Home | History | Annotate | Line # | Download | only in zlib
      1 /*	$NetBSD: deflate.c,v 1.7 2024/09/22 19:12:27 christos Exp $	*/
      2 
      3 /* deflate.c -- compress data using the deflation algorithm
      4  * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
      5  * For conditions of distribution and use, see copyright notice in zlib.h
      6  */
      7 
      8 /*
      9  *  ALGORITHM
     10  *
     11  *      The "deflation" process depends on being able to identify portions
     12  *      of the input text which are identical to earlier input (within a
     13  *      sliding window trailing behind the input currently being processed).
     14  *
     15  *      The most straightforward technique turns out to be the fastest for
     16  *      most input files: try all possible matches and select the longest.
     17  *      The key feature of this algorithm is that insertions into the string
     18  *      dictionary are very simple and thus fast, and deletions are avoided
     19  *      completely. Insertions are performed at each input character, whereas
     20  *      string matches are performed only when the previous match ends. So it
     21  *      is preferable to spend more time in matches to allow very fast string
     22  *      insertions and avoid deletions. The matching algorithm for small
     23  *      strings is inspired from that of Rabin & Karp. A brute force approach
     24  *      is used to find longer strings when a small match has been found.
     25  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
     26  *      (by Leonid Broukhis).
     27  *         A previous version of this file used a more sophisticated algorithm
     28  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
     29  *      time, but has a larger average cost, uses more memory and is patented.
     30  *      However the F&G algorithm may be faster for some highly redundant
     31  *      files if the parameter max_chain_length (described below) is too large.
     32  *
     33  *  ACKNOWLEDGEMENTS
     34  *
     35  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
     36  *      I found it in 'freeze' written by Leonid Broukhis.
     37  *      Thanks to many people for bug reports and testing.
     38  *
     39  *  REFERENCES
     40  *
     41  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
     42  *      Available in http://tools.ietf.org/html/rfc1951
     43  *
     44  *      A description of the Rabin and Karp algorithm is given in the book
     45  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
     46  *
     47  *      Fiala,E.R., and Greene,D.H.
     48  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
     49  *
     50  */
     51 
     52 /* @(#) Id */
     53 
     54 #include "deflate.h"
     55 
     56 const char deflate_copyright[] =
     57    " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
     58 /*
     59   If you use the zlib library in a product, an acknowledgment is welcome
     60   in the documentation of your product. If for some reason you cannot
     61   include such an acknowledgment, I would appreciate that you keep this
     62   copyright string in the executable of your product.
     63  */
     64 
     65 typedef enum {
     66     need_more,      /* block not completed, need more input or more output */
     67     block_done,     /* block flush performed */
     68     finish_started, /* finish started, need only more output at next deflate */
     69     finish_done     /* finish done, accept no more input or output */
     70 } block_state;
     71 
     72 typedef block_state (*compress_func)(deflate_state *s, int flush);
     73 /* Compression function. Returns the block state after the call. */
     74 
     75 local block_state deflate_stored(deflate_state *s, int flush);
     76 local block_state deflate_fast(deflate_state *s, int flush);
     77 #ifndef FASTEST
     78 local block_state deflate_slow(deflate_state *s, int flush);
     79 #endif
     80 local block_state deflate_rle(deflate_state *s, int flush);
     81 local block_state deflate_huff(deflate_state *s, int flush);
     82 
     83 /* ===========================================================================
     84  * Local data
     85  */
     86 
     87 #define NIL 0
     88 /* Tail of hash chains */
     89 
     90 #ifndef TOO_FAR
     91 #  define TOO_FAR 4096
     92 #endif
     93 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
     94 
     95 /* Values for max_lazy_match, good_match and max_chain_length, depending on
     96  * the desired pack level (0..9). The values given below have been tuned to
     97  * exclude worst case performance for pathological files. Better values may be
     98  * found for specific files.
     99  */
    100 typedef struct config_s {
    101    ush good_length; /* reduce lazy search above this match length */
    102    ush max_lazy;    /* do not perform lazy search above this match length */
    103    ush nice_length; /* quit search above this match length */
    104    ush max_chain;
    105    compress_func func;
    106 } config;
    107 
    108 #ifdef FASTEST
    109 local const config configuration_table[2] = {
    110 /*      good lazy nice chain */
    111 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    112 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
    113 #else
    114 local const config configuration_table[10] = {
    115 /*      good lazy nice chain */
    116 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    117 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
    118 /* 2 */ {4,    5, 16,    8, deflate_fast},
    119 /* 3 */ {4,    6, 32,   32, deflate_fast},
    120 
    121 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
    122 /* 5 */ {8,   16, 32,   32, deflate_slow},
    123 /* 6 */ {8,   16, 128, 128, deflate_slow},
    124 /* 7 */ {8,   32, 128, 256, deflate_slow},
    125 /* 8 */ {32, 128, 258, 1024, deflate_slow},
    126 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
    127 #endif
    128 
    129 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
    130  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
    131  * meaning.
    132  */
    133 
    134 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
    135 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
    136 
    137 /* ===========================================================================
    138  * Update a hash value with the given input byte
    139  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
    140  *    characters, so that a running hash key can be computed from the previous
    141  *    key instead of complete recalculation each time.
    142  */
    143 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
    144 
    145 
    146 /* ===========================================================================
    147  * Insert string str in the dictionary and set match_head to the previous head
    148  * of the hash chain (the most recent string with same hash key). Return
    149  * the previous length of the hash chain.
    150  * If this file is compiled with -DFASTEST, the compression level is forced
    151  * to 1, and no hash chains are maintained.
    152  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
    153  *    characters and the first MIN_MATCH bytes of str are valid (except for
    154  *    the last MIN_MATCH-1 bytes of the input file).
    155  */
    156 #ifdef FASTEST
    157 #define INSERT_STRING(s, str, match_head) \
    158    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    159     match_head = s->head[s->ins_h], \
    160     s->head[s->ins_h] = (Pos)(str))
    161 #else
    162 #define INSERT_STRING(s, str, match_head) \
    163    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    164     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
    165     s->head[s->ins_h] = (Pos)(str))
    166 #endif
    167 
    168 /* ===========================================================================
    169  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
    170  * prev[] will be initialized on the fly.
    171  */
    172 #define CLEAR_HASH(s) \
    173     do { \
    174         s->head[s->hash_size - 1] = NIL; \
    175         zmemzero((Bytef *)s->head, \
    176                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
    177     } while (0)
    178 
    179 /* ===========================================================================
    180  * Slide the hash table when sliding the window down (could be avoided with 32
    181  * bit values at the expense of memory usage). We slide even when level == 0 to
    182  * keep the hash table consistent if we switch back to level > 0 later.
    183  */
    184 #if defined(__has_feature)
    185 #  if __has_feature(memory_sanitizer)
    186      __attribute__((no_sanitize("memory")))
    187 #  endif
    188 #endif
    189 local void slide_hash(deflate_state *s) {
    190     unsigned n, m;
    191     Posf *p;
    192     uInt wsize = s->w_size;
    193 
    194     n = s->hash_size;
    195     p = &s->head[n];
    196     do {
    197         m = *--p;
    198         *p = (Pos)(m >= wsize ? m - wsize : NIL);
    199     } while (--n);
    200     n = wsize;
    201 #ifndef FASTEST
    202     p = &s->prev[n];
    203     do {
    204         m = *--p;
    205         *p = (Pos)(m >= wsize ? m - wsize : NIL);
    206         /* If n is not on any hash chain, prev[n] is garbage but
    207          * its value will never be used.
    208          */
    209     } while (--n);
    210 #endif
    211 }
    212 
    213 /* ===========================================================================
    214  * Read a new buffer from the current input stream, update the adler32
    215  * and total number of bytes read.  All deflate() input goes through
    216  * this function so some applications may wish to modify it to avoid
    217  * allocating a large strm->next_in buffer and copying from it.
    218  * (See also flush_pending()).
    219  */
    220 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
    221     unsigned len = strm->avail_in;
    222 
    223     if (len > size) len = size;
    224     if (len == 0) return 0;
    225 
    226     strm->avail_in  -= len;
    227 
    228     zmemcpy(buf, strm->next_in, len);
    229     if (strm->state->wrap == 1) {
    230         strm->adler = adler32(strm->adler, buf, len);
    231     }
    232 #ifdef GZIP
    233     else if (strm->state->wrap == 2) {
    234         strm->adler = crc32(strm->adler, buf, len);
    235     }
    236 #endif
    237     strm->next_in  += len;
    238     strm->total_in += len;
    239 
    240     return len;
    241 }
    242 
    243 /* ===========================================================================
    244  * Fill the window when the lookahead becomes insufficient.
    245  * Updates strstart and lookahead.
    246  *
    247  * IN assertion: lookahead < MIN_LOOKAHEAD
    248  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
    249  *    At least one byte has been read, or avail_in == 0; reads are
    250  *    performed for at least two bytes (required for the zip translate_eol
    251  *    option -- not supported here).
    252  */
    253 local void fill_window(deflate_state *s) {
    254     unsigned n;
    255     unsigned more;    /* Amount of free space at the end of the window. */
    256     uInt wsize = s->w_size;
    257 
    258     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
    259 
    260     do {
    261         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
    262 
    263         /* Deal with !@#$% 64K limit: */
    264         if (sizeof(int) <= 2) {
    265             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
    266                 more = wsize;
    267 
    268             } else if (more == (unsigned)(-1)) {
    269                 /* Very unlikely, but possible on 16 bit machine if
    270                  * strstart == 0 && lookahead == 1 (input done a byte at time)
    271                  */
    272                 more--;
    273             }
    274         }
    275 
    276         /* If the window is almost full and there is insufficient lookahead,
    277          * move the upper half to the lower one to make room in the upper half.
    278          */
    279         if (s->strstart >= wsize + MAX_DIST(s)) {
    280 
    281             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
    282             s->match_start -= wsize;
    283             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
    284             s->block_start -= (long) wsize;
    285             if (s->insert > s->strstart)
    286                 s->insert = s->strstart;
    287             slide_hash(s);
    288             more += wsize;
    289         }
    290         if (s->strm->avail_in == 0) break;
    291 
    292         /* If there was no sliding:
    293          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
    294          *    more == window_size - lookahead - strstart
    295          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
    296          * => more >= window_size - 2*WSIZE + 2
    297          * In the BIG_MEM or MMAP case (not yet supported),
    298          *   window_size == input_size + MIN_LOOKAHEAD  &&
    299          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
    300          * Otherwise, window_size == 2*WSIZE so more >= 2.
    301          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
    302          */
    303         Assert(more >= 2, "more < 2");
    304 
    305         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
    306         s->lookahead += n;
    307 
    308         /* Initialize the hash value now that we have some input: */
    309         if (s->lookahead + s->insert >= MIN_MATCH) {
    310             uInt str = s->strstart - s->insert;
    311             s->ins_h = s->window[str];
    312             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
    313 #if MIN_MATCH != 3
    314             Call UPDATE_HASH() MIN_MATCH-3 more times
    315 #endif
    316             while (s->insert) {
    317                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
    318 #ifndef FASTEST
    319                 s->prev[str & s->w_mask] = s->head[s->ins_h];
    320 #endif
    321                 s->head[s->ins_h] = (Pos)str;
    322                 str++;
    323                 s->insert--;
    324                 if (s->lookahead + s->insert < MIN_MATCH)
    325                     break;
    326             }
    327         }
    328         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
    329          * but this is not important since only literal bytes will be emitted.
    330          */
    331 
    332     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
    333 
    334     /* If the WIN_INIT bytes after the end of the current data have never been
    335      * written, then zero those bytes in order to avoid memory check reports of
    336      * the use of uninitialized (or uninitialised as Julian writes) bytes by
    337      * the longest match routines.  Update the high water mark for the next
    338      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
    339      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
    340      */
    341     if (s->high_water < s->window_size) {
    342         ulg curr = s->strstart + (ulg)(s->lookahead);
    343         ulg init;
    344 
    345         if (s->high_water < curr) {
    346             /* Previous high water mark below current data -- zero WIN_INIT
    347              * bytes or up to end of window, whichever is less.
    348              */
    349             init = s->window_size - curr;
    350             if (init > WIN_INIT)
    351                 init = WIN_INIT;
    352             zmemzero(s->window + curr, (unsigned)init);
    353             s->high_water = curr + init;
    354         }
    355         else if (s->high_water < (ulg)curr + WIN_INIT) {
    356             /* High water mark at or above current data, but below current data
    357              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
    358              * to end of window, whichever is less.
    359              */
    360             init = (ulg)curr + WIN_INIT - s->high_water;
    361             if (init > s->window_size - s->high_water)
    362                 init = s->window_size - s->high_water;
    363             zmemzero(s->window + s->high_water, (unsigned)init);
    364             s->high_water += init;
    365         }
    366     }
    367 
    368     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
    369            "not enough room for search");
    370 }
    371 
    372 /* ========================================================================= */
    373 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
    374                          int stream_size) {
    375     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
    376                          Z_DEFAULT_STRATEGY, version, stream_size);
    377     /* To do: ignore strm->next_in if we use it as window */
    378 }
    379 
    380 /* ========================================================================= */
    381 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
    382                           int windowBits, int memLevel, int strategy,
    383                           const char *version, int stream_size) {
    384     deflate_state *s;
    385     int wrap = 1;
    386     static const char my_version[] = ZLIB_VERSION;
    387 
    388     if (version == Z_NULL || version[0] != my_version[0] ||
    389         stream_size != sizeof(z_stream)) {
    390         return Z_VERSION_ERROR;
    391     }
    392     if (strm == Z_NULL) return Z_STREAM_ERROR;
    393 
    394     strm->msg = Z_NULL;
    395     if (strm->zalloc == (alloc_func)0) {
    396 #ifdef Z_SOLO
    397         return Z_STREAM_ERROR;
    398 #else
    399         strm->zalloc = zcalloc;
    400         strm->opaque = (voidpf)0;
    401 #endif
    402     }
    403     if (strm->zfree == (free_func)0)
    404 #ifdef Z_SOLO
    405         return Z_STREAM_ERROR;
    406 #else
    407         strm->zfree = zcfree;
    408 #endif
    409 
    410 #ifdef FASTEST
    411     if (level != 0) level = 1;
    412 #else
    413     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    414 #endif
    415 
    416     if (windowBits < 0) { /* suppress zlib wrapper */
    417         wrap = 0;
    418         if (windowBits < -15)
    419             return Z_STREAM_ERROR;
    420         windowBits = -windowBits;
    421     }
    422 #ifdef GZIP
    423     else if (windowBits > 15) {
    424         wrap = 2;       /* write gzip wrapper instead */
    425         windowBits -= 16;
    426     }
    427 #endif
    428     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    429         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
    430         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
    431         return Z_STREAM_ERROR;
    432     }
    433     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
    434     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    435     if (s == Z_NULL) return Z_MEM_ERROR;
    436     strm->state = (struct internal_state FAR *)s;
    437     s->strm = strm;
    438     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
    439 
    440     s->wrap = wrap;
    441     s->gzhead = Z_NULL;
    442     s->w_bits = (uInt)windowBits;
    443     s->w_size = 1 << s->w_bits;
    444     s->w_mask = s->w_size - 1;
    445 
    446     s->hash_bits = (uInt)memLevel + 7;
    447     s->hash_size = 1 << s->hash_bits;
    448     s->hash_mask = s->hash_size - 1;
    449     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
    450 
    451     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    452     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    453     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
    454 
    455     s->high_water = 0;      /* nothing written to s->window yet */
    456 
    457     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
    458 
    459     /* We overlay pending_buf and sym_buf. This works since the average size
    460      * for length/distance pairs over any compressed block is assured to be 31
    461      * bits or less.
    462      *
    463      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
    464      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
    465      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
    466      * possible fixed-codes length/distance pair is then 31 bits total.
    467      *
    468      * sym_buf starts one-fourth of the way into pending_buf. So there are
    469      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
    470      * in sym_buf is three bytes -- two for the distance and one for the
    471      * literal/length. As each symbol is consumed, the pointer to the next
    472      * sym_buf value to read moves forward three bytes. From that symbol, up to
    473      * 31 bits are written to pending_buf. The closest the written pending_buf
    474      * bits gets to the next sym_buf symbol to read is just before the last
    475      * code is written. At that time, 31*(n - 2) bits have been written, just
    476      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
    477      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
    478      * symbols are written.) The closest the writing gets to what is unread is
    479      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
    480      * can range from 128 to 32768.
    481      *
    482      * Therefore, at a minimum, there are 142 bits of space between what is
    483      * written and what is read in the overlain buffers, so the symbols cannot
    484      * be overwritten by the compressed data. That space is actually 139 bits,
    485      * due to the three-bit fixed-code block header.
    486      *
    487      * That covers the case where either Z_FIXED is specified, forcing fixed
    488      * codes, or when the use of fixed codes is chosen, because that choice
    489      * results in a smaller compressed block than dynamic codes. That latter
    490      * condition then assures that the above analysis also covers all dynamic
    491      * blocks. A dynamic-code block will only be chosen to be emitted if it has
    492      * fewer bits than a fixed-code block would for the same set of symbols.
    493      * Therefore its average symbol length is assured to be less than 31. So
    494      * the compressed data for a dynamic block also cannot overwrite the
    495      * symbols from which it is being constructed.
    496      */
    497 
    498     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
    499     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
    500 
    501     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    502         s->pending_buf == Z_NULL) {
    503         s->status = FINISH_STATE;
    504         strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR));
    505         deflateEnd (strm);
    506         return Z_MEM_ERROR;
    507     }
    508 #ifdef LIT_MEM
    509     s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
    510     s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
    511     s->sym_end = s->lit_bufsize - 1;
    512 #else
    513     s->sym_buf = s->pending_buf + s->lit_bufsize;
    514     s->sym_end = (s->lit_bufsize - 1) * 3;
    515 #endif
    516     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
    517      * on 16 bit machines and because stored blocks are restricted to
    518      * 64K-1 bytes.
    519      */
    520 
    521     s->level = level;
    522     s->strategy = strategy;
    523     s->method = (Byte)method;
    524 
    525     return deflateReset(strm);
    526 }
    527 
    528 /* =========================================================================
    529  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
    530  */
    531 local int deflateStateCheck(z_streamp strm) {
    532     deflate_state *s;
    533     if (strm == Z_NULL ||
    534         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
    535         return 1;
    536     s = strm->state;
    537     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
    538 #ifdef GZIP
    539                                            s->status != GZIP_STATE &&
    540 #endif
    541                                            s->status != EXTRA_STATE &&
    542                                            s->status != NAME_STATE &&
    543                                            s->status != COMMENT_STATE &&
    544                                            s->status != HCRC_STATE &&
    545                                            s->status != BUSY_STATE &&
    546                                            s->status != FINISH_STATE))
    547         return 1;
    548     return 0;
    549 }
    550 
    551 /* ========================================================================= */
    552 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
    553                                  uInt  dictLength) {
    554     deflate_state *s;
    555     uInt str, n;
    556     int wrap;
    557     unsigned avail;
    558     z_const unsigned char *next;
    559 
    560     if (deflateStateCheck(strm) || dictionary == Z_NULL)
    561         return Z_STREAM_ERROR;
    562     s = strm->state;
    563     wrap = s->wrap;
    564     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
    565         return Z_STREAM_ERROR;
    566 
    567     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
    568     if (wrap == 1)
    569         strm->adler = adler32(strm->adler, dictionary, dictLength);
    570     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
    571 
    572     /* if dictionary would fill window, just replace the history */
    573     if (dictLength >= s->w_size) {
    574         if (wrap == 0) {            /* already empty otherwise */
    575             CLEAR_HASH(s);
    576             s->strstart = 0;
    577             s->block_start = 0L;
    578             s->insert = 0;
    579         }
    580         dictionary += dictLength - s->w_size;  /* use the tail */
    581         dictLength = s->w_size;
    582     }
    583 
    584     /* insert dictionary into window and hash */
    585     avail = strm->avail_in;
    586     next = strm->next_in;
    587     strm->avail_in = dictLength;
    588     strm->next_in = __UNCONST(dictionary);
    589     fill_window(s);
    590     while (s->lookahead >= MIN_MATCH) {
    591         str = s->strstart;
    592         n = s->lookahead - (MIN_MATCH-1);
    593         do {
    594             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
    595 #ifndef FASTEST
    596             s->prev[str & s->w_mask] = s->head[s->ins_h];
    597 #endif
    598             s->head[s->ins_h] = (Pos)str;
    599             str++;
    600         } while (--n);
    601         s->strstart = str;
    602         s->lookahead = MIN_MATCH-1;
    603         fill_window(s);
    604     }
    605     s->strstart += s->lookahead;
    606     s->block_start = (long)s->strstart;
    607     s->insert = s->lookahead;
    608     s->lookahead = 0;
    609     s->match_length = s->prev_length = MIN_MATCH-1;
    610     s->match_available = 0;
    611     strm->next_in = next;
    612     strm->avail_in = avail;
    613     s->wrap = wrap;
    614     return Z_OK;
    615 }
    616 
    617 /* ========================================================================= */
    618 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
    619                                  uInt *dictLength) {
    620     deflate_state *s;
    621     uInt len;
    622 
    623     if (deflateStateCheck(strm))
    624         return Z_STREAM_ERROR;
    625     s = strm->state;
    626     len = s->strstart + s->lookahead;
    627     if (len > s->w_size)
    628         len = s->w_size;
    629     if (dictionary != Z_NULL && len)
    630         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
    631     if (dictLength != Z_NULL)
    632         *dictLength = len;
    633     return Z_OK;
    634 }
    635 
    636 /* ========================================================================= */
    637 int ZEXPORT deflateResetKeep(z_streamp strm) {
    638     deflate_state *s;
    639 
    640     if (deflateStateCheck(strm)) {
    641         return Z_STREAM_ERROR;
    642     }
    643 
    644     strm->total_in = strm->total_out = 0;
    645     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    646     strm->data_type = Z_UNKNOWN;
    647 
    648     s = (deflate_state *)strm->state;
    649     s->pending = 0;
    650     s->pending_out = s->pending_buf;
    651 
    652     if (s->wrap < 0) {
    653         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
    654     }
    655     s->status =
    656 #ifdef GZIP
    657         s->wrap == 2 ? GZIP_STATE :
    658 #endif
    659         INIT_STATE;
    660     strm->adler =
    661 #ifdef GZIP
    662         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
    663 #endif
    664         adler32(0L, Z_NULL, 0);
    665     s->last_flush = -2;
    666 
    667     _tr_init(s);
    668 
    669     return Z_OK;
    670 }
    671 
    672 /* ===========================================================================
    673  * Initialize the "longest match" routines for a new zlib stream
    674  */
    675 local void lm_init(deflate_state *s) {
    676     s->window_size = (ulg)2L*s->w_size;
    677 
    678     CLEAR_HASH(s);
    679 
    680     /* Set the default configuration parameters:
    681      */
    682     s->max_lazy_match   = configuration_table[s->level].max_lazy;
    683     s->good_match       = configuration_table[s->level].good_length;
    684     s->nice_match       = configuration_table[s->level].nice_length;
    685     s->max_chain_length = configuration_table[s->level].max_chain;
    686 
    687     s->strstart = 0;
    688     s->block_start = 0L;
    689     s->lookahead = 0;
    690     s->insert = 0;
    691     s->match_length = s->prev_length = MIN_MATCH-1;
    692     s->match_available = 0;
    693     s->ins_h = 0;
    694 }
    695 
    696 /* ========================================================================= */
    697 int ZEXPORT deflateReset(z_streamp strm) {
    698     int ret;
    699 
    700     ret = deflateResetKeep(strm);
    701     if (ret == Z_OK)
    702         lm_init(strm->state);
    703     return ret;
    704 }
    705 
    706 /* ========================================================================= */
    707 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
    708     if (deflateStateCheck(strm) || strm->state->wrap != 2)
    709         return Z_STREAM_ERROR;
    710     strm->state->gzhead = head;
    711     return Z_OK;
    712 }
    713 
    714 /* ========================================================================= */
    715 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
    716     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    717     if (pending != Z_NULL)
    718         *pending = strm->state->pending;
    719     if (bits != Z_NULL)
    720         *bits = strm->state->bi_valid;
    721     return Z_OK;
    722 }
    723 
    724 /* ========================================================================= */
    725 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
    726     deflate_state *s;
    727     int put;
    728 
    729     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    730     s = strm->state;
    731 #ifdef LIT_MEM
    732     if (bits < 0 || bits > 16 ||
    733         (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
    734         return Z_BUF_ERROR;
    735 #else
    736     if (bits < 0 || bits > 16 ||
    737         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
    738         return Z_BUF_ERROR;
    739 #endif
    740     do {
    741         put = Buf_size - s->bi_valid;
    742         if (put > bits)
    743             put = bits;
    744         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
    745         s->bi_valid += put;
    746         _tr_flush_bits(s);
    747         value >>= put;
    748         bits -= put;
    749     } while (bits);
    750     return Z_OK;
    751 }
    752 
    753 /* ========================================================================= */
    754 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
    755     deflate_state *s;
    756     compress_func func;
    757 
    758     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    759     s = strm->state;
    760 
    761 #ifdef FASTEST
    762     if (level != 0) level = 1;
    763 #else
    764     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    765 #endif
    766     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
    767         return Z_STREAM_ERROR;
    768     }
    769     func = configuration_table[s->level].func;
    770 
    771     if ((strategy != s->strategy || func != configuration_table[level].func) &&
    772         s->last_flush != -2) {
    773         /* Flush the last buffer: */
    774         int err = deflate(strm, Z_BLOCK);
    775         if (err == Z_STREAM_ERROR)
    776             return err;
    777         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
    778             return Z_BUF_ERROR;
    779     }
    780     if (s->level != level) {
    781         if (s->level == 0 && s->matches != 0) {
    782             if (s->matches == 1)
    783                 slide_hash(s);
    784             else
    785                 CLEAR_HASH(s);
    786             s->matches = 0;
    787         }
    788         s->level = level;
    789         s->max_lazy_match   = configuration_table[level].max_lazy;
    790         s->good_match       = configuration_table[level].good_length;
    791         s->nice_match       = configuration_table[level].nice_length;
    792         s->max_chain_length = configuration_table[level].max_chain;
    793     }
    794     s->strategy = strategy;
    795     return Z_OK;
    796 }
    797 
    798 /* ========================================================================= */
    799 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
    800                         int nice_length, int max_chain) {
    801     deflate_state *s;
    802 
    803     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    804     s = strm->state;
    805     s->good_match = (uInt)good_length;
    806     s->max_lazy_match = (uInt)max_lazy;
    807     s->nice_match = nice_length;
    808     s->max_chain_length = (uInt)max_chain;
    809     return Z_OK;
    810 }
    811 
    812 /* =========================================================================
    813  * For the default windowBits of 15 and memLevel of 8, this function returns a
    814  * close to exact, as well as small, upper bound on the compressed size. This
    815  * is an expansion of ~0.03%, plus a small constant.
    816  *
    817  * For any setting other than those defaults for windowBits and memLevel, one
    818  * of two worst case bounds is returned. This is at most an expansion of ~4% or
    819  * ~13%, plus a small constant.
    820  *
    821  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
    822  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
    823  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
    824  * expansion results from five bytes of header for each stored block.
    825  *
    826  * The larger expansion of 13% results from a window size less than or equal to
    827  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
    828  * the data being compressed may have slid out of the sliding window, impeding
    829  * a stored block from being emitted. Then the only choice is a fixed or
    830  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
    831  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
    832  * which this can occur is 255 (memLevel == 2).
    833  *
    834  * Shifts are used to approximate divisions, for speed.
    835  */
    836 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
    837     deflate_state *s;
    838     uLong fixedlen, storelen, wraplen;
    839 
    840     /* upper bound for fixed blocks with 9-bit literals and length 255
    841        (memLevel == 2, which is the lowest that may not use stored blocks) --
    842        ~13% overhead plus a small constant */
    843     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
    844                (sourceLen >> 9) + 4;
    845 
    846     /* upper bound for stored blocks with length 127 (memLevel == 1) --
    847        ~4% overhead plus a small constant */
    848     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
    849                (sourceLen >> 11) + 7;
    850 
    851     /* if can't get parameters, return larger bound plus a zlib wrapper */
    852     if (deflateStateCheck(strm))
    853         return (fixedlen > storelen ? fixedlen : storelen) + 6;
    854 
    855     /* compute wrapper length */
    856     s = strm->state;
    857     switch (s->wrap) {
    858     case 0:                                 /* raw deflate */
    859         wraplen = 0;
    860         break;
    861     case 1:                                 /* zlib wrapper */
    862         wraplen = 6 + (s->strstart ? 4 : 0);
    863         break;
    864 #ifdef GZIP
    865     case 2:                                 /* gzip wrapper */
    866         wraplen = 18;
    867         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
    868             Bytef *str;
    869             if (s->gzhead->extra != Z_NULL)
    870                 wraplen += 2 + s->gzhead->extra_len;
    871             str = s->gzhead->name;
    872             if (str != Z_NULL)
    873                 do {
    874                     wraplen++;
    875                 } while (*str++);
    876             str = s->gzhead->comment;
    877             if (str != Z_NULL)
    878                 do {
    879                     wraplen++;
    880                 } while (*str++);
    881             if (s->gzhead->hcrc)
    882                 wraplen += 2;
    883         }
    884         break;
    885 #endif
    886     default:                                /* for compiler happiness */
    887         wraplen = 6;
    888     }
    889 
    890     /* if not default parameters, return one of the conservative bounds */
    891     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
    892         return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
    893                wraplen;
    894 
    895     /* default settings: return tight bound for that case -- ~0.03% overhead
    896        plus a small constant */
    897     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
    898            (sourceLen >> 25) + 13 - 6 + wraplen;
    899 }
    900 
    901 /* =========================================================================
    902  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
    903  * IN assertion: the stream state is correct and there is enough room in
    904  * pending_buf.
    905  */
    906 local void putShortMSB(deflate_state *s, uInt b) {
    907     put_byte(s, (Byte)(b >> 8));
    908     put_byte(s, (Byte)(b & 0xff));
    909 }
    910 
    911 /* =========================================================================
    912  * Flush as much pending output as possible. All deflate() output, except for
    913  * some deflate_stored() output, goes through this function so some
    914  * applications may wish to modify it to avoid allocating a large
    915  * strm->next_out buffer and copying into it. (See also read_buf()).
    916  */
    917 local void flush_pending(z_streamp strm) {
    918     unsigned len;
    919     deflate_state *s = strm->state;
    920 
    921     _tr_flush_bits(s);
    922     len = s->pending;
    923     if (len > strm->avail_out) len = strm->avail_out;
    924     if (len == 0) return;
    925 
    926     zmemcpy(strm->next_out, s->pending_out, len);
    927     strm->next_out  += len;
    928     s->pending_out  += len;
    929     strm->total_out += len;
    930     strm->avail_out -= len;
    931     s->pending      -= len;
    932     if (s->pending == 0) {
    933         s->pending_out = s->pending_buf;
    934     }
    935 }
    936 
    937 /* ===========================================================================
    938  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
    939  */
    940 #define HCRC_UPDATE(beg) \
    941     do { \
    942         if (s->gzhead->hcrc && s->pending > (beg)) \
    943             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
    944                                 s->pending - (beg)); \
    945     } while (0)
    946 
    947 /* ========================================================================= */
    948 int ZEXPORT deflate(z_streamp strm, int flush) {
    949     int old_flush; /* value of flush param for previous deflate call */
    950     deflate_state *s;
    951 
    952     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
    953         return Z_STREAM_ERROR;
    954     }
    955     s = strm->state;
    956 
    957     if (strm->next_out == Z_NULL ||
    958         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
    959         (s->status == FINISH_STATE && flush != Z_FINISH)) {
    960         ERR_RETURN(strm, Z_STREAM_ERROR);
    961     }
    962     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
    963 
    964     old_flush = s->last_flush;
    965     s->last_flush = flush;
    966 
    967     /* Flush as much pending output as possible */
    968     if (s->pending != 0) {
    969         flush_pending(strm);
    970         if (strm->avail_out == 0) {
    971             /* Since avail_out is 0, deflate will be called again with
    972              * more output space, but possibly with both pending and
    973              * avail_in equal to zero. There won't be anything to do,
    974              * but this is not an error situation so make sure we
    975              * return OK instead of BUF_ERROR at next call of deflate:
    976              */
    977             s->last_flush = -1;
    978             return Z_OK;
    979         }
    980 
    981     /* Make sure there is something to do and avoid duplicate consecutive
    982      * flushes. For repeated and useless calls with Z_FINISH, we keep
    983      * returning Z_STREAM_END instead of Z_BUF_ERROR.
    984      */
    985     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
    986                flush != Z_FINISH) {
    987         ERR_RETURN(strm, Z_BUF_ERROR);
    988     }
    989 
    990     /* User must not provide more input after the first FINISH: */
    991     if (s->status == FINISH_STATE && strm->avail_in != 0) {
    992         ERR_RETURN(strm, Z_BUF_ERROR);
    993     }
    994 
    995     /* Write the header */
    996     if (s->status == INIT_STATE && s->wrap == 0)
    997         s->status = BUSY_STATE;
    998     if (s->status == INIT_STATE) {
    999         /* zlib header */
   1000         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
   1001         uInt level_flags;
   1002 
   1003         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
   1004             level_flags = 0;
   1005         else if (s->level < 6)
   1006             level_flags = 1;
   1007         else if (s->level == 6)
   1008             level_flags = 2;
   1009         else
   1010             level_flags = 3;
   1011         header |= (level_flags << 6);
   1012         if (s->strstart != 0) header |= PRESET_DICT;
   1013         header += 31 - (header % 31);
   1014 
   1015         putShortMSB(s, header);
   1016 
   1017         /* Save the adler32 of the preset dictionary: */
   1018         if (s->strstart != 0) {
   1019             putShortMSB(s, (uInt)(strm->adler >> 16));
   1020             putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1021         }
   1022         strm->adler = adler32(0L, Z_NULL, 0);
   1023         s->status = BUSY_STATE;
   1024 
   1025         /* Compression must start with an empty pending buffer */
   1026         flush_pending(strm);
   1027         if (s->pending != 0) {
   1028             s->last_flush = -1;
   1029             return Z_OK;
   1030         }
   1031     }
   1032 #ifdef GZIP
   1033     if (s->status == GZIP_STATE) {
   1034         /* gzip header */
   1035         strm->adler = crc32(0L, Z_NULL, 0);
   1036         put_byte(s, 31);
   1037         put_byte(s, 139);
   1038         put_byte(s, 8);
   1039         if (s->gzhead == Z_NULL) {
   1040             put_byte(s, 0);
   1041             put_byte(s, 0);
   1042             put_byte(s, 0);
   1043             put_byte(s, 0);
   1044             put_byte(s, 0);
   1045             put_byte(s, s->level == 9 ? 2 :
   1046                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
   1047                       4 : 0));
   1048             put_byte(s, OS_CODE);
   1049             s->status = BUSY_STATE;
   1050 
   1051             /* Compression must start with an empty pending buffer */
   1052             flush_pending(strm);
   1053             if (s->pending != 0) {
   1054                 s->last_flush = -1;
   1055                 return Z_OK;
   1056             }
   1057         }
   1058         else {
   1059             put_byte(s, (s->gzhead->text ? 1 : 0) +
   1060                      (s->gzhead->hcrc ? 2 : 0) +
   1061                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
   1062                      (s->gzhead->name == Z_NULL ? 0 : 8) +
   1063                      (s->gzhead->comment == Z_NULL ? 0 : 16)
   1064                      );
   1065             put_byte(s, (Byte)(s->gzhead->time & 0xff));
   1066             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
   1067             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
   1068             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
   1069             put_byte(s, s->level == 9 ? 2 :
   1070                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
   1071                       4 : 0));
   1072             put_byte(s, s->gzhead->os & 0xff);
   1073             if (s->gzhead->extra != Z_NULL) {
   1074                 put_byte(s, s->gzhead->extra_len & 0xff);
   1075                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
   1076             }
   1077             if (s->gzhead->hcrc)
   1078                 strm->adler = crc32(strm->adler, s->pending_buf,
   1079                                     s->pending);
   1080             s->gzindex = 0;
   1081             s->status = EXTRA_STATE;
   1082         }
   1083     }
   1084     if (s->status == EXTRA_STATE) {
   1085         if (s->gzhead->extra != Z_NULL) {
   1086             ulg beg = s->pending;   /* start of bytes to update crc */
   1087             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
   1088             while (s->pending + left > s->pending_buf_size) {
   1089                 uInt copy = s->pending_buf_size - s->pending;
   1090                 zmemcpy(s->pending_buf + s->pending,
   1091                         s->gzhead->extra + s->gzindex, copy);
   1092                 s->pending = s->pending_buf_size;
   1093                 HCRC_UPDATE(beg);
   1094                 s->gzindex += copy;
   1095                 flush_pending(strm);
   1096                 if (s->pending != 0) {
   1097                     s->last_flush = -1;
   1098                     return Z_OK;
   1099                 }
   1100                 beg = 0;
   1101                 left -= copy;
   1102             }
   1103             zmemcpy(s->pending_buf + s->pending,
   1104                     s->gzhead->extra + s->gzindex, left);
   1105             s->pending += left;
   1106             HCRC_UPDATE(beg);
   1107             s->gzindex = 0;
   1108         }
   1109         s->status = NAME_STATE;
   1110     }
   1111     if (s->status == NAME_STATE) {
   1112         if (s->gzhead->name != Z_NULL) {
   1113             ulg beg = s->pending;   /* start of bytes to update crc */
   1114             int val;
   1115             do {
   1116                 if (s->pending == s->pending_buf_size) {
   1117                     HCRC_UPDATE(beg);
   1118                     flush_pending(strm);
   1119                     if (s->pending != 0) {
   1120                         s->last_flush = -1;
   1121                         return Z_OK;
   1122                     }
   1123                     beg = 0;
   1124                 }
   1125                 val = s->gzhead->name[s->gzindex++];
   1126                 put_byte(s, val);
   1127             } while (val != 0);
   1128             HCRC_UPDATE(beg);
   1129             s->gzindex = 0;
   1130         }
   1131         s->status = COMMENT_STATE;
   1132     }
   1133     if (s->status == COMMENT_STATE) {
   1134         if (s->gzhead->comment != Z_NULL) {
   1135             ulg beg = s->pending;   /* start of bytes to update crc */
   1136             int val;
   1137             do {
   1138                 if (s->pending == s->pending_buf_size) {
   1139                     HCRC_UPDATE(beg);
   1140                     flush_pending(strm);
   1141                     if (s->pending != 0) {
   1142                         s->last_flush = -1;
   1143                         return Z_OK;
   1144                     }
   1145                     beg = 0;
   1146                 }
   1147                 val = s->gzhead->comment[s->gzindex++];
   1148                 put_byte(s, val);
   1149             } while (val != 0);
   1150             HCRC_UPDATE(beg);
   1151         }
   1152         s->status = HCRC_STATE;
   1153     }
   1154     if (s->status == HCRC_STATE) {
   1155         if (s->gzhead->hcrc) {
   1156             if (s->pending + 2 > s->pending_buf_size) {
   1157                 flush_pending(strm);
   1158                 if (s->pending != 0) {
   1159                     s->last_flush = -1;
   1160                     return Z_OK;
   1161                 }
   1162             }
   1163             put_byte(s, (Byte)(strm->adler & 0xff));
   1164             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
   1165             strm->adler = crc32(0L, Z_NULL, 0);
   1166         }
   1167         s->status = BUSY_STATE;
   1168 
   1169         /* Compression must start with an empty pending buffer */
   1170         flush_pending(strm);
   1171         if (s->pending != 0) {
   1172             s->last_flush = -1;
   1173             return Z_OK;
   1174         }
   1175     }
   1176 #endif
   1177 
   1178     /* Start a new block or continue the current one.
   1179      */
   1180     if (strm->avail_in != 0 || s->lookahead != 0 ||
   1181         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
   1182         block_state bstate;
   1183 
   1184         bstate = s->level == 0 ? deflate_stored(s, flush) :
   1185                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
   1186                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
   1187                  (*(configuration_table[s->level].func))(s, flush);
   1188 
   1189         if (bstate == finish_started || bstate == finish_done) {
   1190             s->status = FINISH_STATE;
   1191         }
   1192         if (bstate == need_more || bstate == finish_started) {
   1193             if (strm->avail_out == 0) {
   1194                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
   1195             }
   1196             return Z_OK;
   1197             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
   1198              * of deflate should use the same flush parameter to make sure
   1199              * that the flush is complete. So we don't have to output an
   1200              * empty block here, this will be done at next call. This also
   1201              * ensures that for a very small output buffer, we emit at most
   1202              * one empty block.
   1203              */
   1204         }
   1205         if (bstate == block_done) {
   1206             if (flush == Z_PARTIAL_FLUSH) {
   1207                 _tr_align(s);
   1208             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
   1209                 _tr_stored_block(s, (char*)0, 0L, 0);
   1210                 /* For a full flush, this empty block will be recognized
   1211                  * as a special marker by inflate_sync().
   1212                  */
   1213                 if (flush == Z_FULL_FLUSH) {
   1214                     CLEAR_HASH(s);             /* forget history */
   1215                     if (s->lookahead == 0) {
   1216                         s->strstart = 0;
   1217                         s->block_start = 0L;
   1218                         s->insert = 0;
   1219                     }
   1220                 }
   1221             }
   1222             flush_pending(strm);
   1223             if (strm->avail_out == 0) {
   1224               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
   1225               return Z_OK;
   1226             }
   1227         }
   1228     }
   1229 
   1230     if (flush != Z_FINISH) return Z_OK;
   1231     if (s->wrap <= 0) return Z_STREAM_END;
   1232 
   1233     /* Write the trailer */
   1234 #ifdef GZIP
   1235     if (s->wrap == 2) {
   1236         put_byte(s, (Byte)(strm->adler & 0xff));
   1237         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
   1238         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
   1239         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
   1240         put_byte(s, (Byte)(strm->total_in & 0xff));
   1241         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
   1242         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
   1243         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
   1244     }
   1245     else
   1246 #endif
   1247     {
   1248         putShortMSB(s, (uInt)(strm->adler >> 16));
   1249         putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1250     }
   1251     flush_pending(strm);
   1252     /* If avail_out is zero, the application will call deflate again
   1253      * to flush the rest.
   1254      */
   1255     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
   1256     return s->pending != 0 ? Z_OK : Z_STREAM_END;
   1257 }
   1258 
   1259 /* ========================================================================= */
   1260 int ZEXPORT deflateEnd(z_streamp strm) {
   1261     int status;
   1262 
   1263     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
   1264 
   1265     status = strm->state->status;
   1266 
   1267     /* Deallocate in reverse order of allocations: */
   1268     TRY_FREE(strm, strm->state->pending_buf);
   1269     TRY_FREE(strm, strm->state->head);
   1270     TRY_FREE(strm, strm->state->prev);
   1271     TRY_FREE(strm, strm->state->window);
   1272 
   1273     ZFREE(strm, strm->state);
   1274     strm->state = Z_NULL;
   1275 
   1276     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
   1277 }
   1278 
   1279 /* =========================================================================
   1280  * Copy the source state to the destination state.
   1281  * To simplify the source, this is not supported for 16-bit MSDOS (which
   1282  * doesn't have enough memory anyway to duplicate compression states).
   1283  */
   1284 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
   1285 #ifdef MAXSEG_64K
   1286     (void)dest;
   1287     (void)source;
   1288     return Z_STREAM_ERROR;
   1289 #else
   1290     deflate_state *ds;
   1291     deflate_state *ss;
   1292 
   1293 
   1294     if (deflateStateCheck(source) || dest == Z_NULL) {
   1295         return Z_STREAM_ERROR;
   1296     }
   1297 
   1298     ss = source->state;
   1299 
   1300     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
   1301 
   1302     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   1303     if (ds == Z_NULL) return Z_MEM_ERROR;
   1304     dest->state = (struct internal_state FAR *) ds;
   1305     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
   1306     ds->strm = dest;
   1307 
   1308     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   1309     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   1310     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   1311     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
   1312 
   1313     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
   1314         ds->pending_buf == Z_NULL) {
   1315         deflateEnd (dest);
   1316         return Z_MEM_ERROR;
   1317     }
   1318     /* following zmemcpy do not work for 16-bit MSDOS */
   1319     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   1320     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
   1321     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
   1322     zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
   1323 
   1324     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   1325 #ifdef LIT_MEM
   1326     ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
   1327     ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
   1328 #else
   1329     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
   1330 #endif
   1331 
   1332     ds->l_desc.dyn_tree = ds->dyn_ltree;
   1333     ds->d_desc.dyn_tree = ds->dyn_dtree;
   1334     ds->bl_desc.dyn_tree = ds->bl_tree;
   1335 
   1336     return Z_OK;
   1337 #endif /* MAXSEG_64K */
   1338 }
   1339 
   1340 #ifndef FASTEST
   1341 /* ===========================================================================
   1342  * Set match_start to the longest match starting at the given string and
   1343  * return its length. Matches shorter or equal to prev_length are discarded,
   1344  * in which case the result is equal to prev_length and match_start is
   1345  * garbage.
   1346  * IN assertions: cur_match is the head of the hash chain for the current
   1347  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
   1348  * OUT assertion: the match length is not greater than s->lookahead.
   1349  */
   1350 local uInt longest_match(deflate_state *s, IPos cur_match) {
   1351     unsigned chain_length = s->max_chain_length;/* max hash chain length */
   1352     register Bytef *scan = s->window + s->strstart; /* current string */
   1353     register Bytef *match;                      /* matched string */
   1354     register int len;                           /* length of current match */
   1355     int best_len = (int)s->prev_length;         /* best match length so far */
   1356     int nice_match = s->nice_match;             /* stop if match long enough */
   1357     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
   1358         s->strstart - (IPos)MAX_DIST(s) : NIL;
   1359     /* Stop when cur_match becomes <= limit. To simplify the code,
   1360      * we prevent matches with the string of window index 0.
   1361      */
   1362     Posf *prev = s->prev;
   1363     uInt wmask = s->w_mask;
   1364 
   1365 #ifdef UNALIGNED_OK
   1366     /* Compare two bytes at a time. Note: this is not always beneficial.
   1367      * Try with and without -DUNALIGNED_OK to check.
   1368      */
   1369     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   1370     register ush scan_start = *(ushf*)scan;
   1371     register ush scan_end   = *(ushf*)(scan + best_len - 1);
   1372 #else
   1373     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1374     register Byte scan_end1  = scan[best_len - 1];
   1375     register Byte scan_end   = scan[best_len];
   1376 #endif
   1377 
   1378     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1379      * It is easy to get rid of this optimization if necessary.
   1380      */
   1381     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1382 
   1383     /* Do not waste too much time if we already have a good match: */
   1384     if (s->prev_length >= s->good_match) {
   1385         chain_length >>= 2;
   1386     }
   1387     /* Do not look for matches beyond the end of the input. This is necessary
   1388      * to make deflate deterministic.
   1389      */
   1390     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
   1391 
   1392     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
   1393            "need lookahead");
   1394 
   1395     do {
   1396         Assert(cur_match < s->strstart, "no future");
   1397         match = s->window + cur_match;
   1398 
   1399         /* Skip to next match if the match length cannot increase
   1400          * or if the match length is less than 2.  Note that the checks below
   1401          * for insufficient lookahead only occur occasionally for performance
   1402          * reasons.  Therefore uninitialized memory will be accessed, and
   1403          * conditional jumps will be made that depend on those values.
   1404          * However the length of the match is limited to the lookahead, so
   1405          * the output of deflate is not affected by the uninitialized values.
   1406          */
   1407 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
   1408         /* This code assumes sizeof(unsigned short) == 2. Do not use
   1409          * UNALIGNED_OK if your compiler uses a different size.
   1410          */
   1411         if (*(ushf*)(match + best_len - 1) != scan_end ||
   1412             *(ushf*)match != scan_start) continue;
   1413 
   1414         /* It is not necessary to compare scan[2] and match[2] since they are
   1415          * always equal when the other bytes match, given that the hash keys
   1416          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
   1417          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
   1418          * lookahead only every 4th comparison; the 128th check will be made
   1419          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
   1420          * necessary to put more guard bytes at the end of the window, or
   1421          * to check more often for insufficient lookahead.
   1422          */
   1423         Assert(scan[2] == match[2], "scan[2]?");
   1424         scan++, match++;
   1425         do {
   1426         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1427                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1428                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1429                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1430                  scan < strend);
   1431         /* The funny "do {}" generates better code on most compilers */
   1432 
   1433         /* Here, scan <= window + strstart + 257 */
   1434         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
   1435                "wild scan");
   1436         if (*scan == *match) scan++;
   1437 
   1438         len = (MAX_MATCH - 1) - (int)(strend - scan);
   1439         scan = strend - (MAX_MATCH-1);
   1440 
   1441 #else /* UNALIGNED_OK */
   1442 
   1443         if (match[best_len]     != scan_end  ||
   1444             match[best_len - 1] != scan_end1 ||
   1445             *match              != *scan     ||
   1446             *++match            != scan[1])      continue;
   1447 
   1448         /* The check at best_len - 1 can be removed because it will be made
   1449          * again later. (This heuristic is not always a win.)
   1450          * It is not necessary to compare scan[2] and match[2] since they
   1451          * are always equal when the other bytes match, given that
   1452          * the hash keys are equal and that HASH_BITS >= 8.
   1453          */
   1454         scan += 2, match++;
   1455         Assert(*scan == *match, "match[2]?");
   1456 
   1457         /* We check for insufficient lookahead only every 8th comparison;
   1458          * the 256th check will be made at strstart + 258.
   1459          */
   1460         do {
   1461         } while (*++scan == *++match && *++scan == *++match &&
   1462                  *++scan == *++match && *++scan == *++match &&
   1463                  *++scan == *++match && *++scan == *++match &&
   1464                  *++scan == *++match && *++scan == *++match &&
   1465                  scan < strend);
   1466 
   1467         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
   1468                "wild scan");
   1469 
   1470         len = MAX_MATCH - (int)(strend - scan);
   1471         scan = strend - MAX_MATCH;
   1472 
   1473 #endif /* UNALIGNED_OK */
   1474 
   1475         if (len > best_len) {
   1476             s->match_start = cur_match;
   1477             best_len = len;
   1478             if (len >= nice_match) break;
   1479 #ifdef UNALIGNED_OK
   1480             scan_end = *(ushf*)(scan + best_len - 1);
   1481 #else
   1482             scan_end1  = scan[best_len - 1];
   1483             scan_end   = scan[best_len];
   1484 #endif
   1485         }
   1486     } while ((cur_match = prev[cur_match & wmask]) > limit
   1487              && --chain_length != 0);
   1488 
   1489     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   1490     return s->lookahead;
   1491 }
   1492 
   1493 #else /* FASTEST */
   1494 
   1495 /* ---------------------------------------------------------------------------
   1496  * Optimized version for FASTEST only
   1497  */
   1498 local uInt longest_match(deflate_state *s, IPos cur_match) {
   1499     register Bytef *scan = s->window + s->strstart; /* current string */
   1500     register Bytef *match;                       /* matched string */
   1501     register int len;                           /* length of current match */
   1502     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1503 
   1504     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1505      * It is easy to get rid of this optimization if necessary.
   1506      */
   1507     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1508 
   1509     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
   1510            "need lookahead");
   1511 
   1512     Assert(cur_match < s->strstart, "no future");
   1513 
   1514     match = s->window + cur_match;
   1515 
   1516     /* Return failure if the match length is less than 2:
   1517      */
   1518     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
   1519 
   1520     /* The check at best_len - 1 can be removed because it will be made
   1521      * again later. (This heuristic is not always a win.)
   1522      * It is not necessary to compare scan[2] and match[2] since they
   1523      * are always equal when the other bytes match, given that
   1524      * the hash keys are equal and that HASH_BITS >= 8.
   1525      */
   1526     scan += 2, match += 2;
   1527     Assert(*scan == *match, "match[2]?");
   1528 
   1529     /* We check for insufficient lookahead only every 8th comparison;
   1530      * the 256th check will be made at strstart + 258.
   1531      */
   1532     do {
   1533     } while (*++scan == *++match && *++scan == *++match &&
   1534              *++scan == *++match && *++scan == *++match &&
   1535              *++scan == *++match && *++scan == *++match &&
   1536              *++scan == *++match && *++scan == *++match &&
   1537              scan < strend);
   1538 
   1539     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
   1540 
   1541     len = MAX_MATCH - (int)(strend - scan);
   1542 
   1543     if (len < MIN_MATCH) return MIN_MATCH - 1;
   1544 
   1545     s->match_start = cur_match;
   1546     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
   1547 }
   1548 
   1549 #endif /* FASTEST */
   1550 
   1551 #ifdef ZLIB_DEBUG
   1552 
   1553 #define EQUAL 0
   1554 /* result of memcmp for equal strings */
   1555 
   1556 /* ===========================================================================
   1557  * Check that the match at match_start is indeed a match.
   1558  */
   1559 local void check_match(deflate_state *s, IPos start, IPos match, int length) {
   1560     /* check that the match is indeed a match */
   1561     Bytef *back = s->window + (int)match, *here = s->window + start;
   1562     IPos len = length;
   1563     if (match == (IPos)-1) {
   1564         /* match starts one byte before the current window -- just compare the
   1565            subsequent length-1 bytes */
   1566         back++;
   1567         here++;
   1568         len--;
   1569     }
   1570     if (zmemcmp(back, here, len) != EQUAL) {
   1571         fprintf(stderr, " start %u, match %d, length %d\n",
   1572                 start, (int)match, length);
   1573         do {
   1574             fprintf(stderr, "(%02x %02x)", *back++, *here++);
   1575         } while (--len != 0);
   1576         z_error("invalid match");
   1577     }
   1578     if (z_verbose > 1) {
   1579         fprintf(stderr,"\\[%d,%d]", start - match, length);
   1580         do { putc(s->window[start++], stderr); } while (--length != 0);
   1581     }
   1582 }
   1583 #else
   1584 #  define check_match(s, start, match, length)
   1585 #endif /* ZLIB_DEBUG */
   1586 
   1587 /* ===========================================================================
   1588  * Flush the current block, with given end-of-file flag.
   1589  * IN assertion: strstart is set to the end of the current match.
   1590  */
   1591 #define FLUSH_BLOCK_ONLY(s, last) { \
   1592    _tr_flush_block(s, (s->block_start >= 0L ? \
   1593                    (charf *)&s->window[(unsigned)s->block_start] : \
   1594                    (charf *)Z_NULL), \
   1595                 (ulg)((long)s->strstart - s->block_start), \
   1596                 (last)); \
   1597    s->block_start = s->strstart; \
   1598    flush_pending(s->strm); \
   1599    Tracev((stderr,"[FLUSH]")); \
   1600 }
   1601 
   1602 /* Same but force premature exit if necessary. */
   1603 #define FLUSH_BLOCK(s, last) { \
   1604    FLUSH_BLOCK_ONLY(s, last); \
   1605    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
   1606 }
   1607 
   1608 /* Maximum stored block length in deflate format (not including header). */
   1609 #define MAX_STORED 65535
   1610 
   1611 /* Minimum of a and b. */
   1612 #define MIN(a, b) ((a) > (b) ? (b) : (a))
   1613 
   1614 /* ===========================================================================
   1615  * Copy without compression as much as possible from the input stream, return
   1616  * the current block state.
   1617  *
   1618  * In case deflateParams() is used to later switch to a non-zero compression
   1619  * level, s->matches (otherwise unused when storing) keeps track of the number
   1620  * of hash table slides to perform. If s->matches is 1, then one hash table
   1621  * slide will be done when switching. If s->matches is 2, the maximum value
   1622  * allowed here, then the hash table will be cleared, since two or more slides
   1623  * is the same as a clear.
   1624  *
   1625  * deflate_stored() is written to minimize the number of times an input byte is
   1626  * copied. It is most efficient with large input and output buffers, which
   1627  * maximizes the opportunities to have a single copy from next_in to next_out.
   1628  */
   1629 local block_state deflate_stored(deflate_state *s, int flush) {
   1630     /* Smallest worthy block size when not flushing or finishing. By default
   1631      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
   1632      * large input and output buffers, the stored block size will be larger.
   1633      */
   1634     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
   1635 
   1636     /* Copy as many min_block or larger stored blocks directly to next_out as
   1637      * possible. If flushing, copy the remaining available input to next_out as
   1638      * stored blocks, if there is enough space.
   1639      */
   1640     unsigned len, left, have, last = 0;
   1641     unsigned used = s->strm->avail_in;
   1642     do {
   1643         /* Set len to the maximum size block that we can copy directly with the
   1644          * available input data and output space. Set left to how much of that
   1645          * would be copied from what's left in the window.
   1646          */
   1647         len = MAX_STORED;       /* maximum deflate stored block length */
   1648         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
   1649         if (s->strm->avail_out < have)          /* need room for header */
   1650             break;
   1651             /* maximum stored block length that will fit in avail_out: */
   1652         have = s->strm->avail_out - have;
   1653         left = s->strstart - s->block_start;    /* bytes left in window */
   1654         if (len > (ulg)left + s->strm->avail_in)
   1655             len = left + s->strm->avail_in;     /* limit len to the input */
   1656         if (len > have)
   1657             len = have;                         /* limit len to the output */
   1658 
   1659         /* If the stored block would be less than min_block in length, or if
   1660          * unable to copy all of the available input when flushing, then try
   1661          * copying to the window and the pending buffer instead. Also don't
   1662          * write an empty block when flushing -- deflate() does that.
   1663          */
   1664         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
   1665                                 flush == Z_NO_FLUSH ||
   1666                                 len != left + s->strm->avail_in))
   1667             break;
   1668 
   1669         /* Make a dummy stored block in pending to get the header bytes,
   1670          * including any pending bits. This also updates the debugging counts.
   1671          */
   1672         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
   1673         _tr_stored_block(s, (char *)0, 0L, last);
   1674 
   1675         /* Replace the lengths in the dummy stored block with len. */
   1676         s->pending_buf[s->pending - 4] = len;
   1677         s->pending_buf[s->pending - 3] = len >> 8;
   1678         s->pending_buf[s->pending - 2] = ~len;
   1679         s->pending_buf[s->pending - 1] = ~len >> 8;
   1680 
   1681         /* Write the stored block header bytes. */
   1682         flush_pending(s->strm);
   1683 
   1684 #ifdef ZLIB_DEBUG
   1685         /* Update debugging counts for the data about to be copied. */
   1686         s->compressed_len += len << 3;
   1687         s->bits_sent += len << 3;
   1688 #endif
   1689 
   1690         /* Copy uncompressed bytes from the window to next_out. */
   1691         if (left) {
   1692             if (left > len)
   1693                 left = len;
   1694             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
   1695             s->strm->next_out += left;
   1696             s->strm->avail_out -= left;
   1697             s->strm->total_out += left;
   1698             s->block_start += left;
   1699             len -= left;
   1700         }
   1701 
   1702         /* Copy uncompressed bytes directly from next_in to next_out, updating
   1703          * the check value.
   1704          */
   1705         if (len) {
   1706             read_buf(s->strm, s->strm->next_out, len);
   1707             s->strm->next_out += len;
   1708             s->strm->avail_out -= len;
   1709             s->strm->total_out += len;
   1710         }
   1711     } while (last == 0);
   1712 
   1713     /* Update the sliding window with the last s->w_size bytes of the copied
   1714      * data, or append all of the copied data to the existing window if less
   1715      * than s->w_size bytes were copied. Also update the number of bytes to
   1716      * insert in the hash tables, in the event that deflateParams() switches to
   1717      * a non-zero compression level.
   1718      */
   1719     used -= s->strm->avail_in;      /* number of input bytes directly copied */
   1720     if (used) {
   1721         /* If any input was used, then no unused input remains in the window,
   1722          * therefore s->block_start == s->strstart.
   1723          */
   1724         if (used >= s->w_size) {    /* supplant the previous history */
   1725             s->matches = 2;         /* clear hash */
   1726             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
   1727             s->strstart = s->w_size;
   1728             s->insert = s->strstart;
   1729         }
   1730         else {
   1731             if (s->window_size - s->strstart <= used) {
   1732                 /* Slide the window down. */
   1733                 s->strstart -= s->w_size;
   1734                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
   1735                 if (s->matches < 2)
   1736                     s->matches++;   /* add a pending slide_hash() */
   1737                 if (s->insert > s->strstart)
   1738                     s->insert = s->strstart;
   1739             }
   1740             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
   1741             s->strstart += used;
   1742             s->insert += MIN(used, s->w_size - s->insert);
   1743         }
   1744         s->block_start = s->strstart;
   1745     }
   1746     if (s->high_water < s->strstart)
   1747         s->high_water = s->strstart;
   1748 
   1749     /* If the last block was written to next_out, then done. */
   1750     if (last)
   1751         return finish_done;
   1752 
   1753     /* If flushing and all input has been consumed, then done. */
   1754     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
   1755         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
   1756         return block_done;
   1757 
   1758     /* Fill the window with any remaining input. */
   1759     have = s->window_size - s->strstart;
   1760     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
   1761         /* Slide the window down. */
   1762         s->block_start -= s->w_size;
   1763         s->strstart -= s->w_size;
   1764         zmemcpy(s->window, s->window + s->w_size, s->strstart);
   1765         if (s->matches < 2)
   1766             s->matches++;           /* add a pending slide_hash() */
   1767         have += s->w_size;          /* more space now */
   1768         if (s->insert > s->strstart)
   1769             s->insert = s->strstart;
   1770     }
   1771     if (have > s->strm->avail_in)
   1772         have = s->strm->avail_in;
   1773     if (have) {
   1774         read_buf(s->strm, s->window + s->strstart, have);
   1775         s->strstart += have;
   1776         s->insert += MIN(have, s->w_size - s->insert);
   1777     }
   1778     if (s->high_water < s->strstart)
   1779         s->high_water = s->strstart;
   1780 
   1781     /* There was not enough avail_out to write a complete worthy or flushed
   1782      * stored block to next_out. Write a stored block to pending instead, if we
   1783      * have enough input for a worthy block, or if flushing and there is enough
   1784      * room for the remaining input as a stored block in the pending buffer.
   1785      */
   1786     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
   1787         /* maximum stored block length that will fit in pending: */
   1788     have = MIN(s->pending_buf_size - have, MAX_STORED);
   1789     min_block = MIN(have, s->w_size);
   1790     left = s->strstart - s->block_start;
   1791     if (left >= min_block ||
   1792         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
   1793          s->strm->avail_in == 0 && left <= have)) {
   1794         len = MIN(left, have);
   1795         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
   1796                len == left ? 1 : 0;
   1797         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
   1798         s->block_start += len;
   1799         flush_pending(s->strm);
   1800     }
   1801 
   1802     /* We've done all we can with the available input and output. */
   1803     return last ? finish_started : need_more;
   1804 }
   1805 
   1806 /* ===========================================================================
   1807  * Compress as much as possible from the input stream, return the current
   1808  * block state.
   1809  * This function does not perform lazy evaluation of matches and inserts
   1810  * new strings in the dictionary only for unmatched strings or for short
   1811  * matches. It is used only for the fast compression options.
   1812  */
   1813 local block_state deflate_fast(deflate_state *s, int flush) {
   1814     IPos hash_head;       /* head of the hash chain */
   1815     int bflush;           /* set if current block must be flushed */
   1816 
   1817     for (;;) {
   1818         /* Make sure that we always have enough lookahead, except
   1819          * at the end of the input file. We need MAX_MATCH bytes
   1820          * for the next match, plus MIN_MATCH bytes to insert the
   1821          * string following the next match.
   1822          */
   1823         if (s->lookahead < MIN_LOOKAHEAD) {
   1824             fill_window(s);
   1825             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1826                 return need_more;
   1827             }
   1828             if (s->lookahead == 0) break; /* flush the current block */
   1829         }
   1830 
   1831         /* Insert the string window[strstart .. strstart + 2] in the
   1832          * dictionary, and set hash_head to the head of the hash chain:
   1833          */
   1834         hash_head = NIL;
   1835         if (s->lookahead >= MIN_MATCH) {
   1836             INSERT_STRING(s, s->strstart, hash_head);
   1837         }
   1838 
   1839         /* Find the longest match, discarding those <= prev_length.
   1840          * At this point we have always match_length < MIN_MATCH
   1841          */
   1842         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
   1843             /* To simplify the code, we prevent matches with the string
   1844              * of window index 0 (in particular we have to avoid a match
   1845              * of the string with itself at the start of the input file).
   1846              */
   1847             s->match_length = longest_match (s, hash_head);
   1848             /* longest_match() sets match_start */
   1849         }
   1850         if (s->match_length >= MIN_MATCH) {
   1851             check_match(s, s->strstart, s->match_start, s->match_length);
   1852 
   1853             _tr_tally_dist(s, s->strstart - s->match_start,
   1854                            s->match_length - MIN_MATCH, bflush);
   1855 
   1856             s->lookahead -= s->match_length;
   1857 
   1858             /* Insert new strings in the hash table only if the match length
   1859              * is not too large. This saves time but degrades compression.
   1860              */
   1861 #ifndef FASTEST
   1862             if (s->match_length <= s->max_insert_length &&
   1863                 s->lookahead >= MIN_MATCH) {
   1864                 s->match_length--; /* string at strstart already in table */
   1865                 do {
   1866                     s->strstart++;
   1867                     INSERT_STRING(s, s->strstart, hash_head);
   1868                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
   1869                      * always MIN_MATCH bytes ahead.
   1870                      */
   1871                 } while (--s->match_length != 0);
   1872                 s->strstart++;
   1873             } else
   1874 #endif
   1875             {
   1876                 s->strstart += s->match_length;
   1877                 s->match_length = 0;
   1878                 s->ins_h = s->window[s->strstart];
   1879                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
   1880 #if MIN_MATCH != 3
   1881                 Call UPDATE_HASH() MIN_MATCH-3 more times
   1882 #endif
   1883                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
   1884                  * matter since it will be recomputed at next deflate call.
   1885                  */
   1886             }
   1887         } else {
   1888             /* No match, output a literal byte */
   1889             Tracevv((stderr,"%c", s->window[s->strstart]));
   1890             _tr_tally_lit(s, s->window[s->strstart], bflush);
   1891             s->lookahead--;
   1892             s->strstart++;
   1893         }
   1894         if (bflush) FLUSH_BLOCK(s, 0);
   1895     }
   1896     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
   1897     if (flush == Z_FINISH) {
   1898         FLUSH_BLOCK(s, 1);
   1899         return finish_done;
   1900     }
   1901     if (s->sym_next)
   1902         FLUSH_BLOCK(s, 0);
   1903     return block_done;
   1904 }
   1905 
   1906 #ifndef FASTEST
   1907 /* ===========================================================================
   1908  * Same as above, but achieves better compression. We use a lazy
   1909  * evaluation for matches: a match is finally adopted only if there is
   1910  * no better match at the next window position.
   1911  */
   1912 local block_state deflate_slow(deflate_state *s, int flush) {
   1913     IPos hash_head;          /* head of hash chain */
   1914     int bflush;              /* set if current block must be flushed */
   1915 
   1916     /* Process the input block. */
   1917     for (;;) {
   1918         /* Make sure that we always have enough lookahead, except
   1919          * at the end of the input file. We need MAX_MATCH bytes
   1920          * for the next match, plus MIN_MATCH bytes to insert the
   1921          * string following the next match.
   1922          */
   1923         if (s->lookahead < MIN_LOOKAHEAD) {
   1924             fill_window(s);
   1925             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1926                 return need_more;
   1927             }
   1928             if (s->lookahead == 0) break; /* flush the current block */
   1929         }
   1930 
   1931         /* Insert the string window[strstart .. strstart + 2] in the
   1932          * dictionary, and set hash_head to the head of the hash chain:
   1933          */
   1934         hash_head = NIL;
   1935         if (s->lookahead >= MIN_MATCH) {
   1936             INSERT_STRING(s, s->strstart, hash_head);
   1937         }
   1938 
   1939         /* Find the longest match, discarding those <= prev_length.
   1940          */
   1941         s->prev_length = s->match_length, s->prev_match = s->match_start;
   1942         s->match_length = MIN_MATCH-1;
   1943 
   1944         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
   1945             s->strstart - hash_head <= MAX_DIST(s)) {
   1946             /* To simplify the code, we prevent matches with the string
   1947              * of window index 0 (in particular we have to avoid a match
   1948              * of the string with itself at the start of the input file).
   1949              */
   1950             s->match_length = longest_match (s, hash_head);
   1951             /* longest_match() sets match_start */
   1952 
   1953             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
   1954 #if TOO_FAR <= 32767
   1955                 || (s->match_length == MIN_MATCH &&
   1956                     s->strstart - s->match_start > TOO_FAR)
   1957 #endif
   1958                 )) {
   1959 
   1960                 /* If prev_match is also MIN_MATCH, match_start is garbage
   1961                  * but we will ignore the current match anyway.
   1962                  */
   1963                 s->match_length = MIN_MATCH-1;
   1964             }
   1965         }
   1966         /* If there was a match at the previous step and the current
   1967          * match is not better, output the previous match:
   1968          */
   1969         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
   1970             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
   1971             /* Do not insert strings in hash table beyond this. */
   1972 
   1973             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
   1974 
   1975             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
   1976                            s->prev_length - MIN_MATCH, bflush);
   1977 
   1978             /* Insert in hash table all strings up to the end of the match.
   1979              * strstart - 1 and strstart are already inserted. If there is not
   1980              * enough lookahead, the last two strings are not inserted in
   1981              * the hash table.
   1982              */
   1983             s->lookahead -= s->prev_length - 1;
   1984             s->prev_length -= 2;
   1985             do {
   1986                 if (++s->strstart <= max_insert) {
   1987                     INSERT_STRING(s, s->strstart, hash_head);
   1988                 }
   1989             } while (--s->prev_length != 0);
   1990             s->match_available = 0;
   1991             s->match_length = MIN_MATCH-1;
   1992             s->strstart++;
   1993 
   1994             if (bflush) FLUSH_BLOCK(s, 0);
   1995 
   1996         } else if (s->match_available) {
   1997             /* If there was no match at the previous position, output a
   1998              * single literal. If there was a match but the current match
   1999              * is longer, truncate the previous match to a single literal.
   2000              */
   2001             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
   2002             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
   2003             if (bflush) {
   2004                 FLUSH_BLOCK_ONLY(s, 0);
   2005             }
   2006             s->strstart++;
   2007             s->lookahead--;
   2008             if (s->strm->avail_out == 0) return need_more;
   2009         } else {
   2010             /* There is no previous match to compare with, wait for
   2011              * the next step to decide.
   2012              */
   2013             s->match_available = 1;
   2014             s->strstart++;
   2015             s->lookahead--;
   2016         }
   2017     }
   2018     Assert (flush != Z_NO_FLUSH, "no flush?");
   2019     if (s->match_available) {
   2020         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
   2021         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
   2022         s->match_available = 0;
   2023     }
   2024     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
   2025     if (flush == Z_FINISH) {
   2026         FLUSH_BLOCK(s, 1);
   2027         return finish_done;
   2028     }
   2029     if (s->sym_next)
   2030         FLUSH_BLOCK(s, 0);
   2031     return block_done;
   2032 }
   2033 #endif /* FASTEST */
   2034 
   2035 /* ===========================================================================
   2036  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
   2037  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
   2038  * deflate switches away from Z_RLE.)
   2039  */
   2040 local block_state deflate_rle(deflate_state *s, int flush) {
   2041     int bflush;             /* set if current block must be flushed */
   2042     uInt prev;              /* byte at distance one to match */
   2043     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
   2044 
   2045     for (;;) {
   2046         /* Make sure that we always have enough lookahead, except
   2047          * at the end of the input file. We need MAX_MATCH bytes
   2048          * for the longest run, plus one for the unrolled loop.
   2049          */
   2050         if (s->lookahead <= MAX_MATCH) {
   2051             fill_window(s);
   2052             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
   2053                 return need_more;
   2054             }
   2055             if (s->lookahead == 0) break; /* flush the current block */
   2056         }
   2057 
   2058         /* See how many times the previous byte repeats */
   2059         s->match_length = 0;
   2060         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
   2061             scan = s->window + s->strstart - 1;
   2062             prev = *scan;
   2063             if (prev == *++scan && prev == *++scan && prev == *++scan) {
   2064                 strend = s->window + s->strstart + MAX_MATCH;
   2065                 do {
   2066                 } while (prev == *++scan && prev == *++scan &&
   2067                          prev == *++scan && prev == *++scan &&
   2068                          prev == *++scan && prev == *++scan &&
   2069                          prev == *++scan && prev == *++scan &&
   2070                          scan < strend);
   2071                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
   2072                 if (s->match_length > s->lookahead)
   2073                     s->match_length = s->lookahead;
   2074             }
   2075             Assert(scan <= s->window + (uInt)(s->window_size - 1),
   2076                    "wild scan");
   2077         }
   2078 
   2079         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
   2080         if (s->match_length >= MIN_MATCH) {
   2081             check_match(s, s->strstart, s->strstart - 1, s->match_length);
   2082 
   2083             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
   2084 
   2085             s->lookahead -= s->match_length;
   2086             s->strstart += s->match_length;
   2087             s->match_length = 0;
   2088         } else {
   2089             /* No match, output a literal byte */
   2090             Tracevv((stderr,"%c", s->window[s->strstart]));
   2091             _tr_tally_lit(s, s->window[s->strstart], bflush);
   2092             s->lookahead--;
   2093             s->strstart++;
   2094         }
   2095         if (bflush) FLUSH_BLOCK(s, 0);
   2096     }
   2097     s->insert = 0;
   2098     if (flush == Z_FINISH) {
   2099         FLUSH_BLOCK(s, 1);
   2100         return finish_done;
   2101     }
   2102     if (s->sym_next)
   2103         FLUSH_BLOCK(s, 0);
   2104     return block_done;
   2105 }
   2106 
   2107 /* ===========================================================================
   2108  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
   2109  * (It will be regenerated if this run of deflate switches away from Huffman.)
   2110  */
   2111 local block_state deflate_huff(deflate_state *s, int flush) {
   2112     int bflush;             /* set if current block must be flushed */
   2113 
   2114     for (;;) {
   2115         /* Make sure that we have a literal to write. */
   2116         if (s->lookahead == 0) {
   2117             fill_window(s);
   2118             if (s->lookahead == 0) {
   2119                 if (flush == Z_NO_FLUSH)
   2120                     return need_more;
   2121                 break;      /* flush the current block */
   2122             }
   2123         }
   2124 
   2125         /* Output a literal byte */
   2126         s->match_length = 0;
   2127         Tracevv((stderr,"%c", s->window[s->strstart]));
   2128         _tr_tally_lit(s, s->window[s->strstart], bflush);
   2129         s->lookahead--;
   2130         s->strstart++;
   2131         if (bflush) FLUSH_BLOCK(s, 0);
   2132     }
   2133     s->insert = 0;
   2134     if (flush == Z_FINISH) {
   2135         FLUSH_BLOCK(s, 1);
   2136         return finish_done;
   2137     }
   2138     if (s->sym_next)
   2139         FLUSH_BLOCK(s, 0);
   2140     return block_done;
   2141 }
   2142