1 /* $NetBSD: kern_proc.c,v 1.280 2025/06/02 16:27:04 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2006, 2007, 2008, 2020, 2023 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, and by Andrew Doran. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1989, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.280 2025/06/02 16:27:04 andvar Exp $"); 67 68 #ifdef _KERNEL_OPT 69 #include "opt_kstack.h" 70 #include "opt_maxuprc.h" 71 #include "opt_dtrace.h" 72 #include "opt_compat_netbsd32.h" 73 #include "opt_kaslr.h" 74 #endif 75 76 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \ 77 && !defined(_RUMPKERNEL) 78 #define COMPAT_NETBSD32 79 #endif 80 81 #include <sys/param.h> 82 #include <sys/types.h> 83 84 #include <sys/acct.h> 85 #include <sys/atomic.h> 86 #include <sys/buf.h> 87 #include <sys/compat_stub.h> 88 #include <sys/cpu.h> 89 #include <sys/dtrace_bsd.h> 90 #include <sys/exec.h> 91 #include <sys/file.h> 92 #include <sys/filedesc.h> 93 #include <sys/futex.h> 94 #include <sys/ioctl.h> 95 #include <sys/kauth.h> 96 #include <sys/kernel.h> 97 #include <sys/kmem.h> 98 #include <sys/namei.h> 99 #include <sys/pool.h> 100 #include <sys/proc.h> 101 #include <sys/pserialize.h> 102 #include <sys/pset.h> 103 #include <sys/ras.h> 104 #include <sys/resourcevar.h> 105 #include <sys/sdt.h> 106 #include <sys/signalvar.h> 107 #include <sys/sleepq.h> 108 #include <sys/syscall_stats.h> 109 #include <sys/sysctl.h> 110 #include <sys/systm.h> 111 #include <sys/tty.h> 112 #include <sys/uio.h> 113 #include <sys/wait.h> 114 #include <ufs/ufs/quota.h> 115 116 #include <uvm/uvm_extern.h> 117 118 /* 119 * Process lists. 120 */ 121 122 struct proclist allproc __cacheline_aligned; 123 struct proclist zombproc __cacheline_aligned; 124 125 kmutex_t proc_lock __cacheline_aligned; 126 static pserialize_t proc_psz; 127 128 /* 129 * pid to lwp/proc lookup is done by indexing the pid_table array. 130 * Since pid numbers are only allocated when an empty slot 131 * has been found, there is no need to search any lists ever. 132 * (an orphaned pgrp will lock the slot, a session will lock 133 * the pgrp with the same number.) 134 * If the table is too small it is reallocated with twice the 135 * previous size and the entries 'unzipped' into the two halves. 136 * A linked list of free entries is passed through the pt_lwp 137 * field of 'free' items - set odd to be an invalid ptr. Two 138 * additional bits are also used to indicate if the slot is 139 * currently occupied by a proc or lwp, and if the PID is 140 * hidden from certain kinds of lookups. We thus require a 141 * minimum alignment for proc and lwp structures (LWPs are 142 * at least 32-byte aligned). 143 */ 144 145 struct pid_table { 146 uintptr_t pt_slot; 147 struct pgrp *pt_pgrp; 148 pid_t pt_pid; 149 }; 150 151 #define PT_F_FREE ((uintptr_t)__BIT(0)) 152 #define PT_F_LWP 0 /* pseudo-flag */ 153 #define PT_F_PROC ((uintptr_t)__BIT(1)) 154 155 #define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC) 156 #define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC) 157 158 #define PT_VALID(s) (((s) & PT_F_FREE) == 0) 159 #define PT_RESERVED(s) ((s) == 0) 160 #define PT_NEXT(s) ((u_int)(s) >> 1) 161 #define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE) 162 #define PT_SET_LWP(l) ((uintptr_t)(l)) 163 #define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC) 164 #define PT_SET_RESERVED 0 165 #define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS)) 166 #define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS)) 167 #define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS) 168 #define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0) 169 #define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC) 170 171 #define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1) 172 173 /* 174 * Table of process IDs (PIDs). 175 */ 176 static struct pid_table *pid_table __read_mostly; 177 178 #define INITIAL_PID_TABLE_SIZE (1 << 5) 179 180 /* Table mask, threshold for growing and number of allocated PIDs. */ 181 static u_int pid_tbl_mask __read_mostly; 182 static u_int pid_alloc_lim __read_mostly; 183 static u_int pid_alloc_cnt __cacheline_aligned; 184 185 /* Next free, last free and maximum PIDs. */ 186 static u_int next_free_pt __cacheline_aligned; 187 static u_int last_free_pt __cacheline_aligned; 188 static pid_t pid_max __read_mostly; 189 190 /* Components of the first process -- never freed. */ 191 192 struct session session0 = { 193 .s_count = 1, 194 .s_sid = 0, 195 }; 196 struct pgrp pgrp0 = { 197 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 198 .pg_session = &session0, 199 }; 200 filedesc_t filedesc0; 201 struct cwdinfo cwdi0 = { 202 .cwdi_cmask = CMASK, 203 .cwdi_refcnt = 1, 204 }; 205 struct plimit limit0; 206 struct pstats pstat0; 207 struct vmspace vmspace0; 208 struct sigacts sigacts0; 209 struct proc proc0 = { 210 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 211 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 212 .p_nlwps = 1, 213 .p_nrlwps = 1, 214 .p_pgrp = &pgrp0, 215 .p_comm = "system", 216 /* 217 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 218 * when they exit. init(8) can easily wait them out for us. 219 */ 220 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 221 .p_stat = SACTIVE, 222 .p_nice = NZERO, 223 .p_emul = &emul_netbsd, 224 .p_cwdi = &cwdi0, 225 .p_limit = &limit0, 226 .p_fd = &filedesc0, 227 .p_vmspace = &vmspace0, 228 .p_stats = &pstat0, 229 .p_sigacts = &sigacts0, 230 #ifdef PROC0_MD_INITIALIZERS 231 PROC0_MD_INITIALIZERS 232 #endif 233 }; 234 kauth_cred_t cred0; 235 236 static const int nofile = NOFILE; 237 static const int maxuprc = MAXUPRC; 238 239 static int sysctl_doeproc(SYSCTLFN_PROTO); 240 static int sysctl_kern_proc_args(SYSCTLFN_PROTO); 241 static int sysctl_security_expose_address(SYSCTLFN_PROTO); 242 243 #ifdef KASLR 244 static int kern_expose_address = 0; 245 #else 246 static int kern_expose_address = 1; 247 #endif 248 /* 249 * The process list descriptors, used during pid allocation and 250 * by sysctl. No locking on this data structure is needed since 251 * it is completely static. 252 */ 253 const struct proclist_desc proclists[] = { 254 { &allproc }, 255 { &zombproc }, 256 { NULL }, 257 }; 258 259 static struct pgrp * pg_remove(pid_t); 260 static void pg_delete(pid_t); 261 static void orphanpg(struct pgrp *); 262 263 static specificdata_domain_t proc_specificdata_domain; 264 265 static pool_cache_t proc_cache; 266 267 static kauth_listener_t proc_listener; 268 269 static void fill_proc(const struct proc *, struct proc *, bool); 270 static int fill_pathname(struct lwp *, pid_t, void *, size_t *); 271 static int fill_cwd(struct lwp *, pid_t, void *, size_t *); 272 273 static int 274 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 275 void *arg0, void *arg1, void *arg2, void *arg3) 276 { 277 struct proc *p; 278 int result; 279 280 result = KAUTH_RESULT_DEFER; 281 p = arg0; 282 283 switch (action) { 284 case KAUTH_PROCESS_CANSEE: { 285 enum kauth_process_req req; 286 287 req = (enum kauth_process_req)(uintptr_t)arg1; 288 289 switch (req) { 290 case KAUTH_REQ_PROCESS_CANSEE_ARGS: 291 case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 292 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 293 case KAUTH_REQ_PROCESS_CANSEE_EPROC: 294 result = KAUTH_RESULT_ALLOW; 295 break; 296 297 case KAUTH_REQ_PROCESS_CANSEE_ENV: 298 if (kauth_cred_getuid(cred) != 299 kauth_cred_getuid(p->p_cred) || 300 kauth_cred_getuid(cred) != 301 kauth_cred_getsvuid(p->p_cred)) 302 break; 303 304 result = KAUTH_RESULT_ALLOW; 305 306 break; 307 308 case KAUTH_REQ_PROCESS_CANSEE_KPTR: 309 if (!kern_expose_address) 310 break; 311 312 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM)) 313 break; 314 315 result = KAUTH_RESULT_ALLOW; 316 317 break; 318 319 default: 320 break; 321 } 322 323 break; 324 } 325 326 case KAUTH_PROCESS_FORK: { 327 int lnprocs = (int)(unsigned long)arg2; 328 329 /* 330 * Don't allow a nonprivileged user to use the last few 331 * processes. The variable lnprocs is the current number of 332 * processes, maxproc is the limit. 333 */ 334 if (__predict_false((lnprocs >= maxproc - 5))) 335 break; 336 337 result = KAUTH_RESULT_ALLOW; 338 339 break; 340 } 341 342 case KAUTH_PROCESS_CORENAME: 343 case KAUTH_PROCESS_STOPFLAG: 344 if (proc_uidmatch(cred, p->p_cred) == 0) 345 result = KAUTH_RESULT_ALLOW; 346 347 break; 348 349 default: 350 break; 351 } 352 353 return result; 354 } 355 356 static int 357 proc_ctor(void *arg __unused, void *obj, int flags __unused) 358 { 359 struct proc *p = obj; 360 361 memset(p, 0, sizeof(*p)); 362 klist_init(&p->p_klist); 363 364 /* 365 * There is no need for a proc_dtor() to do a klist_fini(), 366 * since knote_proc_exit() ensures that p->p_klist is empty 367 * when a process exits. 368 */ 369 370 return 0; 371 } 372 373 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t); 374 375 /* 376 * Initialize global process hashing structures. 377 */ 378 void 379 procinit(void) 380 { 381 const struct proclist_desc *pd; 382 u_int i; 383 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 384 385 for (pd = proclists; pd->pd_list != NULL; pd++) 386 LIST_INIT(pd->pd_list); 387 388 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE); 389 390 proc_psz = pserialize_create(); 391 392 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 393 * sizeof(struct pid_table), KM_SLEEP); 394 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 395 pid_max = PID_MAX; 396 397 /* Set free list running through table... 398 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 399 for (i = 0; i <= pid_tbl_mask; i++) { 400 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1); 401 pid_table[i].pt_pgrp = 0; 402 pid_table[i].pt_pid = 0; 403 } 404 /* slot 0 is just grabbed */ 405 next_free_pt = 1; 406 /* Need to fix last entry. */ 407 last_free_pt = pid_tbl_mask; 408 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY); 409 /* point at which we grow table - to avoid reusing pids too often */ 410 pid_alloc_lim = pid_tbl_mask - 1; 411 #undef LINK_EMPTY 412 413 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */ 414 mutex_enter(&proc_lock); 415 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1) 416 panic("failed to reserve PID 1 for init(8)"); 417 mutex_exit(&proc_lock); 418 419 proc_specificdata_domain = specificdata_domain_create(); 420 KASSERT(proc_specificdata_domain != NULL); 421 422 size_t proc_alignment = coherency_unit; 423 if (proc_alignment < MIN_PROC_ALIGNMENT) 424 proc_alignment = MIN_PROC_ALIGNMENT; 425 426 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0, 427 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL); 428 429 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 430 proc_listener_cb, NULL); 431 } 432 433 void 434 procinit_sysctl(void) 435 { 436 static struct sysctllog *clog; 437 438 sysctl_createv(&clog, 0, NULL, NULL, 439 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 440 CTLTYPE_INT, "expose_address", 441 SYSCTL_DESCR("Enable exposing kernel addresses"), 442 sysctl_security_expose_address, 0, 443 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL); 444 sysctl_createv(&clog, 0, NULL, NULL, 445 CTLFLAG_PERMANENT, 446 CTLTYPE_NODE, "proc", 447 SYSCTL_DESCR("System-wide process information"), 448 sysctl_doeproc, 0, NULL, 0, 449 CTL_KERN, KERN_PROC, CTL_EOL); 450 sysctl_createv(&clog, 0, NULL, NULL, 451 CTLFLAG_PERMANENT, 452 CTLTYPE_NODE, "proc2", 453 SYSCTL_DESCR("Machine-independent process information"), 454 sysctl_doeproc, 0, NULL, 0, 455 CTL_KERN, KERN_PROC2, CTL_EOL); 456 sysctl_createv(&clog, 0, NULL, NULL, 457 CTLFLAG_PERMANENT, 458 CTLTYPE_NODE, "proc_args", 459 SYSCTL_DESCR("Process argument information"), 460 sysctl_kern_proc_args, 0, NULL, 0, 461 CTL_KERN, KERN_PROC_ARGS, CTL_EOL); 462 463 /* 464 "nodes" under these: 465 466 KERN_PROC_ALL 467 KERN_PROC_PID pid 468 KERN_PROC_PGRP pgrp 469 KERN_PROC_SESSION sess 470 KERN_PROC_TTY tty 471 KERN_PROC_UID uid 472 KERN_PROC_RUID uid 473 KERN_PROC_GID gid 474 KERN_PROC_RGID gid 475 476 all in all, probably not worth the effort... 477 */ 478 } 479 480 /* 481 * Initialize process 0. 482 */ 483 void 484 proc0_init(void) 485 { 486 struct proc *p; 487 struct pgrp *pg; 488 struct rlimit *rlim; 489 rlim_t lim; 490 int i; 491 492 p = &proc0; 493 pg = &pgrp0; 494 495 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 496 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 497 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 498 499 rw_init(&p->p_reflock); 500 cv_init(&p->p_waitcv, "wait"); 501 cv_init(&p->p_lwpcv, "lwpwait"); 502 503 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 504 505 KASSERT(lwp0.l_lid == 0); 506 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0); 507 LIST_INSERT_HEAD(&allproc, p, p_list); 508 509 pid_table[lwp0.l_lid].pt_pgrp = pg; 510 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 511 512 #ifdef __HAVE_SYSCALL_INTERN 513 (*p->p_emul->e_syscall_intern)(p); 514 #endif 515 516 /* Create credentials. */ 517 cred0 = kauth_cred_alloc(); 518 p->p_cred = cred0; 519 520 /* Create the CWD info. */ 521 rw_init(&cwdi0.cwdi_lock); 522 523 /* Create the limits structures. */ 524 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 525 526 rlim = limit0.pl_rlimit; 527 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { 528 rlim[i].rlim_cur = RLIM_INFINITY; 529 rlim[i].rlim_max = RLIM_INFINITY; 530 } 531 532 rlim[RLIMIT_NOFILE].rlim_max = maxfiles; 533 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; 534 535 rlim[RLIMIT_NPROC].rlim_max = maxproc; 536 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; 537 538 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false))); 539 rlim[RLIMIT_RSS].rlim_max = lim; 540 rlim[RLIMIT_MEMLOCK].rlim_max = lim; 541 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 542 543 rlim[RLIMIT_NTHR].rlim_max = maxlwp; 544 rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2; 545 546 /* Note that default core name has zero length. */ 547 limit0.pl_corename = defcorename; 548 limit0.pl_cnlen = 0; 549 limit0.pl_refcnt = 1; 550 limit0.pl_writeable = false; 551 limit0.pl_sv_limit = NULL; 552 553 /* Configure virtual memory system, set vm rlimits. */ 554 uvm_init_limits(p); 555 556 /* Initialize file descriptor table for proc0. */ 557 fd_init(&filedesc0); 558 559 /* 560 * Initialize proc0's vmspace, which uses the kernel pmap. 561 * All kernel processes (which never have user space mappings) 562 * share proc0's vmspace, and thus, the kernel pmap. 563 */ 564 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 565 trunc_page(VM_MAXUSER_ADDRESS), 566 #ifdef __USE_TOPDOWN_VM 567 true 568 #else 569 false 570 #endif 571 ); 572 573 /* Initialize signal state for proc0. XXX IPL_SCHED */ 574 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 575 siginit(p); 576 577 proc_initspecific(p); 578 kdtrace_proc_ctor(NULL, p); 579 } 580 581 /* 582 * Session reference counting. 583 */ 584 585 void 586 proc_sesshold(struct session *ss) 587 { 588 589 KASSERT(mutex_owned(&proc_lock)); 590 ss->s_count++; 591 } 592 593 void 594 proc_sessrele(struct session *ss) 595 { 596 struct pgrp *pg; 597 598 KASSERT(mutex_owned(&proc_lock)); 599 KASSERT(ss->s_count > 0); 600 601 /* 602 * We keep the pgrp with the same id as the session in order to 603 * stop a process being given the same pid. Since the pgrp holds 604 * a reference to the session, it must be a 'zombie' pgrp by now. 605 */ 606 if (--ss->s_count == 0) { 607 pg = pg_remove(ss->s_sid); 608 } else { 609 pg = NULL; 610 ss = NULL; 611 } 612 613 mutex_exit(&proc_lock); 614 615 if (pg) 616 kmem_free(pg, sizeof(struct pgrp)); 617 if (ss) 618 kmem_free(ss, sizeof(struct session)); 619 } 620 621 /* 622 * Check that the specified process group is in the session of the 623 * specified process. 624 * Treats -ve ids as process ids. 625 * Used to validate TIOCSPGRP requests. 626 */ 627 int 628 pgid_in_session(struct proc *p, pid_t pg_id) 629 { 630 struct pgrp *pgrp; 631 struct session *session; 632 int error; 633 634 if (pg_id <= INT_MIN) 635 return SET_ERROR(EINVAL); 636 637 mutex_enter(&proc_lock); 638 if (pg_id < 0) { 639 struct proc *p1 = proc_find(-pg_id); 640 if (p1 == NULL) { 641 error = SET_ERROR(EINVAL); 642 goto fail; 643 } 644 pgrp = p1->p_pgrp; 645 } else { 646 pgrp = pgrp_find(pg_id); 647 if (pgrp == NULL) { 648 error = SET_ERROR(EINVAL); 649 goto fail; 650 } 651 } 652 session = pgrp->pg_session; 653 error = (session != p->p_pgrp->pg_session) ? SET_ERROR(EPERM) : 0; 654 fail: 655 mutex_exit(&proc_lock); 656 return error; 657 } 658 659 /* 660 * p_inferior: is p an inferior of q? 661 */ 662 static inline bool 663 p_inferior(struct proc *p, struct proc *q) 664 { 665 666 KASSERT(mutex_owned(&proc_lock)); 667 668 for (; p != q; p = p->p_pptr) 669 if (p->p_pid == 0) 670 return false; 671 return true; 672 } 673 674 /* 675 * proc_find_lwp: locate an lwp in said proc by the ID. 676 * 677 * => Must be called with p::p_lock held. 678 * => LSIDL lwps are not returned because they are only partially 679 * constructed while occupying the slot. 680 * => Callers need to be careful about lwp::l_stat of the returned 681 * lwp. 682 */ 683 struct lwp * 684 proc_find_lwp(proc_t *p, pid_t pid) 685 { 686 struct pid_table *pt; 687 unsigned pt_mask; 688 struct lwp *l = NULL; 689 uintptr_t slot; 690 int s; 691 692 KASSERT(mutex_owned(p->p_lock)); 693 694 /* 695 * Look in the pid_table. This is done unlocked inside a 696 * pserialize read section covering pid_table's memory 697 * allocation only, so take care to read things in the correct 698 * order: 699 * 700 * 1. First read the table mask -- this only ever increases, in 701 * expand_pid_table, so a stale value is safely 702 * conservative. 703 * 704 * 2. Next read the pid table -- this is always set _before_ 705 * the mask increases, so if we see a new table and stale 706 * mask, the mask is still valid for the table. 707 */ 708 s = pserialize_read_enter(); 709 pt_mask = atomic_load_acquire(&pid_tbl_mask); 710 pt = &atomic_load_consume(&pid_table)[pid & pt_mask]; 711 slot = atomic_load_consume(&pt->pt_slot); 712 if (__predict_false(!PT_IS_LWP(slot))) { 713 pserialize_read_exit(s); 714 return NULL; 715 } 716 717 /* 718 * Check to see if the LWP is from the correct process. We won't 719 * see entries in pid_table from a prior process that also used "p", 720 * by virtue of the fact that allocating "p" means all prior updates 721 * to dependant data structures are visible to this thread. 722 */ 723 l = PT_GET_LWP(slot); 724 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) { 725 pserialize_read_exit(s); 726 return NULL; 727 } 728 729 /* 730 * We now know that p->p_lock holds this LWP stable. 731 * 732 * If the status is not LSIDL, it means the LWP is intended to be 733 * findable by LID and l_lid cannot change behind us. 734 * 735 * No need to acquire the LWP's lock to check for LSIDL, as 736 * p->p_lock must be held to transition in and out of LSIDL. 737 * Any other observed state of is no particular interest. 738 */ 739 pserialize_read_exit(s); 740 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL; 741 } 742 743 /* 744 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID. 745 * 746 * => Called in a pserialize read section with no locks held. 747 * => LSIDL lwps are not returned because they are only partially 748 * constructed while occupying the slot. 749 * => Callers need to be careful about lwp::l_stat of the returned 750 * lwp. 751 * => If an LWP is found, it's returned locked. 752 */ 753 struct lwp * 754 proc_find_lwp_unlocked(proc_t *p, pid_t pid) 755 { 756 struct pid_table *pt; 757 unsigned pt_mask; 758 struct lwp *l = NULL; 759 uintptr_t slot; 760 761 KASSERT(pserialize_in_read_section()); 762 763 /* 764 * Look in the pid_table. This is done unlocked inside a 765 * pserialize read section covering pid_table's memory 766 * allocation only, so take care to read things in the correct 767 * order: 768 * 769 * 1. First read the table mask -- this only ever increases, in 770 * expand_pid_table, so a stale value is safely 771 * conservative. 772 * 773 * 2. Next read the pid table -- this is always set _before_ 774 * the mask increases, so if we see a new table and stale 775 * mask, the mask is still valid for the table. 776 */ 777 pt_mask = atomic_load_acquire(&pid_tbl_mask); 778 pt = &atomic_load_consume(&pid_table)[pid & pt_mask]; 779 slot = atomic_load_consume(&pt->pt_slot); 780 if (__predict_false(!PT_IS_LWP(slot))) { 781 return NULL; 782 } 783 784 /* 785 * Lock the LWP we found to get it stable. If it's embryonic or 786 * reaped (LSIDL) then none of the other fields can safely be 787 * checked. 788 */ 789 l = PT_GET_LWP(slot); 790 lwp_lock(l); 791 if (__predict_false(l->l_stat == LSIDL)) { 792 lwp_unlock(l); 793 return NULL; 794 } 795 796 /* 797 * l_proc and l_lid are now known stable because the LWP is not 798 * LSIDL, so check those fields too to make sure we found the 799 * right thing. 800 */ 801 if (__predict_false(l->l_proc != p || l->l_lid != pid)) { 802 lwp_unlock(l); 803 return NULL; 804 } 805 806 /* Everything checks out, return it locked. */ 807 return l; 808 } 809 810 /* 811 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock 812 * on its containing proc. 813 * 814 * => Similar to proc_find_lwp(), but does not require you to have 815 * the proc a priori. 816 * => Also returns proc * to caller, with p::p_lock held. 817 * => Same caveats apply. 818 */ 819 struct lwp * 820 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp) 821 { 822 struct pid_table *pt; 823 struct proc *p = NULL; 824 struct lwp *l = NULL; 825 uintptr_t slot; 826 827 KASSERT(pp != NULL); 828 mutex_enter(&proc_lock); 829 pt = &pid_table[pid & pid_tbl_mask]; 830 831 slot = pt->pt_slot; 832 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) { 833 l = PT_GET_LWP(slot); 834 p = l->l_proc; 835 mutex_enter(p->p_lock); 836 if (__predict_false(l->l_stat == LSIDL)) { 837 mutex_exit(p->p_lock); 838 l = NULL; 839 p = NULL; 840 } 841 } 842 mutex_exit(&proc_lock); 843 844 KASSERT(p == NULL || mutex_owned(p->p_lock)); 845 *pp = p; 846 return l; 847 } 848 849 /* 850 * proc_find_raw_pid_table_locked: locate a process by the ID. 851 * 852 * => Must be called with proc_lock held. 853 */ 854 static proc_t * 855 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid) 856 { 857 struct pid_table *pt; 858 proc_t *p = NULL; 859 uintptr_t slot; 860 861 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */ 862 pt = &pid_table[pid & pid_tbl_mask]; 863 864 slot = pt->pt_slot; 865 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) { 866 /* 867 * When looking up processes, require a direct match 868 * on the PID assigned to the proc, not just one of 869 * its LWPs. 870 * 871 * N.B. We require lwp::l_proc of LSIDL LWPs to be 872 * valid here. 873 */ 874 p = PT_GET_LWP(slot)->l_proc; 875 if (__predict_false(p->p_pid != pid && !any_lwpid)) 876 p = NULL; 877 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) { 878 p = PT_GET_PROC(slot); 879 } 880 return p; 881 } 882 883 proc_t * 884 proc_find_raw(pid_t pid) 885 { 886 887 return proc_find_raw_pid_table_locked(pid, false); 888 } 889 890 static proc_t * 891 proc_find_internal(pid_t pid, bool any_lwpid) 892 { 893 proc_t *p; 894 895 KASSERT(mutex_owned(&proc_lock)); 896 897 p = proc_find_raw_pid_table_locked(pid, any_lwpid); 898 if (__predict_false(p == NULL)) { 899 return NULL; 900 } 901 902 /* 903 * Only allow live processes to be found by PID. 904 * XXX: p_stat might change, since proc unlocked. 905 */ 906 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 907 return p; 908 } 909 return NULL; 910 } 911 912 proc_t * 913 proc_find(pid_t pid) 914 { 915 return proc_find_internal(pid, false); 916 } 917 918 proc_t * 919 proc_find_lwpid(pid_t pid) 920 { 921 return proc_find_internal(pid, true); 922 } 923 924 /* 925 * pgrp_find: locate a process group by the ID. 926 * 927 * => Must be called with proc_lock held. 928 */ 929 struct pgrp * 930 pgrp_find(pid_t pgid) 931 { 932 struct pgrp *pg; 933 934 KASSERT(mutex_owned(&proc_lock)); 935 936 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 937 938 /* 939 * Cannot look up a process group that only exists because the 940 * session has not died yet (traditional). 941 */ 942 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 943 return NULL; 944 } 945 return pg; 946 } 947 948 static void 949 expand_pid_table(void) 950 { 951 size_t pt_size, tsz; 952 struct pid_table *n_pt, *new_pt; 953 uintptr_t slot; 954 struct pgrp *pgrp; 955 pid_t pid, rpid; 956 u_int i; 957 uint new_pt_mask; 958 959 KASSERT(mutex_owned(&proc_lock)); 960 961 /* Unlock the pid_table briefly to allocate memory. */ 962 pt_size = pid_tbl_mask + 1; 963 mutex_exit(&proc_lock); 964 965 tsz = pt_size * 2 * sizeof(struct pid_table); 966 new_pt = kmem_alloc(tsz, KM_SLEEP); 967 new_pt_mask = pt_size * 2 - 1; 968 969 /* XXX For now. The practical limit is much lower anyway. */ 970 KASSERT(new_pt_mask <= FUTEX_TID_MASK); 971 972 mutex_enter(&proc_lock); 973 if (pt_size != pid_tbl_mask + 1) { 974 /* Another process beat us to it... */ 975 mutex_exit(&proc_lock); 976 kmem_free(new_pt, tsz); 977 goto out; 978 } 979 980 /* 981 * Copy entries from old table into new one. 982 * If 'pid' is 'odd' we need to place in the upper half, 983 * even pid's to the lower half. 984 * Free items stay in the low half so we don't have to 985 * fixup the reference to them. 986 * We stuff free items on the front of the freelist 987 * because we can't write to unmodified entries. 988 * Processing the table backwards maintains a semblance 989 * of issuing pid numbers that increase with time. 990 */ 991 i = pt_size - 1; 992 n_pt = new_pt + i; 993 for (; ; i--, n_pt--) { 994 slot = pid_table[i].pt_slot; 995 pgrp = pid_table[i].pt_pgrp; 996 if (!PT_VALID(slot)) { 997 /* Up 'use count' so that link is valid */ 998 pid = (PT_NEXT(slot) + pt_size) & ~pt_size; 999 rpid = 0; 1000 slot = PT_SET_FREE(pid); 1001 if (pgrp) 1002 pid = pgrp->pg_id; 1003 } else { 1004 pid = pid_table[i].pt_pid; 1005 rpid = pid; 1006 } 1007 1008 /* Save entry in appropriate half of table */ 1009 n_pt[pid & pt_size].pt_slot = slot; 1010 n_pt[pid & pt_size].pt_pgrp = pgrp; 1011 n_pt[pid & pt_size].pt_pid = rpid; 1012 1013 /* Put other piece on start of free list */ 1014 pid = (pid ^ pt_size) & ~pid_tbl_mask; 1015 n_pt[pid & pt_size].pt_slot = 1016 PT_SET_FREE((pid & ~pt_size) | next_free_pt); 1017 n_pt[pid & pt_size].pt_pgrp = 0; 1018 n_pt[pid & pt_size].pt_pid = 0; 1019 1020 next_free_pt = i | (pid & pt_size); 1021 if (i == 0) 1022 break; 1023 } 1024 1025 /* Save old table size and switch tables */ 1026 tsz = pt_size * sizeof(struct pid_table); 1027 n_pt = pid_table; 1028 atomic_store_release(&pid_table, new_pt); 1029 KASSERT(new_pt_mask >= pid_tbl_mask); 1030 atomic_store_release(&pid_tbl_mask, new_pt_mask); 1031 1032 /* 1033 * pid_max starts as PID_MAX (= 30000), once we have 16384 1034 * allocated pids we need it to be larger! 1035 */ 1036 if (pid_tbl_mask > PID_MAX) { 1037 pid_max = pid_tbl_mask * 2 + 1; 1038 pid_alloc_lim |= pid_alloc_lim << 1; 1039 } else 1040 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 1041 1042 mutex_exit(&proc_lock); 1043 1044 /* 1045 * Make sure that unlocked access to the old pid_table is complete 1046 * and then free it. 1047 */ 1048 pserialize_perform(proc_psz); 1049 kmem_free(n_pt, tsz); 1050 1051 out: /* Return with proc_lock held again. */ 1052 mutex_enter(&proc_lock); 1053 } 1054 1055 struct proc * 1056 proc_alloc(void) 1057 { 1058 struct proc *p; 1059 1060 p = pool_cache_get(proc_cache, PR_WAITOK); 1061 p->p_stat = SIDL; /* protect against others */ 1062 proc_initspecific(p); 1063 kdtrace_proc_ctor(NULL, p); 1064 1065 /* 1066 * Allocate a placeholder in the pid_table. When we create the 1067 * first LWP for this process, it will take ownership of the 1068 * slot. 1069 */ 1070 if (__predict_false(proc_alloc_pid(p) == -1)) { 1071 /* Allocating the PID failed; unwind. */ 1072 proc_finispecific(p); 1073 proc_free_mem(p); 1074 p = NULL; 1075 } 1076 return p; 1077 } 1078 1079 /* 1080 * proc_alloc_pid_slot: allocate PID and record the occupant so that 1081 * proc_find_raw() can find it by the PID. 1082 */ 1083 static pid_t __noinline 1084 proc_alloc_pid_slot(struct proc *p, uintptr_t slot) 1085 { 1086 struct pid_table *pt; 1087 pid_t pid; 1088 int nxt; 1089 1090 KASSERT(mutex_owned(&proc_lock)); 1091 1092 for (;;expand_pid_table()) { 1093 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) { 1094 /* ensure pids cycle through 2000+ values */ 1095 continue; 1096 } 1097 /* 1098 * The first user process *must* be given PID 1. 1099 * it has already been reserved for us. This 1100 * will be coming in from the proc_alloc() call 1101 * above, and the entry will be usurped later when 1102 * the first user LWP is created. 1103 * XXX this is slightly gross. 1104 */ 1105 if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) && 1106 p != &proc0)) { 1107 KASSERT(PT_IS_PROC(slot)); 1108 pt = &pid_table[1]; 1109 pt->pt_slot = slot; 1110 return 1; 1111 } 1112 pt = &pid_table[next_free_pt]; 1113 #ifdef DIAGNOSTIC 1114 if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp)) 1115 panic("proc_alloc: slot busy"); 1116 #endif 1117 nxt = PT_NEXT(pt->pt_slot); 1118 if (nxt & pid_tbl_mask) 1119 break; 1120 /* Table full - expand (NB last entry not used....) */ 1121 } 1122 1123 /* pid is 'saved use count' + 'size' + entry */ 1124 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; 1125 if ((uint)pid > (uint)pid_max) 1126 pid &= pid_tbl_mask; 1127 next_free_pt = nxt & pid_tbl_mask; 1128 1129 /* XXX For now. The practical limit is much lower anyway. */ 1130 KASSERT(pid <= FUTEX_TID_MASK); 1131 1132 /* Grab table slot */ 1133 pt->pt_slot = slot; 1134 1135 KASSERT(pt->pt_pid == 0); 1136 pt->pt_pid = pid; 1137 pid_alloc_cnt++; 1138 1139 return pid; 1140 } 1141 1142 pid_t 1143 proc_alloc_pid(struct proc *p) 1144 { 1145 pid_t pid; 1146 1147 KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0); 1148 KASSERT(p->p_stat == SIDL); 1149 1150 mutex_enter(&proc_lock); 1151 pid = proc_alloc_pid_slot(p, PT_SET_PROC(p)); 1152 if (pid != -1) 1153 p->p_pid = pid; 1154 mutex_exit(&proc_lock); 1155 1156 return pid; 1157 } 1158 1159 pid_t 1160 proc_alloc_lwpid(struct proc *p, struct lwp *l) 1161 { 1162 struct pid_table *pt; 1163 pid_t pid; 1164 1165 KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0); 1166 KASSERT(l->l_proc == p); 1167 KASSERT(l->l_stat == LSIDL); 1168 1169 /* 1170 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc 1171 * is globally visible before the LWP becomes visible via the 1172 * pid_table. 1173 */ 1174 #ifndef __HAVE_ATOMIC_AS_MEMBAR 1175 membar_producer(); 1176 #endif 1177 1178 /* 1179 * If the slot for p->p_pid currently points to the proc, 1180 * then we should usurp this ID for the LWP. This happens 1181 * at least once per process (for the first LWP), and can 1182 * happen again if the first LWP for a process exits and 1183 * before the process creates another. 1184 */ 1185 mutex_enter(&proc_lock); 1186 pid = p->p_pid; 1187 pt = &pid_table[pid & pid_tbl_mask]; 1188 KASSERT(pt->pt_pid == pid); 1189 if (PT_IS_PROC(pt->pt_slot)) { 1190 KASSERT(PT_GET_PROC(pt->pt_slot) == p); 1191 l->l_lid = pid; 1192 pt->pt_slot = PT_SET_LWP(l); 1193 } else { 1194 /* Need to allocate a new slot. */ 1195 pid = proc_alloc_pid_slot(p, PT_SET_LWP(l)); 1196 if (pid != -1) 1197 l->l_lid = pid; 1198 } 1199 mutex_exit(&proc_lock); 1200 1201 return pid; 1202 } 1203 1204 static void __noinline 1205 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused) 1206 { 1207 struct pid_table *pt; 1208 1209 KASSERT(mutex_owned(&proc_lock)); 1210 1211 pt = &pid_table[pid & pid_tbl_mask]; 1212 1213 KASSERT(PT_GET_TYPE(pt->pt_slot) == type); 1214 KASSERT(pt->pt_pid == pid); 1215 1216 /* save pid use count in slot */ 1217 pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask); 1218 pt->pt_pid = 0; 1219 1220 if (pt->pt_pgrp == NULL) { 1221 /* link last freed entry onto ours */ 1222 pid &= pid_tbl_mask; 1223 pt = &pid_table[last_free_pt]; 1224 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid); 1225 pt->pt_pid = 0; 1226 last_free_pt = pid; 1227 pid_alloc_cnt--; 1228 } 1229 } 1230 1231 /* 1232 * Free a process id - called from proc_free (in kern_exit.c) 1233 * 1234 * Called with the proc_lock held. 1235 */ 1236 void 1237 proc_free_pid(pid_t pid) 1238 { 1239 1240 KASSERT(mutex_owned(&proc_lock)); 1241 proc_free_pid_internal(pid, PT_F_PROC); 1242 } 1243 1244 /* 1245 * Free a process id used by an LWP. If this was the process's 1246 * first LWP, we convert the slot to point to the process; the 1247 * entry will get cleaned up later when the process finishes exiting. 1248 * 1249 * If not, then it's the same as proc_free_pid(). 1250 */ 1251 void 1252 proc_free_lwpid(struct proc *p, pid_t pid) 1253 { 1254 1255 KASSERT(mutex_owned(&proc_lock)); 1256 1257 if (__predict_true(p->p_pid == pid)) { 1258 struct pid_table *pt; 1259 1260 pt = &pid_table[pid & pid_tbl_mask]; 1261 1262 KASSERT(pt->pt_pid == pid); 1263 KASSERT(PT_IS_LWP(pt->pt_slot)); 1264 KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p); 1265 1266 pt->pt_slot = PT_SET_PROC(p); 1267 return; 1268 } 1269 proc_free_pid_internal(pid, PT_F_LWP); 1270 } 1271 1272 void 1273 proc_free_mem(struct proc *p) 1274 { 1275 1276 kdtrace_proc_dtor(NULL, p); 1277 pool_cache_put(proc_cache, p); 1278 } 1279 1280 /* 1281 * proc_enterpgrp: move p to a new or existing process group (and session). 1282 * 1283 * If we are creating a new pgrp, the pgid should equal 1284 * the calling process' pid. 1285 * If is only valid to enter a process group that is in the session 1286 * of the process. 1287 * Also mksess should only be set if we are creating a process group 1288 * 1289 * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return. 1290 */ 1291 int 1292 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) 1293 { 1294 struct pgrp *new_pgrp, *pgrp; 1295 struct session *sess; 1296 struct proc *p; 1297 int rval; 1298 pid_t pg_id = NO_PGID; 1299 1300 /* Allocate data areas we might need before doing any validity checks */ 1301 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; 1302 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); 1303 1304 mutex_enter(&proc_lock); 1305 1306 /* Check pgrp exists or can be created */ 1307 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; 1308 if (pgrp != NULL && pgrp->pg_id != pgid) 1309 goto eperm; 1310 1311 /* Can only set another process under restricted circumstances. */ 1312 if (pid != curp->p_pid) { 1313 /* Must exist and be one of our children... */ 1314 p = proc_find_internal(pid, false); 1315 if (p == NULL || !p_inferior(p, curp)) { 1316 rval = SET_ERROR(ESRCH); 1317 goto done; 1318 } 1319 /* ... in the same session... */ 1320 if (sess != NULL || p->p_session != curp->p_session) 1321 goto eperm; 1322 /* ... existing pgid must be in same session ... */ 1323 if (pgrp != NULL && pgrp->pg_session != p->p_session) 1324 goto eperm; 1325 /* ... and not done an exec. */ 1326 if (p->p_flag & PK_EXEC) { 1327 rval = SET_ERROR(EACCES); 1328 goto done; 1329 } 1330 } else { 1331 /* ... setsid() cannot re-enter a pgrp */ 1332 if (mksess && (curp->p_pgid == curp->p_pid || 1333 pgrp_find(curp->p_pid))) 1334 goto eperm; 1335 p = curp; 1336 } 1337 1338 /* Changing the process group/session of a session 1339 leader is definitely off limits. */ 1340 if (SESS_LEADER(p)) { 1341 if (sess == NULL && p->p_pgrp == pgrp) { 1342 /* unless it's a definite noop */ 1343 rval = 0; 1344 goto done; 1345 } 1346 goto eperm; 1347 } 1348 1349 /* Can only create a process group with id of process */ 1350 if (pgrp == NULL && pgid != pid) 1351 goto eperm; 1352 1353 /* Can only create a session if creating pgrp */ 1354 if (sess != NULL && pgrp != NULL) 1355 goto eperm; 1356 1357 /* Check we allocated memory for a pgrp... */ 1358 if (pgrp == NULL && new_pgrp == NULL) 1359 goto eperm; 1360 1361 /* Don't attach to 'zombie' pgrp */ 1362 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) 1363 goto eperm; 1364 1365 /* Expect to succeed now */ 1366 rval = 0; 1367 1368 if (pgrp == p->p_pgrp) 1369 /* nothing to do */ 1370 goto done; 1371 1372 /* Ok all setup, link up required structures */ 1373 1374 if (pgrp == NULL) { 1375 pgrp = new_pgrp; 1376 new_pgrp = NULL; 1377 if (sess != NULL) { 1378 sess->s_sid = p->p_pid; 1379 sess->s_leader = p; 1380 sess->s_count = 1; 1381 sess->s_ttyvp = NULL; 1382 sess->s_ttyp = NULL; 1383 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; 1384 memcpy(sess->s_login, p->p_session->s_login, 1385 sizeof(sess->s_login)); 1386 p->p_lflag &= ~PL_CONTROLT; 1387 } else { 1388 sess = p->p_pgrp->pg_session; 1389 proc_sesshold(sess); 1390 } 1391 pgrp->pg_session = sess; 1392 sess = NULL; 1393 1394 pgrp->pg_id = pgid; 1395 LIST_INIT(&pgrp->pg_members); 1396 #ifdef DIAGNOSTIC 1397 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) 1398 panic("enterpgrp: pgrp table slot in use"); 1399 if (__predict_false(mksess && p != curp)) 1400 panic("enterpgrp: mksession and p != curproc"); 1401 #endif 1402 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; 1403 pgrp->pg_jobc = 0; 1404 } 1405 1406 /* 1407 * Adjust eligibility of affected pgrps to participate in job control. 1408 * Increment eligibility counts before decrementing, otherwise we 1409 * could reach 0 spuriously during the first call. 1410 */ 1411 fixjobc(p, pgrp, 1); 1412 fixjobc(p, p->p_pgrp, 0); 1413 1414 /* Interlock with ttread(). */ 1415 mutex_spin_enter(&tty_lock); 1416 1417 /* Move process to requested group. */ 1418 LIST_REMOVE(p, p_pglist); 1419 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 1420 /* defer delete until we've dumped the lock */ 1421 pg_id = p->p_pgrp->pg_id; 1422 p->p_pgrp = pgrp; 1423 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 1424 1425 /* Done with the swap; we can release the tty mutex. */ 1426 mutex_spin_exit(&tty_lock); 1427 goto done; 1428 1429 eperm: 1430 rval = SET_ERROR(EPERM); 1431 done: 1432 if (pg_id != NO_PGID) { 1433 /* Releases proc_lock. */ 1434 pg_delete(pg_id); 1435 } else { 1436 mutex_exit(&proc_lock); 1437 } 1438 if (sess != NULL) 1439 kmem_free(sess, sizeof(*sess)); 1440 if (new_pgrp != NULL) 1441 kmem_free(new_pgrp, sizeof(*new_pgrp)); 1442 #ifdef DEBUG_PGRP 1443 if (__predict_false(rval)) 1444 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n", 1445 pid, pgid, mksess, curp->p_pid, rval); 1446 #endif 1447 return rval; 1448 } 1449 1450 /* 1451 * proc_leavepgrp: remove a process from its process group. 1452 * => must be called with the proc_lock held, which will be released; 1453 */ 1454 void 1455 proc_leavepgrp(struct proc *p) 1456 { 1457 struct pgrp *pgrp; 1458 1459 KASSERT(mutex_owned(&proc_lock)); 1460 1461 /* Interlock with ttread() */ 1462 mutex_spin_enter(&tty_lock); 1463 pgrp = p->p_pgrp; 1464 LIST_REMOVE(p, p_pglist); 1465 p->p_pgrp = NULL; 1466 mutex_spin_exit(&tty_lock); 1467 1468 if (LIST_EMPTY(&pgrp->pg_members)) { 1469 /* Releases proc_lock. */ 1470 pg_delete(pgrp->pg_id); 1471 } else { 1472 mutex_exit(&proc_lock); 1473 } 1474 } 1475 1476 /* 1477 * pg_remove: remove a process group from the table. 1478 * => must be called with the proc_lock held; 1479 * => returns process group to free; 1480 */ 1481 static struct pgrp * 1482 pg_remove(pid_t pg_id) 1483 { 1484 struct pgrp *pgrp; 1485 struct pid_table *pt; 1486 1487 KASSERT(mutex_owned(&proc_lock)); 1488 1489 pt = &pid_table[pg_id & pid_tbl_mask]; 1490 pgrp = pt->pt_pgrp; 1491 1492 KASSERT(pgrp != NULL); 1493 KASSERT(pgrp->pg_id == pg_id); 1494 KASSERT(LIST_EMPTY(&pgrp->pg_members)); 1495 1496 pt->pt_pgrp = NULL; 1497 1498 if (!PT_VALID(pt->pt_slot)) { 1499 /* Orphaned pgrp, put slot onto free list. */ 1500 KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0); 1501 pg_id &= pid_tbl_mask; 1502 pt = &pid_table[last_free_pt]; 1503 pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id); 1504 KASSERT(pt->pt_pid == 0); 1505 last_free_pt = pg_id; 1506 pid_alloc_cnt--; 1507 } 1508 return pgrp; 1509 } 1510 1511 /* 1512 * pg_delete: delete and free a process group. 1513 * => must be called with the proc_lock held, which will be released. 1514 */ 1515 static void 1516 pg_delete(pid_t pg_id) 1517 { 1518 struct pgrp *pg; 1519 struct tty *ttyp; 1520 struct session *ss; 1521 1522 KASSERT(mutex_owned(&proc_lock)); 1523 1524 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; 1525 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { 1526 mutex_exit(&proc_lock); 1527 return; 1528 } 1529 1530 ss = pg->pg_session; 1531 1532 /* Remove reference (if any) from tty to this process group */ 1533 mutex_spin_enter(&tty_lock); 1534 ttyp = ss->s_ttyp; 1535 if (ttyp != NULL && ttyp->t_pgrp == pg) { 1536 ttyp->t_pgrp = NULL; 1537 KASSERT(ttyp->t_session == ss); 1538 } 1539 mutex_spin_exit(&tty_lock); 1540 1541 /* 1542 * The leading process group in a session is freed by proc_sessrele(), 1543 * if last reference. It will also release the locks. 1544 */ 1545 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; 1546 proc_sessrele(ss); 1547 1548 if (pg != NULL) { 1549 /* Free it, if was not done above. */ 1550 kmem_free(pg, sizeof(struct pgrp)); 1551 } 1552 } 1553 1554 /* 1555 * Adjust pgrp jobc counters when specified process changes process group. 1556 * We count the number of processes in each process group that "qualify" 1557 * the group for terminal job control (those with a parent in a different 1558 * process group of the same session). If that count reaches zero, the 1559 * process group becomes orphaned. Check both the specified process' 1560 * process group and that of its children. 1561 * entering == 0 => p is leaving specified group. 1562 * entering == 1 => p is entering specified group. 1563 * 1564 * Call with proc_lock held. 1565 */ 1566 void 1567 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 1568 { 1569 struct pgrp *hispgrp; 1570 struct session *mysession = pgrp->pg_session; 1571 struct proc *child; 1572 1573 KASSERT(mutex_owned(&proc_lock)); 1574 1575 /* 1576 * Check p's parent to see whether p qualifies its own process 1577 * group; if so, adjust count for p's process group. 1578 */ 1579 hispgrp = p->p_pptr->p_pgrp; 1580 if (hispgrp != pgrp && hispgrp->pg_session == mysession) { 1581 if (entering) { 1582 pgrp->pg_jobc++; 1583 p->p_lflag &= ~PL_ORPHANPG; 1584 } else { 1585 /* KASSERT(pgrp->pg_jobc > 0); */ 1586 if (--pgrp->pg_jobc == 0) 1587 orphanpg(pgrp); 1588 } 1589 } 1590 1591 /* 1592 * Check this process' children to see whether they qualify 1593 * their process groups; if so, adjust counts for children's 1594 * process groups. 1595 */ 1596 LIST_FOREACH(child, &p->p_children, p_sibling) { 1597 hispgrp = child->p_pgrp; 1598 if (hispgrp != pgrp && hispgrp->pg_session == mysession && 1599 !P_ZOMBIE(child)) { 1600 if (entering) { 1601 child->p_lflag &= ~PL_ORPHANPG; 1602 hispgrp->pg_jobc++; 1603 } else { 1604 KASSERT(hispgrp->pg_jobc > 0); 1605 if (--hispgrp->pg_jobc == 0) 1606 orphanpg(hispgrp); 1607 } 1608 } 1609 } 1610 } 1611 1612 /* 1613 * A process group has become orphaned; 1614 * if there are any stopped processes in the group, 1615 * hang-up all process in that group. 1616 * 1617 * Call with proc_lock held. 1618 */ 1619 static void 1620 orphanpg(struct pgrp *pg) 1621 { 1622 struct proc *p; 1623 1624 KASSERT(mutex_owned(&proc_lock)); 1625 1626 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1627 if (p->p_stat == SSTOP) { 1628 p->p_lflag |= PL_ORPHANPG; 1629 psignal(p, SIGHUP); 1630 psignal(p, SIGCONT); 1631 } 1632 } 1633 } 1634 1635 #ifdef DDB 1636 #include <ddb/db_output.h> 1637 void pidtbl_dump(void); 1638 void 1639 pidtbl_dump(void) 1640 { 1641 struct pid_table *pt; 1642 struct proc *p; 1643 struct pgrp *pgrp; 1644 uintptr_t slot; 1645 int id; 1646 1647 db_printf("pid table %p size %x, next %x, last %x\n", 1648 pid_table, pid_tbl_mask+1, 1649 next_free_pt, last_free_pt); 1650 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1651 slot = pt->pt_slot; 1652 if (!PT_VALID(slot) && !pt->pt_pgrp) 1653 continue; 1654 if (PT_IS_LWP(slot)) { 1655 p = PT_GET_LWP(slot)->l_proc; 1656 } else if (PT_IS_PROC(slot)) { 1657 p = PT_GET_PROC(slot); 1658 } else { 1659 p = NULL; 1660 } 1661 db_printf(" id %x: ", id); 1662 if (p != NULL) 1663 db_printf("slotpid %d proc %p id %d (0x%x) %s\n", 1664 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); 1665 else 1666 db_printf("next %x use %x\n", 1667 PT_NEXT(slot) & pid_tbl_mask, 1668 PT_NEXT(slot) & ~pid_tbl_mask); 1669 if ((pgrp = pt->pt_pgrp)) { 1670 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1671 pgrp->pg_session, pgrp->pg_session->s_sid, 1672 pgrp->pg_session->s_count, 1673 pgrp->pg_session->s_login); 1674 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1675 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1676 LIST_FIRST(&pgrp->pg_members)); 1677 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1678 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1679 p->p_pid, p, p->p_pgrp, p->p_comm); 1680 } 1681 } 1682 } 1683 } 1684 #endif /* DDB */ 1685 1686 #ifdef KSTACK_CHECK_MAGIC 1687 1688 #define KSTACK_MAGIC 0xdeadbeaf 1689 1690 /* XXX should be per process basis? */ 1691 static int kstackleftmin = KSTACK_SIZE; 1692 static int kstackleftthres = KSTACK_SIZE / 8; 1693 1694 void 1695 kstack_setup_magic(const struct lwp *l) 1696 { 1697 uint32_t *ip; 1698 uint32_t const *end; 1699 1700 KASSERT(l != NULL); 1701 KASSERT(l != &lwp0); 1702 1703 /* 1704 * fill all the stack with magic number 1705 * so that later modification on it can be detected. 1706 */ 1707 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1708 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1709 for (; ip < end; ip++) { 1710 *ip = KSTACK_MAGIC; 1711 } 1712 } 1713 1714 void 1715 kstack_check_magic(const struct lwp *l) 1716 { 1717 uint32_t const *ip, *end; 1718 int stackleft; 1719 1720 KASSERT(l != NULL); 1721 1722 /* don't check proc0 */ /*XXX*/ 1723 if (l == &lwp0) 1724 return; 1725 1726 #ifdef __MACHINE_STACK_GROWS_UP 1727 /* stack grows upwards (eg. hppa) */ 1728 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1729 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1730 for (ip--; ip >= end; ip--) 1731 if (*ip != KSTACK_MAGIC) 1732 break; 1733 1734 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1735 #else /* __MACHINE_STACK_GROWS_UP */ 1736 /* stack grows downwards (eg. i386) */ 1737 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1738 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1739 for (; ip < end; ip++) 1740 if (*ip != KSTACK_MAGIC) 1741 break; 1742 1743 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1744 #endif /* __MACHINE_STACK_GROWS_UP */ 1745 1746 if (kstackleftmin > stackleft) { 1747 kstackleftmin = stackleft; 1748 if (stackleft < kstackleftthres) 1749 printf("warning: kernel stack left %d bytes" 1750 "(pid %u:lid %u)\n", stackleft, 1751 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1752 } 1753 1754 if (stackleft <= 0) { 1755 panic("magic on the top of kernel stack changed for " 1756 "pid %u, lid %u: maybe kernel stack overflow", 1757 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1758 } 1759 } 1760 #endif /* KSTACK_CHECK_MAGIC */ 1761 1762 int 1763 proclist_foreach_call(struct proclist *list, 1764 int (*callback)(struct proc *, void *arg), void *arg) 1765 { 1766 struct proc marker; 1767 struct proc *p; 1768 int ret = 0; 1769 1770 marker.p_flag = PK_MARKER; 1771 mutex_enter(&proc_lock); 1772 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1773 if (p->p_flag & PK_MARKER) { 1774 p = LIST_NEXT(p, p_list); 1775 continue; 1776 } 1777 LIST_INSERT_AFTER(p, &marker, p_list); 1778 ret = (*callback)(p, arg); 1779 KASSERT(mutex_owned(&proc_lock)); 1780 p = LIST_NEXT(&marker, p_list); 1781 LIST_REMOVE(&marker, p_list); 1782 } 1783 mutex_exit(&proc_lock); 1784 1785 return ret; 1786 } 1787 1788 int 1789 proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1790 { 1791 1792 /* XXXCDC: how should locking work here? */ 1793 1794 /* curproc exception is for coredump. */ 1795 1796 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1797 (p->p_vmspace->vm_refcnt < 1)) { 1798 return SET_ERROR(EFAULT); 1799 } 1800 1801 uvmspace_addref(p->p_vmspace); 1802 *vm = p->p_vmspace; 1803 1804 return 0; 1805 } 1806 1807 /* 1808 * Acquire a write lock on the process credential. 1809 */ 1810 void 1811 proc_crmod_enter(void) 1812 { 1813 struct lwp *l = curlwp; 1814 struct proc *p = l->l_proc; 1815 kauth_cred_t oc; 1816 1817 /* Reset what needs to be reset in plimit. */ 1818 if (p->p_limit->pl_corename != defcorename) { 1819 lim_setcorename(p, defcorename, 0); 1820 } 1821 1822 mutex_enter(p->p_lock); 1823 1824 /* Ensure the LWP cached credentials are up to date. */ 1825 if ((oc = l->l_cred) != p->p_cred) { 1826 l->l_cred = kauth_cred_hold(p->p_cred); 1827 kauth_cred_free(oc); 1828 } 1829 } 1830 1831 /* 1832 * Set in a new process credential, and drop the write lock. The credential 1833 * must have a reference already. Optionally, free a no-longer required 1834 * credential. 1835 */ 1836 void 1837 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1838 { 1839 struct lwp *l = curlwp, *l2; 1840 struct proc *p = l->l_proc; 1841 kauth_cred_t oc; 1842 1843 KASSERT(mutex_owned(p->p_lock)); 1844 1845 /* Is there a new credential to set in? */ 1846 if (scred != NULL) { 1847 p->p_cred = scred; 1848 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1849 if (l2 != l) { 1850 lwp_lock(l2); 1851 l2->l_flag |= LW_CACHECRED; 1852 lwp_need_userret(l2); 1853 lwp_unlock(l2); 1854 } 1855 } 1856 1857 /* Ensure the LWP cached credentials are up to date. */ 1858 if ((oc = l->l_cred) != scred) { 1859 l->l_cred = kauth_cred_hold(scred); 1860 } 1861 } else 1862 oc = NULL; /* XXXgcc */ 1863 1864 if (sugid) { 1865 /* 1866 * Mark process as having changed credentials, stops 1867 * tracing etc. 1868 */ 1869 p->p_flag |= PK_SUGID; 1870 } 1871 1872 mutex_exit(p->p_lock); 1873 1874 /* If there is a credential to be released, free it now. */ 1875 if (fcred != NULL) { 1876 KASSERT(scred != NULL); 1877 kauth_cred_free(fcred); 1878 if (oc != scred) 1879 kauth_cred_free(oc); 1880 } 1881 } 1882 1883 /* 1884 * proc_specific_key_create -- 1885 * Create a key for subsystem proc-specific data. 1886 */ 1887 int 1888 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1889 { 1890 1891 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1892 } 1893 1894 /* 1895 * proc_specific_key_delete -- 1896 * Delete a key for subsystem proc-specific data. 1897 */ 1898 void 1899 proc_specific_key_delete(specificdata_key_t key) 1900 { 1901 1902 specificdata_key_delete(proc_specificdata_domain, key); 1903 } 1904 1905 /* 1906 * proc_initspecific -- 1907 * Initialize a proc's specificdata container. 1908 */ 1909 void 1910 proc_initspecific(struct proc *p) 1911 { 1912 int error __diagused; 1913 1914 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1915 KASSERT(error == 0); 1916 } 1917 1918 /* 1919 * proc_finispecific -- 1920 * Finalize a proc's specificdata container. 1921 */ 1922 void 1923 proc_finispecific(struct proc *p) 1924 { 1925 1926 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1927 } 1928 1929 /* 1930 * proc_getspecific -- 1931 * Return proc-specific data corresponding to the specified key. 1932 */ 1933 void * 1934 proc_getspecific(struct proc *p, specificdata_key_t key) 1935 { 1936 1937 return (specificdata_getspecific(proc_specificdata_domain, 1938 &p->p_specdataref, key)); 1939 } 1940 1941 /* 1942 * proc_setspecific -- 1943 * Set proc-specific data corresponding to the specified key. 1944 */ 1945 void 1946 proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1947 { 1948 1949 specificdata_setspecific(proc_specificdata_domain, 1950 &p->p_specdataref, key, data); 1951 } 1952 1953 int 1954 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1955 { 1956 1957 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1958 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1959 /* 1960 * suid proc of ours or proc not ours 1961 */ 1962 return SET_ERROR(EPERM); 1963 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1964 /* 1965 * sgid proc has sgid back to us temporarily 1966 */ 1967 return SET_ERROR(EPERM); 1968 } else { 1969 /* 1970 * our rgid must be in target's group list (ie, 1971 * sub-processes started by a sgid process) 1972 */ 1973 int ismember = 0; 1974 1975 if (kauth_cred_ismember_gid(cred, 1976 kauth_cred_getgid(target), &ismember) != 0 || 1977 !ismember) 1978 return SET_ERROR(EPERM); 1979 } 1980 1981 return 0; 1982 } 1983 1984 /* 1985 * sysctl stuff 1986 */ 1987 1988 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) 1989 1990 static const u_int sysctl_flagmap[] = { 1991 PK_ADVLOCK, P_ADVLOCK, 1992 PK_EXEC, P_EXEC, 1993 PK_NOCLDWAIT, P_NOCLDWAIT, 1994 PK_32, P_32, 1995 PK_CLDSIGIGN, P_CLDSIGIGN, 1996 PK_SUGID, P_SUGID, 1997 0 1998 }; 1999 2000 static const u_int sysctl_sflagmap[] = { 2001 PS_NOCLDSTOP, P_NOCLDSTOP, 2002 PS_WEXIT, P_WEXIT, 2003 PS_STOPFORK, P_STOPFORK, 2004 PS_STOPEXEC, P_STOPEXEC, 2005 PS_STOPEXIT, P_STOPEXIT, 2006 0 2007 }; 2008 2009 static const u_int sysctl_slflagmap[] = { 2010 PSL_TRACED, P_TRACED, 2011 PSL_CHTRACED, P_CHTRACED, 2012 PSL_SYSCALL, P_SYSCALL, 2013 0 2014 }; 2015 2016 static const u_int sysctl_lflagmap[] = { 2017 PL_CONTROLT, P_CONTROLT, 2018 PL_PPWAIT, P_PPWAIT, 2019 0 2020 }; 2021 2022 static const u_int sysctl_stflagmap[] = { 2023 PST_PROFIL, P_PROFIL, 2024 0 2025 2026 }; 2027 2028 /* used by kern_lwp also */ 2029 const u_int sysctl_lwpflagmap[] = { 2030 LW_SINTR, L_SINTR, 2031 LW_SYSTEM, L_SYSTEM, 2032 0 2033 }; 2034 2035 /* 2036 * Find the most ``active'' lwp of a process and return it for ps display 2037 * purposes 2038 */ 2039 static struct lwp * 2040 proc_active_lwp(struct proc *p) 2041 { 2042 static const int ostat[] = { 2043 0, 2044 2, /* LSIDL */ 2045 6, /* LSRUN */ 2046 5, /* LSSLEEP */ 2047 4, /* LSSTOP */ 2048 0, /* LSZOMB */ 2049 1, /* LSDEAD */ 2050 7, /* LSONPROC */ 2051 3 /* LSSUSPENDED */ 2052 }; 2053 2054 struct lwp *l, *lp = NULL; 2055 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2056 KASSERT(l->l_stat >= 0); 2057 KASSERT(l->l_stat < __arraycount(ostat)); 2058 if (lp == NULL || 2059 ostat[l->l_stat] > ostat[lp->l_stat] || 2060 (ostat[l->l_stat] == ostat[lp->l_stat] && 2061 l->l_cpticks > lp->l_cpticks)) { 2062 lp = l; 2063 continue; 2064 } 2065 } 2066 return lp; 2067 } 2068 2069 static int 2070 sysctl_doeproc(SYSCTLFN_ARGS) 2071 { 2072 union { 2073 struct kinfo_proc kproc; 2074 struct kinfo_proc2 kproc2; 2075 } *kbuf; 2076 struct proc *p, *next, *marker; 2077 char *where, *dp; 2078 int type, op, arg, error; 2079 u_int elem_size, kelem_size, elem_count; 2080 size_t buflen, needed; 2081 bool match, zombie, mmmbrains; 2082 const bool allowaddr = get_expose_address(curproc); 2083 2084 if (namelen == 1 && name[0] == CTL_QUERY) 2085 return (sysctl_query(SYSCTLFN_CALL(rnode))); 2086 2087 dp = where = oldp; 2088 buflen = where != NULL ? *oldlenp : 0; 2089 error = 0; 2090 needed = 0; 2091 type = rnode->sysctl_num; 2092 2093 if (type == KERN_PROC) { 2094 if (namelen == 0) 2095 return SET_ERROR(EINVAL); 2096 switch (op = name[0]) { 2097 case KERN_PROC_ALL: 2098 if (namelen != 1) 2099 return SET_ERROR(EINVAL); 2100 arg = 0; 2101 break; 2102 default: 2103 if (namelen != 2) 2104 return SET_ERROR(EINVAL); 2105 arg = name[1]; 2106 break; 2107 } 2108 elem_count = 0; /* Hush little compiler, don't you cry */ 2109 kelem_size = elem_size = sizeof(kbuf->kproc); 2110 } else { 2111 if (namelen != 4) 2112 return SET_ERROR(EINVAL); 2113 op = name[0]; 2114 arg = name[1]; 2115 elem_size = name[2]; 2116 elem_count = name[3]; 2117 kelem_size = sizeof(kbuf->kproc2); 2118 } 2119 2120 sysctl_unlock(); 2121 2122 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP); 2123 marker = kmem_alloc(sizeof(*marker), KM_SLEEP); 2124 marker->p_flag = PK_MARKER; 2125 2126 mutex_enter(&proc_lock); 2127 /* 2128 * Start with zombies to prevent reporting processes twice, in case they 2129 * are dying and being moved from the list of alive processes to zombies. 2130 */ 2131 mmmbrains = true; 2132 for (p = LIST_FIRST(&zombproc);; p = next) { 2133 if (p == NULL) { 2134 if (mmmbrains) { 2135 p = LIST_FIRST(&allproc); 2136 mmmbrains = false; 2137 } 2138 if (p == NULL) 2139 break; 2140 } 2141 next = LIST_NEXT(p, p_list); 2142 if ((p->p_flag & PK_MARKER) != 0) 2143 continue; 2144 2145 /* 2146 * Skip embryonic processes. 2147 */ 2148 if (p->p_stat == SIDL) 2149 continue; 2150 2151 mutex_enter(p->p_lock); 2152 error = kauth_authorize_process(l->l_cred, 2153 KAUTH_PROCESS_CANSEE, p, 2154 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL); 2155 if (error != 0) { 2156 mutex_exit(p->p_lock); 2157 continue; 2158 } 2159 2160 /* 2161 * Hande all the operations in one switch on the cost of 2162 * algorithm complexity is on purpose. The win splitting this 2163 * function into several similar copies makes maintenance 2164 * burden, code grow and boost is negligible in practical 2165 * systems. 2166 */ 2167 switch (op) { 2168 case KERN_PROC_PID: 2169 match = (p->p_pid == (pid_t)arg); 2170 break; 2171 2172 case KERN_PROC_PGRP: 2173 match = (p->p_pgrp->pg_id == (pid_t)arg); 2174 break; 2175 2176 case KERN_PROC_SESSION: 2177 match = (p->p_session->s_sid == (pid_t)arg); 2178 break; 2179 2180 case KERN_PROC_TTY: 2181 match = true; 2182 if (arg == (int) KERN_PROC_TTY_REVOKE) { 2183 if ((p->p_lflag & PL_CONTROLT) == 0 || 2184 p->p_session->s_ttyp == NULL || 2185 p->p_session->s_ttyvp != NULL) { 2186 match = false; 2187 } 2188 } else if ((p->p_lflag & PL_CONTROLT) == 0 || 2189 p->p_session->s_ttyp == NULL) { 2190 if ((dev_t)arg != KERN_PROC_TTY_NODEV) { 2191 match = false; 2192 } 2193 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { 2194 match = false; 2195 } 2196 break; 2197 2198 case KERN_PROC_UID: 2199 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); 2200 break; 2201 2202 case KERN_PROC_RUID: 2203 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); 2204 break; 2205 2206 case KERN_PROC_GID: 2207 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); 2208 break; 2209 2210 case KERN_PROC_RGID: 2211 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); 2212 break; 2213 2214 case KERN_PROC_ALL: 2215 match = true; 2216 /* allow everything */ 2217 break; 2218 2219 default: 2220 error = SET_ERROR(EINVAL); 2221 mutex_exit(p->p_lock); 2222 goto cleanup; 2223 } 2224 if (!match) { 2225 mutex_exit(p->p_lock); 2226 continue; 2227 } 2228 2229 /* 2230 * Grab a hold on the process. 2231 */ 2232 if (mmmbrains) { 2233 zombie = true; 2234 } else { 2235 zombie = !rw_tryenter(&p->p_reflock, RW_READER); 2236 } 2237 if (zombie) { 2238 LIST_INSERT_AFTER(p, marker, p_list); 2239 } 2240 2241 if (buflen >= elem_size && 2242 (type == KERN_PROC || elem_count > 0)) { 2243 ruspace(p); /* Update process vm resource use */ 2244 2245 if (type == KERN_PROC) { 2246 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr); 2247 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie, 2248 allowaddr); 2249 } else { 2250 fill_kproc2(p, &kbuf->kproc2, zombie, 2251 allowaddr); 2252 elem_count--; 2253 } 2254 mutex_exit(p->p_lock); 2255 mutex_exit(&proc_lock); 2256 /* 2257 * Copy out elem_size, but not larger than kelem_size 2258 */ 2259 error = sysctl_copyout(l, kbuf, dp, 2260 uimin(kelem_size, elem_size)); 2261 mutex_enter(&proc_lock); 2262 if (error) { 2263 goto bah; 2264 } 2265 dp += elem_size; 2266 buflen -= elem_size; 2267 } else { 2268 mutex_exit(p->p_lock); 2269 } 2270 needed += elem_size; 2271 2272 /* 2273 * Release reference to process. 2274 */ 2275 if (zombie) { 2276 next = LIST_NEXT(marker, p_list); 2277 LIST_REMOVE(marker, p_list); 2278 } else { 2279 rw_exit(&p->p_reflock); 2280 next = LIST_NEXT(p, p_list); 2281 } 2282 2283 /* 2284 * Short-circuit break quickly! 2285 */ 2286 if (op == KERN_PROC_PID) 2287 break; 2288 } 2289 mutex_exit(&proc_lock); 2290 2291 if (where != NULL) { 2292 *oldlenp = dp - where; 2293 if (needed > *oldlenp) { 2294 error = SET_ERROR(ENOMEM); 2295 goto out; 2296 } 2297 } else { 2298 needed += KERN_PROCSLOP; 2299 *oldlenp = needed; 2300 } 2301 kmem_free(kbuf, sizeof(*kbuf)); 2302 kmem_free(marker, sizeof(*marker)); 2303 sysctl_relock(); 2304 return 0; 2305 bah: 2306 if (zombie) 2307 LIST_REMOVE(marker, p_list); 2308 else 2309 rw_exit(&p->p_reflock); 2310 cleanup: 2311 mutex_exit(&proc_lock); 2312 out: 2313 kmem_free(kbuf, sizeof(*kbuf)); 2314 kmem_free(marker, sizeof(*marker)); 2315 sysctl_relock(); 2316 return error; 2317 } 2318 2319 int 2320 copyin_psstrings(struct proc *p, struct ps_strings *arginfo) 2321 { 2322 #if !defined(_RUMPKERNEL) 2323 int retval; 2324 2325 if (p->p_flag & PK_32) { 2326 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo), 2327 enosys(), retval); 2328 return retval; 2329 } 2330 #endif /* !defined(_RUMPKERNEL) */ 2331 2332 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); 2333 } 2334 2335 static int 2336 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) 2337 { 2338 void **cookie = cookie_; 2339 struct lwp *l = cookie[0]; 2340 char *dst = cookie[1]; 2341 2342 return sysctl_copyout(l, src, dst + off, len); 2343 } 2344 2345 /* 2346 * sysctl helper routine for kern.proc_args pseudo-subtree. 2347 */ 2348 static int 2349 sysctl_kern_proc_args(SYSCTLFN_ARGS) 2350 { 2351 struct ps_strings pss; 2352 struct proc *p; 2353 pid_t pid; 2354 int type, error; 2355 void *cookie[2]; 2356 2357 if (namelen == 1 && name[0] == CTL_QUERY) 2358 return (sysctl_query(SYSCTLFN_CALL(rnode))); 2359 2360 if (newp != NULL || namelen != 2) 2361 return SET_ERROR(EINVAL); 2362 pid = name[0]; 2363 type = name[1]; 2364 2365 switch (type) { 2366 case KERN_PROC_PATHNAME: 2367 sysctl_unlock(); 2368 error = fill_pathname(l, pid, oldp, oldlenp); 2369 sysctl_relock(); 2370 return error; 2371 2372 case KERN_PROC_CWD: 2373 sysctl_unlock(); 2374 error = fill_cwd(l, pid, oldp, oldlenp); 2375 sysctl_relock(); 2376 return error; 2377 2378 case KERN_PROC_ARGV: 2379 case KERN_PROC_NARGV: 2380 case KERN_PROC_ENV: 2381 case KERN_PROC_NENV: 2382 /* ok */ 2383 break; 2384 default: 2385 return SET_ERROR(EINVAL); 2386 } 2387 2388 sysctl_unlock(); 2389 2390 /* check pid */ 2391 mutex_enter(&proc_lock); 2392 if ((p = proc_find(pid)) == NULL) { 2393 error = SET_ERROR(EINVAL); 2394 goto out_locked; 2395 } 2396 mutex_enter(p->p_lock); 2397 2398 /* Check permission. */ 2399 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) 2400 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 2401 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); 2402 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) 2403 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 2404 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); 2405 else 2406 error = SET_ERROR(EINVAL); /* XXXGCC */ 2407 if (error) { 2408 mutex_exit(p->p_lock); 2409 goto out_locked; 2410 } 2411 2412 if (oldp == NULL) { 2413 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) 2414 *oldlenp = sizeof (int); 2415 else 2416 *oldlenp = ARG_MAX; /* XXX XXX XXX */ 2417 error = 0; 2418 mutex_exit(p->p_lock); 2419 goto out_locked; 2420 } 2421 2422 /* 2423 * Zombies don't have a stack, so we can't read their psstrings. 2424 * System processes also don't have a user stack. 2425 */ 2426 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { 2427 error = SET_ERROR(EINVAL); 2428 mutex_exit(p->p_lock); 2429 goto out_locked; 2430 } 2431 2432 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : SET_ERROR(EBUSY); 2433 mutex_exit(p->p_lock); 2434 if (error) { 2435 goto out_locked; 2436 } 2437 mutex_exit(&proc_lock); 2438 2439 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { 2440 int value; 2441 if ((error = copyin_psstrings(p, &pss)) == 0) { 2442 if (type == KERN_PROC_NARGV) 2443 value = pss.ps_nargvstr; 2444 else 2445 value = pss.ps_nenvstr; 2446 error = sysctl_copyout(l, &value, oldp, sizeof(value)); 2447 *oldlenp = sizeof(value); 2448 } 2449 } else { 2450 cookie[0] = l; 2451 cookie[1] = oldp; 2452 error = copy_procargs(p, type, oldlenp, 2453 copy_procargs_sysctl_cb, cookie); 2454 } 2455 rw_exit(&p->p_reflock); 2456 sysctl_relock(); 2457 return error; 2458 2459 out_locked: 2460 mutex_exit(&proc_lock); 2461 sysctl_relock(); 2462 return error; 2463 } 2464 2465 int 2466 copy_procargs(struct proc *p, int oid, size_t *limit, 2467 int (*cb)(void *, const void *, size_t, size_t), void *cookie) 2468 { 2469 struct ps_strings pss; 2470 size_t len, i, loaded, entry_len; 2471 struct uio auio; 2472 struct iovec aiov; 2473 int error, argvlen; 2474 char *arg; 2475 char **argv; 2476 vaddr_t user_argv; 2477 struct vmspace *vmspace; 2478 2479 /* 2480 * Allocate a temporary buffer to hold the argument vector and 2481 * the arguments themselve. 2482 */ 2483 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2484 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2485 2486 /* 2487 * Lock the process down in memory. 2488 */ 2489 vmspace = p->p_vmspace; 2490 uvmspace_addref(vmspace); 2491 2492 /* 2493 * Read in the ps_strings structure. 2494 */ 2495 if ((error = copyin_psstrings(p, &pss)) != 0) 2496 goto done; 2497 2498 /* 2499 * Now read the address of the argument vector. 2500 */ 2501 switch (oid) { 2502 case KERN_PROC_ARGV: 2503 user_argv = (uintptr_t)pss.ps_argvstr; 2504 argvlen = pss.ps_nargvstr; 2505 break; 2506 case KERN_PROC_ENV: 2507 user_argv = (uintptr_t)pss.ps_envstr; 2508 argvlen = pss.ps_nenvstr; 2509 break; 2510 default: 2511 error = SET_ERROR(EINVAL); 2512 goto done; 2513 } 2514 2515 if (argvlen < 0) { 2516 error = SET_ERROR(EIO); 2517 goto done; 2518 } 2519 2520 2521 /* 2522 * Now copy each string. 2523 */ 2524 len = 0; /* bytes written to user buffer */ 2525 loaded = 0; /* bytes from argv already processed */ 2526 i = 0; /* To make compiler happy */ 2527 entry_len = PROC_PTRSZ(p); 2528 2529 for (; argvlen; --argvlen) { 2530 int finished = 0; 2531 vaddr_t base; 2532 size_t xlen; 2533 int j; 2534 2535 if (loaded == 0) { 2536 size_t rem = entry_len * argvlen; 2537 loaded = MIN(rem, PAGE_SIZE); 2538 error = copyin_vmspace(vmspace, 2539 (const void *)user_argv, argv, loaded); 2540 if (error) 2541 break; 2542 user_argv += loaded; 2543 i = 0; 2544 } 2545 2546 #if !defined(_RUMPKERNEL) 2547 if (p->p_flag & PK_32) 2548 MODULE_HOOK_CALL(kern_proc32_base_hook, 2549 (argv, i++), 0, base); 2550 else 2551 #endif /* !defined(_RUMPKERNEL) */ 2552 base = (vaddr_t)argv[i++]; 2553 loaded -= entry_len; 2554 2555 /* 2556 * The program has messed around with its arguments, 2557 * possibly deleting some, and replacing them with 2558 * NULL's. Treat this as the last argument and not 2559 * a failure. 2560 */ 2561 if (base == 0) 2562 break; 2563 2564 while (!finished) { 2565 xlen = PAGE_SIZE - (base & PAGE_MASK); 2566 2567 aiov.iov_base = arg; 2568 aiov.iov_len = PAGE_SIZE; 2569 auio.uio_iov = &aiov; 2570 auio.uio_iovcnt = 1; 2571 auio.uio_offset = base; 2572 auio.uio_resid = xlen; 2573 auio.uio_rw = UIO_READ; 2574 UIO_SETUP_SYSSPACE(&auio); 2575 error = uvm_io(&vmspace->vm_map, &auio, 0); 2576 if (error) 2577 goto done; 2578 2579 /* Look for the end of the string */ 2580 for (j = 0; j < xlen; j++) { 2581 if (arg[j] == '\0') { 2582 xlen = j + 1; 2583 finished = 1; 2584 break; 2585 } 2586 } 2587 2588 /* Check for user buffer overflow */ 2589 if (len + xlen > *limit) { 2590 finished = 1; 2591 if (len > *limit) 2592 xlen = 0; 2593 else 2594 xlen = *limit - len; 2595 } 2596 2597 /* Copyout the page */ 2598 error = (*cb)(cookie, arg, len, xlen); 2599 if (error) 2600 goto done; 2601 2602 len += xlen; 2603 base += xlen; 2604 } 2605 } 2606 *limit = len; 2607 2608 done: 2609 kmem_free(argv, PAGE_SIZE); 2610 kmem_free(arg, PAGE_SIZE); 2611 uvmspace_free(vmspace); 2612 return error; 2613 } 2614 2615 /* 2616 * Fill in a proc structure for the specified process. 2617 */ 2618 static void 2619 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr) 2620 { 2621 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr); 2622 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock)); 2623 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr); 2624 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex)); 2625 memset(&p->p_reflock, 0, sizeof(p->p_reflock)); 2626 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr); 2627 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr); 2628 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr); 2629 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr); 2630 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr); 2631 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr); 2632 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr); 2633 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr); 2634 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr); 2635 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr); 2636 p->p_mqueue_cnt = psrc->p_mqueue_cnt; 2637 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref)); 2638 p->p_exitsig = psrc->p_exitsig; 2639 p->p_flag = psrc->p_flag; 2640 p->p_sflag = psrc->p_sflag; 2641 p->p_slflag = psrc->p_slflag; 2642 p->p_lflag = psrc->p_lflag; 2643 p->p_stflag = psrc->p_stflag; 2644 p->p_stat = psrc->p_stat; 2645 p->p_trace_enabled = psrc->p_trace_enabled; 2646 p->p_pid = psrc->p_pid; 2647 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr); 2648 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr); 2649 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr); 2650 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr); 2651 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr); 2652 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr); 2653 p->p_nlwps = psrc->p_nlwps; 2654 p->p_nzlwps = psrc->p_nzlwps; 2655 p->p_nrlwps = psrc->p_nrlwps; 2656 p->p_nlwpwait = psrc->p_nlwpwait; 2657 p->p_ndlwps = psrc->p_ndlwps; 2658 p->p_nstopchild = psrc->p_nstopchild; 2659 p->p_waited = psrc->p_waited; 2660 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr); 2661 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr); 2662 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr); 2663 p->p_estcpu = psrc->p_estcpu; 2664 p->p_estcpu_inherited = psrc->p_estcpu_inherited; 2665 p->p_forktime = psrc->p_forktime; 2666 p->p_pctcpu = psrc->p_pctcpu; 2667 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr); 2668 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr); 2669 p->p_rtime = psrc->p_rtime; 2670 p->p_uticks = psrc->p_uticks; 2671 p->p_sticks = psrc->p_sticks; 2672 p->p_iticks = psrc->p_iticks; 2673 p->p_xutime = psrc->p_xutime; 2674 p->p_xstime = psrc->p_xstime; 2675 p->p_traceflag = psrc->p_traceflag; 2676 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr); 2677 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr); 2678 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr); 2679 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr); 2680 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr); 2681 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr); 2682 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr); 2683 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info, 2684 allowaddr); 2685 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set; 2686 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr); 2687 p->p_ppid = psrc->p_ppid; 2688 p->p_oppid = psrc->p_oppid; 2689 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr); 2690 p->p_sigctx = psrc->p_sigctx; 2691 p->p_nice = psrc->p_nice; 2692 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm)); 2693 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr); 2694 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr); 2695 p->p_pax = psrc->p_pax; 2696 p->p_xexit = psrc->p_xexit; 2697 p->p_xsig = psrc->p_xsig; 2698 p->p_acflag = psrc->p_acflag; 2699 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr); 2700 p->p_stackbase = psrc->p_stackbase; 2701 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr); 2702 } 2703 2704 /* 2705 * Fill in an eproc structure for the specified process. 2706 */ 2707 void 2708 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr) 2709 { 2710 struct tty *tp; 2711 struct lwp *l; 2712 2713 KASSERT(mutex_owned(&proc_lock)); 2714 KASSERT(mutex_owned(p->p_lock)); 2715 2716 COND_SET_PTR(ep->e_paddr, p, allowaddr); 2717 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr); 2718 if (p->p_cred) { 2719 kauth_cred_topcred(p->p_cred, &ep->e_pcred); 2720 kauth_cred_toucred(p->p_cred, &ep->e_ucred); 2721 } 2722 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2723 struct vmspace *vm = p->p_vmspace; 2724 2725 ep->e_vm.vm_rssize = vm_resident_count(vm); 2726 ep->e_vm.vm_tsize = vm->vm_tsize; 2727 ep->e_vm.vm_dsize = vm->vm_dsize; 2728 ep->e_vm.vm_ssize = vm->vm_ssize; 2729 ep->e_vm.vm_map.size = vm->vm_map.size; 2730 2731 /* Pick the primary (first) LWP */ 2732 l = proc_active_lwp(p); 2733 KASSERT(l != NULL); 2734 lwp_lock(l); 2735 if (l->l_wchan) 2736 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); 2737 lwp_unlock(l); 2738 } 2739 ep->e_ppid = p->p_ppid; 2740 if (p->p_pgrp && p->p_session) { 2741 ep->e_pgid = p->p_pgrp->pg_id; 2742 ep->e_jobc = p->p_pgrp->pg_jobc; 2743 ep->e_sid = p->p_session->s_sid; 2744 if ((p->p_lflag & PL_CONTROLT) && 2745 (tp = p->p_session->s_ttyp)) { 2746 ep->e_tdev = tp->t_dev; 2747 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2748 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr); 2749 } else 2750 ep->e_tdev = (uint32_t)NODEV; 2751 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0; 2752 if (SESS_LEADER(p)) 2753 ep->e_flag |= EPROC_SLEADER; 2754 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME); 2755 } 2756 ep->e_xsize = ep->e_xrssize = 0; 2757 ep->e_xccount = ep->e_xswrss = 0; 2758 } 2759 2760 /* 2761 * Fill in a kinfo_proc2 structure for the specified process. 2762 */ 2763 void 2764 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr) 2765 { 2766 struct tty *tp; 2767 struct lwp *l; 2768 struct timeval ut, st, rt; 2769 sigset_t ss1, ss2; 2770 struct rusage ru; 2771 struct vmspace *vm; 2772 2773 KASSERT(mutex_owned(&proc_lock)); 2774 KASSERT(mutex_owned(p->p_lock)); 2775 2776 sigemptyset(&ss1); 2777 sigemptyset(&ss2); 2778 2779 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr); 2780 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr); 2781 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr); 2782 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr); 2783 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr); 2784 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr); 2785 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr); 2786 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr); 2787 ki->p_tsess = 0; /* may be changed if controlling tty below */ 2788 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr); 2789 ki->p_eflag = 0; 2790 ki->p_exitsig = p->p_exitsig; 2791 ki->p_flag = L_INMEM; /* Process never swapped out */ 2792 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); 2793 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); 2794 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); 2795 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); 2796 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); 2797 ki->p_pid = p->p_pid; 2798 ki->p_ppid = p->p_ppid; 2799 ki->p_uid = kauth_cred_geteuid(p->p_cred); 2800 ki->p_ruid = kauth_cred_getuid(p->p_cred); 2801 ki->p_gid = kauth_cred_getegid(p->p_cred); 2802 ki->p_rgid = kauth_cred_getgid(p->p_cred); 2803 ki->p_svuid = kauth_cred_getsvuid(p->p_cred); 2804 ki->p_svgid = kauth_cred_getsvgid(p->p_cred); 2805 ki->p_ngroups = kauth_cred_ngroups(p->p_cred); 2806 kauth_cred_getgroups(p->p_cred, ki->p_groups, 2807 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), 2808 UIO_SYSSPACE); 2809 2810 ki->p_uticks = p->p_uticks; 2811 ki->p_sticks = p->p_sticks; 2812 ki->p_iticks = p->p_iticks; 2813 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ 2814 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr); 2815 ki->p_traceflag = p->p_traceflag; 2816 2817 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); 2818 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 2819 2820 ki->p_cpticks = 0; 2821 ki->p_pctcpu = p->p_pctcpu; 2822 ki->p_estcpu = 0; 2823 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ 2824 ki->p_realstat = p->p_stat; 2825 ki->p_nice = p->p_nice; 2826 ki->p_xstat = P_WAITSTATUS(p); 2827 ki->p_acflag = p->p_acflag; 2828 2829 strncpy(ki->p_comm, p->p_comm, 2830 uimin(sizeof(ki->p_comm), sizeof(p->p_comm))); 2831 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); 2832 2833 ki->p_nlwps = p->p_nlwps; 2834 ki->p_realflag = ki->p_flag; 2835 2836 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2837 vm = p->p_vmspace; 2838 ki->p_vm_rssize = vm_resident_count(vm); 2839 ki->p_vm_tsize = vm->vm_tsize; 2840 ki->p_vm_dsize = vm->vm_dsize; 2841 ki->p_vm_ssize = vm->vm_ssize; 2842 ki->p_vm_vsize = atop(vm->vm_map.size); 2843 /* 2844 * Since the stack is initially mapped mostly with 2845 * PROT_NONE and grown as needed, adjust the "mapped size" 2846 * to skip the unused stack portion. 2847 */ 2848 ki->p_vm_msize = 2849 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; 2850 2851 /* Pick the primary (first) LWP */ 2852 l = proc_active_lwp(p); 2853 KASSERT(l != NULL); 2854 lwp_lock(l); 2855 ki->p_nrlwps = p->p_nrlwps; 2856 ki->p_forw = 0; 2857 ki->p_back = 0; 2858 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr); 2859 ki->p_stat = l->l_stat; 2860 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); 2861 ki->p_swtime = l->l_swtime; 2862 ki->p_slptime = l->l_slptime; 2863 if (l->l_stat == LSONPROC) 2864 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; 2865 else 2866 ki->p_schedflags = 0; 2867 ki->p_priority = lwp_eprio(l); 2868 ki->p_usrpri = l->l_priority; 2869 if (l->l_wchan) 2870 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); 2871 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr); 2872 ki->p_cpuid = cpu_index(l->l_cpu); 2873 lwp_unlock(l); 2874 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2875 /* This is hardly correct, but... */ 2876 sigplusset(&l->l_sigpend.sp_set, &ss1); 2877 sigplusset(&l->l_sigmask, &ss2); 2878 ki->p_cpticks += l->l_cpticks; 2879 ki->p_pctcpu += l->l_pctcpu; 2880 ki->p_estcpu += l->l_estcpu; 2881 } 2882 } 2883 sigplusset(&p->p_sigpend.sp_set, &ss1); 2884 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); 2885 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); 2886 2887 if (p->p_session != NULL) { 2888 ki->p_sid = p->p_session->s_sid; 2889 ki->p__pgid = p->p_pgrp->pg_id; 2890 if (p->p_session->s_ttyvp) 2891 ki->p_eflag |= EPROC_CTTY; 2892 if (SESS_LEADER(p)) 2893 ki->p_eflag |= EPROC_SLEADER; 2894 strncpy(ki->p_login, p->p_session->s_login, 2895 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); 2896 ki->p_jobc = p->p_pgrp->pg_jobc; 2897 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { 2898 ki->p_tdev = tp->t_dev; 2899 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2900 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session), 2901 allowaddr); 2902 } else { 2903 ki->p_tdev = (int32_t)NODEV; 2904 } 2905 } 2906 2907 if (!P_ZOMBIE(p) && !zombie) { 2908 ki->p_uvalid = 1; 2909 ki->p_ustart_sec = p->p_stats->p_start.tv_sec; 2910 ki->p_ustart_usec = p->p_stats->p_start.tv_usec; 2911 2912 calcru(p, &ut, &st, NULL, &rt); 2913 ki->p_rtime_sec = rt.tv_sec; 2914 ki->p_rtime_usec = rt.tv_usec; 2915 ki->p_uutime_sec = ut.tv_sec; 2916 ki->p_uutime_usec = ut.tv_usec; 2917 ki->p_ustime_sec = st.tv_sec; 2918 ki->p_ustime_usec = st.tv_usec; 2919 2920 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 2921 rulwps(p, &ru); 2922 ki->p_uru_nvcsw = ru.ru_nvcsw; 2923 ki->p_uru_nivcsw = ru.ru_nivcsw; 2924 ki->p_uru_maxrss = ru.ru_maxrss; 2925 ki->p_uru_ixrss = ru.ru_ixrss; 2926 ki->p_uru_idrss = ru.ru_idrss; 2927 ki->p_uru_isrss = ru.ru_isrss; 2928 ki->p_uru_minflt = ru.ru_minflt; 2929 ki->p_uru_majflt = ru.ru_majflt; 2930 ki->p_uru_nswap = ru.ru_nswap; 2931 ki->p_uru_inblock = ru.ru_inblock; 2932 ki->p_uru_oublock = ru.ru_oublock; 2933 ki->p_uru_msgsnd = ru.ru_msgsnd; 2934 ki->p_uru_msgrcv = ru.ru_msgrcv; 2935 ki->p_uru_nsignals = ru.ru_nsignals; 2936 2937 timeradd(&p->p_stats->p_cru.ru_utime, 2938 &p->p_stats->p_cru.ru_stime, &ut); 2939 ki->p_uctime_sec = ut.tv_sec; 2940 ki->p_uctime_usec = ut.tv_usec; 2941 } 2942 } 2943 2944 2945 int 2946 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid) 2947 { 2948 int error; 2949 2950 mutex_enter(&proc_lock); 2951 if (pid == -1) 2952 *p = l->l_proc; 2953 else 2954 *p = proc_find(pid); 2955 2956 if (*p == NULL) { 2957 if (pid != -1) 2958 mutex_exit(&proc_lock); 2959 return SET_ERROR(ESRCH); 2960 } 2961 if (pid != -1) 2962 mutex_enter((*p)->p_lock); 2963 mutex_exit(&proc_lock); 2964 2965 error = kauth_authorize_process(l->l_cred, 2966 KAUTH_PROCESS_CANSEE, *p, 2967 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 2968 if (error) { 2969 if (pid != -1) 2970 mutex_exit((*p)->p_lock); 2971 } 2972 return error; 2973 } 2974 2975 static int 2976 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 2977 { 2978 int error; 2979 struct proc *p; 2980 2981 if ((error = proc_find_locked(l, &p, pid)) != 0) 2982 return error; 2983 2984 if (p->p_path == NULL) { 2985 if (pid != -1) 2986 mutex_exit(p->p_lock); 2987 return SET_ERROR(ENOENT); 2988 } 2989 2990 size_t len = strlen(p->p_path) + 1; 2991 if (oldp != NULL) { 2992 size_t copylen = uimin(len, *oldlenp); 2993 error = sysctl_copyout(l, p->p_path, oldp, copylen); 2994 if (error == 0 && *oldlenp < len) 2995 error = SET_ERROR(ENOSPC); 2996 } 2997 *oldlenp = len; 2998 if (pid != -1) 2999 mutex_exit(p->p_lock); 3000 return error; 3001 } 3002 3003 static int 3004 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 3005 { 3006 int error; 3007 struct proc *p; 3008 char *path; 3009 char *bp, *bend; 3010 struct cwdinfo *cwdi; 3011 struct vnode *vp; 3012 size_t len, lenused; 3013 3014 if ((error = proc_find_locked(l, &p, pid)) != 0) 3015 return error; 3016 3017 len = MAXPATHLEN * 4; 3018 3019 path = kmem_alloc(len, KM_SLEEP); 3020 3021 bp = &path[len]; 3022 bend = bp; 3023 *(--bp) = '\0'; 3024 3025 cwdi = p->p_cwdi; 3026 rw_enter(&cwdi->cwdi_lock, RW_READER); 3027 vp = cwdi->cwdi_cdir; 3028 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l); 3029 rw_exit(&cwdi->cwdi_lock); 3030 3031 if (error) 3032 goto out; 3033 3034 lenused = bend - bp; 3035 3036 if (oldp != NULL) { 3037 size_t copylen = uimin(lenused, *oldlenp); 3038 error = sysctl_copyout(l, bp, oldp, copylen); 3039 if (error == 0 && *oldlenp < lenused) 3040 error = SET_ERROR(ENOSPC); 3041 } 3042 *oldlenp = lenused; 3043 out: 3044 if (pid != -1) 3045 mutex_exit(p->p_lock); 3046 kmem_free(path, len); 3047 return error; 3048 } 3049 3050 int 3051 proc_getauxv(struct proc *p, void **buf, size_t *len) 3052 { 3053 struct ps_strings pss; 3054 int error; 3055 void *uauxv, *kauxv; 3056 size_t size; 3057 3058 if ((error = copyin_psstrings(p, &pss)) != 0) 3059 return error; 3060 if (pss.ps_envstr == NULL) 3061 return SET_ERROR(EIO); 3062 3063 size = p->p_execsw->es_arglen; 3064 if (size == 0) 3065 return SET_ERROR(EIO); 3066 3067 size_t ptrsz = PROC_PTRSZ(p); 3068 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz); 3069 3070 kauxv = kmem_alloc(size, KM_SLEEP); 3071 3072 error = copyin_proc(p, uauxv, kauxv, size); 3073 if (error) { 3074 kmem_free(kauxv, size); 3075 return error; 3076 } 3077 3078 *buf = kauxv; 3079 *len = size; 3080 3081 return 0; 3082 } 3083 3084 3085 static int 3086 sysctl_security_expose_address(SYSCTLFN_ARGS) 3087 { 3088 int expose_address, error; 3089 struct sysctlnode node; 3090 3091 node = *rnode; 3092 node.sysctl_data = &expose_address; 3093 expose_address = *(int *)rnode->sysctl_data; 3094 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3095 if (error || newp == NULL) 3096 return error; 3097 3098 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR, 3099 0, NULL, NULL, NULL)) 3100 return SET_ERROR(EPERM); 3101 3102 switch (expose_address) { 3103 case 0: 3104 case 1: 3105 case 2: 3106 break; 3107 default: 3108 return SET_ERROR(EINVAL); 3109 } 3110 3111 *(int *)rnode->sysctl_data = expose_address; 3112 3113 return 0; 3114 } 3115 3116 bool 3117 get_expose_address(struct proc *p) 3118 { 3119 /* allow only if sysctl variable is set or privileged */ 3120 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE, 3121 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0; 3122 } 3123