128)
    319 		return (EINVAL);
    320 
    321 	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
    322 		if (sc->sc_sessions[sesn].ses_used == 0) {
    323 			ses = &sc->sc_sessions[sesn];
    324 			break;
    325 		}
    326 	}
    327 
    328 	if (ses == NULL) {
    329 		sesn = sc->sc_nsessions;
    330 		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
    331 		if (ses == NULL)
    332 			return (ENOMEM);
    333 		if (sesn != 0) {
    334 			memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
    335 			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
    336 			free(sc->sc_sessions, M_DEVBUF);
    337 		}
    338 		sc->sc_sessions = ses;
    339 		ses = &sc->sc_sessions[sesn];
    340 		sc->sc_nsessions++;
    341 	}
    342 
    343 	memset(ses, 0, sizeof(*ses));
    344 	ses->ses_used = 1;
    345 
    346 	ses->ses_klen = cri->cri_klen;
    347 
    348 	/* Copy the key (Geode LX wants the primary key only) */
    349 	memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
    350 
    351 	*sidp = GLXSB_SID(0, sesn);
    352 	return (0);
    353 }
    354 
    355 void
    356 glxsb_crypto_freesession(void *aux, uint64_t tid)
    357 {
    358 	struct glxsb_softc *sc = aux;
    359 	int sesn;
    360 	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
    361 
    362 	sesn = GLXSB_SESSION(sid);
    363 	KASSERTMSG(sesn < sc->sc_nsessions, "sesn=%d nsessions=%d",
    364 	    sesn, sc->sc_nsessions);
    365 
    366 	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
    367 }
    368 
    369 /*
    370  * Must be called at splnet() or higher
    371  */
    372 static __inline void
    373 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
    374     uint32_t pdst, void *key, int len, void *iv)
    375 {
    376 	uint32_t status;
    377 	int i;
    378 
    379 	if (len & 0xF) {
    380 		printf("%s: len must be a multiple of 16 (not %d)\n",
    381 		    device_xname(sc->sc_dev), len);
    382 		return;
    383 	}
    384 
    385 	/* Set the source */
    386 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
    387 
    388 	/* Set the destination address */
    389 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
    390 
    391 	/* Set the data length */
    392 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
    393 
    394 	/* Set the IV */
    395 	if (iv != NULL) {
    396 		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
    397 		    SB_CBC_IV, iv, 4);
    398 		control |= SB_CTL_CBC;
    399 	}
    400 
    401 	/* Set the key */
    402 	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
    403 
    404 	/* Ask the security block to do it */
    405 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
    406 	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
    407 
    408 	/*
    409 	 * Now wait until it is done.
    410 	 *
    411 	 * We do a busy wait.  Obviously the number of iterations of
    412 	 * the loop required to perform the AES operation depends upon
    413 	 * the number of bytes to process.
    414 	 *
    415 	 * On a 500 MHz Geode LX we see
    416 	 *
    417 	 *	length (bytes)	typical max iterations
    418 	 *	    16		   12
    419 	 *	    64		   22
    420 	 *	   256		   59
    421 	 *	  1024		  212
    422 	 *	  8192		1,537
    423 	 *
    424 	 * Since we have a maximum size of operation defined in
    425 	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
    426 	 * to wait.  Allow an order of magnitude longer than it should
    427 	 * really take, just in case.
    428 	 */
    429 	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
    430 		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
    431 
    432 		if ((status & SB_CTL_ST) == 0)		/* Done */
    433 			return;
    434 	}
    435 
    436 	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
    437 }
    438 
    439 int
    440 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
    441 {
    442 	struct glxsb_softc *sc = aux;
    443 	struct glxsb_session *ses;
    444 	struct cryptodesc *crd;
    445 	char *op_src, *op_dst;
    446 	uint32_t op_psrc, op_pdst;
    447 	uint8_t op_iv[SB_AES_BLOCK_SIZE];
    448 	int sesn, err = 0;
    449 	int len, tlen, xlen;
    450 	int offset;
    451 	uint32_t control;
    452 	int s;
    453 
    454 	s = splnet();
    455 
    456 	if (crp == NULL || crp->crp_callback == NULL) {
    457 		err = EINVAL;
    458 		goto out;
    459 	}
    460 	crd = crp->crp_desc;
    461 	if (crd == NULL || crd->crd_next != NULL ||
    462 	    crd->crd_alg != CRYPTO_AES_CBC ||
    463 	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
    464 		err = EINVAL;
    465 		goto out;
    466 	}
    467 
    468 	sesn = GLXSB_SESSION(crp->crp_sid);
    469 	if (sesn >= sc->sc_nsessions) {
    470 		err = EINVAL;
    471 		goto out;
    472 	}
    473 	ses = &sc->sc_sessions[sesn];
    474 
    475 	/* How much of our buffer will we need to use? */
    476 	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
    477 	    GLXSB_MAX_AES_LEN : crd->crd_len;
    478 
    479 	/*
    480 	 * XXX Check if we can have input == output on Geode LX.
    481 	 * XXX In the meantime, use two separate (adjacent) buffers.
    482 	 */
    483 	op_src = sc->sc_dma.dma_vaddr;
    484 	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
    485 
    486 	op_psrc = sc->sc_dma.dma_paddr;
    487 	op_pdst = sc->sc_dma.dma_paddr + xlen;
    488 
    489 	if (crd->crd_flags & CRD_F_ENCRYPT) {
    490 		control = SB_CTL_ENC;
    491 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    492 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    493 		else
    494 			cprng_fast(op_iv, sizeof(op_iv));
    495 
    496 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
    497 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    498 				m_copyback((struct mbuf *)crp->crp_buf,
    499 				    crd->crd_inject, sizeof(op_iv), op_iv);
    500 			else if (crp->crp_flags & CRYPTO_F_IOV)
    501 				cuio_copyback((struct uio *)crp->crp_buf,
    502 				    crd->crd_inject, sizeof(op_iv), op_iv);
    503 			else
    504 				bcopy(op_iv,
    505 				    (char *)crp->crp_buf + crd->crd_inject,
    506 				    sizeof(op_iv));
    507 		}
    508 	} else {
    509 		control = SB_CTL_DEC;
    510 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
    511 			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
    512 		else {
    513 			if (crp->crp_flags & CRYPTO_F_IMBUF)
    514 				m_copydata((struct mbuf *)crp->crp_buf,
    515 				    crd->crd_inject, sizeof(op_iv), op_iv);
    516 			else if (crp->crp_flags & CRYPTO_F_IOV)
    517 				cuio_copydata((struct uio *)crp->crp_buf,
    518 				    crd->crd_inject, sizeof(op_iv), op_iv);
    519 			else
    520 				bcopy((char *)crp->crp_buf + crd->crd_inject,
    521 				    op_iv, sizeof(op_iv));
    522 		}
    523 	}
    524 
    525 	offset = 0;
    526 	tlen = crd->crd_len;
    527 
    528 	/* Process the data in GLXSB_MAX_AES_LEN chunks */
    529 	while (tlen > 0) {
    530 		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
    531 
    532 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    533 			m_copydata((struct mbuf *)crp->crp_buf,
    534 			    crd->crd_skip + offset, len, op_src);
    535 		else if (crp->crp_flags & CRYPTO_F_IOV)
    536 			cuio_copydata((struct uio *)crp->crp_buf,
    537 			    crd->crd_skip + offset, len, op_src);
    538 		else
    539 			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
    540 			    op_src, len);
    541 
    542 		glxsb_dma_pre_op(sc, &sc->sc_dma);
    543 
    544 		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
    545 		    len, op_iv);
    546 
    547 		glxsb_dma_post_op(sc, &sc->sc_dma);
    548 
    549 		if (crp->crp_flags & CRYPTO_F_IMBUF)
    550 			m_copyback((struct mbuf *)crp->crp_buf,
    551 			    crd->crd_skip + offset, len, op_dst);
    552 		else if (crp->crp_flags & CRYPTO_F_IOV)
    553 			cuio_copyback((struct uio *)crp->crp_buf,
    554 			    crd->crd_skip + offset, len, op_dst);
    555 		else
    556 			memcpy((char *)crp->crp_buf + crd->crd_skip + offset,
    557 			    op_dst, len);
    558 
    559 		offset += len;
    560 		tlen -= len;
    561 
    562 		if (crd->crd_flags & CRD_F_ENCRYPT) {
    563 			memcpy(op_iv, op_dst + len - sizeof(op_iv),
    564 			    sizeof(op_iv));
    565 		} else {
    566 			/* Decryption, only need this if another iteration */
    567 			if (tlen > 0) {
    568 				memcpy(op_iv, op_src + len - sizeof(op_iv),
    569 				    sizeof(op_iv));
    570 			}
    571 		}
    572 	}
    573 
    574 	/* All AES processing has now been done. */
    575 
    576 	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
    577 out:
    578 	crp->crp_etype = err;
    579 	crypto_done(crp);
    580 	splx(s);
    581 	return 0;
    582 }
    583 
    584 int
    585 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
    586 {
    587 	int rc;
    588 
    589 	dma->dma_nsegs = 1;
    590 	dma->dma_size = size;
    591 
    592 	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
    593 	    0, BUS_DMA_NOWAIT, &dma->dma_map);
    594 	if (rc != 0) {
    595 		aprint_error_dev(sc->sc_dev,
    596 		    "couldn't create DMA map for %d bytes (%d)\n", size, rc);
    597 
    598 		goto fail0;
    599 	}
    600 
    601 	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
    602 	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
    603 	if (rc != 0) {
    604 		aprint_error_dev(sc->sc_dev,
    605 		    "couldn't allocate DMA memory of %d bytes (%d)\n",
    606 		    size, rc);
    607 
    608 		goto fail1;
    609 	}
    610 
    611 	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
    612 	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
    613 	if (rc != 0) {
    614 		aprint_error_dev(sc->sc_dev,
    615 		    "couldn't map DMA memory for %d bytes (%d)\n", size, rc);
    616 
    617 		goto fail2;
    618 	}
    619 
    620 	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
    621 	    size, NULL, BUS_DMA_NOWAIT);
    622 	if (rc != 0) {
    623 		aprint_error_dev(sc->sc_dev,
    624 		    "couldn't load DMA memory for %d bytes (%d)\n", size, rc);
    625 
    626 		goto fail3;
    627 	}
    628 
    629 	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
    630 
    631 	return 0;
    632 
    633 fail3:
    634 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
    635 fail2:
    636 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    637 fail1:
    638 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    639 fail0:
    640 	return rc;
    641 }
    642 
    643 void
    644 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    645 {
    646 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    647 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    648 }
    649 
    650 void
    651 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    652 {
    653 	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
    654 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    655 }
    656 
    657 void
    658 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
    659 {
    660 	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
    661 	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
    662 	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
    663 	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
    664 }
    665