deflate.c revision 1.6 1 1.6 christos /* $NetBSD: deflate.c,v 1.6 2022/10/15 19:49:32 christos Exp $ */
2 1.1 christos
3 1.1 christos /* deflate.c -- compress data using the deflation algorithm
4 1.6 christos * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
6 1.1 christos */
7 1.1 christos
8 1.1 christos /*
9 1.1 christos * ALGORITHM
10 1.1 christos *
11 1.1 christos * The "deflation" process depends on being able to identify portions
12 1.1 christos * of the input text which are identical to earlier input (within a
13 1.1 christos * sliding window trailing behind the input currently being processed).
14 1.1 christos *
15 1.1 christos * The most straightforward technique turns out to be the fastest for
16 1.1 christos * most input files: try all possible matches and select the longest.
17 1.1 christos * The key feature of this algorithm is that insertions into the string
18 1.1 christos * dictionary are very simple and thus fast, and deletions are avoided
19 1.1 christos * completely. Insertions are performed at each input character, whereas
20 1.1 christos * string matches are performed only when the previous match ends. So it
21 1.1 christos * is preferable to spend more time in matches to allow very fast string
22 1.1 christos * insertions and avoid deletions. The matching algorithm for small
23 1.1 christos * strings is inspired from that of Rabin & Karp. A brute force approach
24 1.1 christos * is used to find longer strings when a small match has been found.
25 1.1 christos * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
26 1.1 christos * (by Leonid Broukhis).
27 1.1 christos * A previous version of this file used a more sophisticated algorithm
28 1.1 christos * (by Fiala and Greene) which is guaranteed to run in linear amortized
29 1.1 christos * time, but has a larger average cost, uses more memory and is patented.
30 1.1 christos * However the F&G algorithm may be faster for some highly redundant
31 1.1 christos * files if the parameter max_chain_length (described below) is too large.
32 1.1 christos *
33 1.1 christos * ACKNOWLEDGEMENTS
34 1.1 christos *
35 1.1 christos * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
36 1.1 christos * I found it in 'freeze' written by Leonid Broukhis.
37 1.1 christos * Thanks to many people for bug reports and testing.
38 1.1 christos *
39 1.1 christos * REFERENCES
40 1.1 christos *
41 1.1 christos * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
42 1.4 christos * Available in http://tools.ietf.org/html/rfc1951
43 1.1 christos *
44 1.1 christos * A description of the Rabin and Karp algorithm is given in the book
45 1.1 christos * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
46 1.1 christos *
47 1.1 christos * Fiala,E.R., and Greene,D.H.
48 1.1 christos * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
49 1.1 christos *
50 1.1 christos */
51 1.1 christos
52 1.6 christos /* @(#) Id */
53 1.1 christos
54 1.1 christos #include "deflate.h"
55 1.1 christos
56 1.1 christos const char deflate_copyright[] =
57 1.6 christos " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
58 1.1 christos /*
59 1.1 christos If you use the zlib library in a product, an acknowledgment is welcome
60 1.1 christos in the documentation of your product. If for some reason you cannot
61 1.1 christos include such an acknowledgment, I would appreciate that you keep this
62 1.1 christos copyright string in the executable of your product.
63 1.1 christos */
64 1.1 christos
65 1.1 christos /* ===========================================================================
66 1.1 christos * Function prototypes.
67 1.1 christos */
68 1.1 christos typedef enum {
69 1.1 christos need_more, /* block not completed, need more input or more output */
70 1.1 christos block_done, /* block flush performed */
71 1.1 christos finish_started, /* finish started, need only more output at next deflate */
72 1.1 christos finish_done /* finish done, accept no more input or output */
73 1.1 christos } block_state;
74 1.1 christos
75 1.1 christos typedef block_state (*compress_func) OF((deflate_state *s, int flush));
76 1.1 christos /* Compression function. Returns the block state after the call. */
77 1.1 christos
78 1.4 christos local int deflateStateCheck OF((z_streamp strm));
79 1.4 christos local void slide_hash OF((deflate_state *s));
80 1.1 christos local void fill_window OF((deflate_state *s));
81 1.1 christos local block_state deflate_stored OF((deflate_state *s, int flush));
82 1.1 christos local block_state deflate_fast OF((deflate_state *s, int flush));
83 1.1 christos #ifndef FASTEST
84 1.1 christos local block_state deflate_slow OF((deflate_state *s, int flush));
85 1.1 christos #endif
86 1.4 christos local block_state deflate_rle OF((deflate_state *s, int flush));
87 1.4 christos local block_state deflate_huff OF((deflate_state *s, int flush));
88 1.1 christos local void lm_init OF((deflate_state *s));
89 1.1 christos local void putShortMSB OF((deflate_state *s, uInt b));
90 1.1 christos local void flush_pending OF((z_streamp strm));
91 1.4 christos local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
92 1.1 christos local uInt longest_match OF((deflate_state *s, IPos cur_match));
93 1.1 christos
94 1.2 christos #ifdef ZLIB_DEBUG
95 1.1 christos local void check_match OF((deflate_state *s, IPos start, IPos match,
96 1.1 christos int length));
97 1.1 christos #endif
98 1.1 christos
99 1.1 christos /* ===========================================================================
100 1.1 christos * Local data
101 1.1 christos */
102 1.1 christos
103 1.1 christos #define NIL 0
104 1.1 christos /* Tail of hash chains */
105 1.1 christos
106 1.1 christos #ifndef TOO_FAR
107 1.1 christos # define TOO_FAR 4096
108 1.1 christos #endif
109 1.1 christos /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
110 1.1 christos
111 1.1 christos /* Values for max_lazy_match, good_match and max_chain_length, depending on
112 1.1 christos * the desired pack level (0..9). The values given below have been tuned to
113 1.1 christos * exclude worst case performance for pathological files. Better values may be
114 1.1 christos * found for specific files.
115 1.1 christos */
116 1.1 christos typedef struct config_s {
117 1.1 christos ush good_length; /* reduce lazy search above this match length */
118 1.1 christos ush max_lazy; /* do not perform lazy search above this match length */
119 1.1 christos ush nice_length; /* quit search above this match length */
120 1.1 christos ush max_chain;
121 1.1 christos compress_func func;
122 1.1 christos } config;
123 1.1 christos
124 1.1 christos #ifdef FASTEST
125 1.1 christos local const config configuration_table[2] = {
126 1.1 christos /* good lazy nice chain */
127 1.1 christos /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
128 1.1 christos /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
129 1.1 christos #else
130 1.1 christos local const config configuration_table[10] = {
131 1.1 christos /* good lazy nice chain */
132 1.1 christos /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
133 1.1 christos /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
134 1.1 christos /* 2 */ {4, 5, 16, 8, deflate_fast},
135 1.1 christos /* 3 */ {4, 6, 32, 32, deflate_fast},
136 1.1 christos
137 1.1 christos /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
138 1.1 christos /* 5 */ {8, 16, 32, 32, deflate_slow},
139 1.1 christos /* 6 */ {8, 16, 128, 128, deflate_slow},
140 1.1 christos /* 7 */ {8, 32, 128, 256, deflate_slow},
141 1.1 christos /* 8 */ {32, 128, 258, 1024, deflate_slow},
142 1.1 christos /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
143 1.1 christos #endif
144 1.1 christos
145 1.1 christos /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
146 1.1 christos * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
147 1.1 christos * meaning.
148 1.1 christos */
149 1.1 christos
150 1.4 christos /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
151 1.4 christos #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
152 1.1 christos
153 1.1 christos /* ===========================================================================
154 1.1 christos * Update a hash value with the given input byte
155 1.4 christos * IN assertion: all calls to UPDATE_HASH are made with consecutive input
156 1.4 christos * characters, so that a running hash key can be computed from the previous
157 1.4 christos * key instead of complete recalculation each time.
158 1.1 christos */
159 1.6 christos #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
160 1.1 christos
161 1.1 christos
162 1.1 christos /* ===========================================================================
163 1.1 christos * Insert string str in the dictionary and set match_head to the previous head
164 1.1 christos * of the hash chain (the most recent string with same hash key). Return
165 1.1 christos * the previous length of the hash chain.
166 1.1 christos * If this file is compiled with -DFASTEST, the compression level is forced
167 1.1 christos * to 1, and no hash chains are maintained.
168 1.4 christos * IN assertion: all calls to INSERT_STRING are made with consecutive input
169 1.4 christos * characters and the first MIN_MATCH bytes of str are valid (except for
170 1.4 christos * the last MIN_MATCH-1 bytes of the input file).
171 1.1 christos */
172 1.1 christos #ifdef FASTEST
173 1.1 christos #define INSERT_STRING(s, str, match_head) \
174 1.1 christos (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
175 1.1 christos match_head = s->head[s->ins_h], \
176 1.1 christos s->head[s->ins_h] = (Pos)(str))
177 1.1 christos #else
178 1.1 christos #define INSERT_STRING(s, str, match_head) \
179 1.1 christos (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
180 1.1 christos match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
181 1.1 christos s->head[s->ins_h] = (Pos)(str))
182 1.1 christos #endif
183 1.1 christos
184 1.1 christos /* ===========================================================================
185 1.1 christos * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
186 1.1 christos * prev[] will be initialized on the fly.
187 1.1 christos */
188 1.1 christos #define CLEAR_HASH(s) \
189 1.6 christos do { \
190 1.6 christos s->head[s->hash_size - 1] = NIL; \
191 1.6 christos zmemzero((Bytef *)s->head, \
192 1.6 christos (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
193 1.6 christos } while (0)
194 1.1 christos
195 1.4 christos /* ===========================================================================
196 1.4 christos * Slide the hash table when sliding the window down (could be avoided with 32
197 1.4 christos * bit values at the expense of memory usage). We slide even when level == 0 to
198 1.4 christos * keep the hash table consistent if we switch back to level > 0 later.
199 1.4 christos */
200 1.4 christos local void slide_hash(s)
201 1.4 christos deflate_state *s;
202 1.4 christos {
203 1.4 christos unsigned n, m;
204 1.4 christos Posf *p;
205 1.4 christos uInt wsize = s->w_size;
206 1.4 christos
207 1.4 christos n = s->hash_size;
208 1.4 christos p = &s->head[n];
209 1.4 christos do {
210 1.4 christos m = *--p;
211 1.4 christos *p = (Pos)(m >= wsize ? m - wsize : NIL);
212 1.4 christos } while (--n);
213 1.4 christos n = wsize;
214 1.4 christos #ifndef FASTEST
215 1.4 christos p = &s->prev[n];
216 1.4 christos do {
217 1.4 christos m = *--p;
218 1.4 christos *p = (Pos)(m >= wsize ? m - wsize : NIL);
219 1.4 christos /* If n is not on any hash chain, prev[n] is garbage but
220 1.4 christos * its value will never be used.
221 1.4 christos */
222 1.4 christos } while (--n);
223 1.4 christos #endif
224 1.4 christos }
225 1.4 christos
226 1.1 christos /* ========================================================================= */
227 1.1 christos int ZEXPORT deflateInit_(strm, level, version, stream_size)
228 1.1 christos z_streamp strm;
229 1.1 christos int level;
230 1.1 christos const char *version;
231 1.1 christos int stream_size;
232 1.1 christos {
233 1.1 christos return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
234 1.1 christos Z_DEFAULT_STRATEGY, version, stream_size);
235 1.1 christos /* To do: ignore strm->next_in if we use it as window */
236 1.1 christos }
237 1.1 christos
238 1.1 christos /* ========================================================================= */
239 1.1 christos int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
240 1.1 christos version, stream_size)
241 1.1 christos z_streamp strm;
242 1.1 christos int level;
243 1.1 christos int method;
244 1.1 christos int windowBits;
245 1.1 christos int memLevel;
246 1.1 christos int strategy;
247 1.1 christos const char *version;
248 1.1 christos int stream_size;
249 1.1 christos {
250 1.1 christos deflate_state *s;
251 1.1 christos int wrap = 1;
252 1.1 christos static const char my_version[] = ZLIB_VERSION;
253 1.1 christos
254 1.1 christos if (version == Z_NULL || version[0] != my_version[0] ||
255 1.1 christos stream_size != sizeof(z_stream)) {
256 1.1 christos return Z_VERSION_ERROR;
257 1.1 christos }
258 1.1 christos if (strm == Z_NULL) return Z_STREAM_ERROR;
259 1.1 christos
260 1.1 christos strm->msg = Z_NULL;
261 1.1 christos if (strm->zalloc == (alloc_func)0) {
262 1.4 christos #ifdef Z_SOLO
263 1.4 christos return Z_STREAM_ERROR;
264 1.4 christos #else
265 1.1 christos strm->zalloc = zcalloc;
266 1.1 christos strm->opaque = (voidpf)0;
267 1.4 christos #endif
268 1.1 christos }
269 1.4 christos if (strm->zfree == (free_func)0)
270 1.4 christos #ifdef Z_SOLO
271 1.4 christos return Z_STREAM_ERROR;
272 1.4 christos #else
273 1.4 christos strm->zfree = zcfree;
274 1.4 christos #endif
275 1.1 christos
276 1.1 christos #ifdef FASTEST
277 1.1 christos if (level != 0) level = 1;
278 1.1 christos #else
279 1.1 christos if (level == Z_DEFAULT_COMPRESSION) level = 6;
280 1.1 christos #endif
281 1.1 christos
282 1.1 christos if (windowBits < 0) { /* suppress zlib wrapper */
283 1.1 christos wrap = 0;
284 1.6 christos if (windowBits < -15)
285 1.6 christos return Z_STREAM_ERROR;
286 1.1 christos windowBits = -windowBits;
287 1.1 christos }
288 1.1 christos #ifdef GZIP
289 1.1 christos else if (windowBits > 15) {
290 1.1 christos wrap = 2; /* write gzip wrapper instead */
291 1.1 christos windowBits -= 16;
292 1.1 christos }
293 1.1 christos #endif
294 1.1 christos if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
295 1.1 christos windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
296 1.4 christos strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
297 1.1 christos return Z_STREAM_ERROR;
298 1.1 christos }
299 1.1 christos if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
300 1.1 christos s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
301 1.1 christos if (s == Z_NULL) return Z_MEM_ERROR;
302 1.1 christos strm->state = (struct internal_state FAR *)s;
303 1.1 christos s->strm = strm;
304 1.4 christos s->status = INIT_STATE; /* to pass state test in deflateReset() */
305 1.1 christos
306 1.1 christos s->wrap = wrap;
307 1.1 christos s->gzhead = Z_NULL;
308 1.4 christos s->w_bits = (uInt)windowBits;
309 1.1 christos s->w_size = 1 << s->w_bits;
310 1.1 christos s->w_mask = s->w_size - 1;
311 1.1 christos
312 1.4 christos s->hash_bits = (uInt)memLevel + 7;
313 1.1 christos s->hash_size = 1 << s->hash_bits;
314 1.1 christos s->hash_mask = s->hash_size - 1;
315 1.6 christos s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
316 1.1 christos
317 1.1 christos s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
318 1.1 christos s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
319 1.1 christos s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
320 1.1 christos
321 1.4 christos s->high_water = 0; /* nothing written to s->window yet */
322 1.4 christos
323 1.1 christos s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
324 1.1 christos
325 1.5 wiz /* We overlay pending_buf and sym_buf. This works since the average size
326 1.5 wiz * for length/distance pairs over any compressed block is assured to be 31
327 1.5 wiz * bits or less.
328 1.5 wiz *
329 1.5 wiz * Analysis: The longest fixed codes are a length code of 8 bits plus 5
330 1.5 wiz * extra bits, for lengths 131 to 257. The longest fixed distance codes are
331 1.5 wiz * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
332 1.5 wiz * possible fixed-codes length/distance pair is then 31 bits total.
333 1.5 wiz *
334 1.5 wiz * sym_buf starts one-fourth of the way into pending_buf. So there are
335 1.5 wiz * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
336 1.5 wiz * in sym_buf is three bytes -- two for the distance and one for the
337 1.5 wiz * literal/length. As each symbol is consumed, the pointer to the next
338 1.5 wiz * sym_buf value to read moves forward three bytes. From that symbol, up to
339 1.5 wiz * 31 bits are written to pending_buf. The closest the written pending_buf
340 1.5 wiz * bits gets to the next sym_buf symbol to read is just before the last
341 1.6 christos * code is written. At that time, 31*(n - 2) bits have been written, just
342 1.6 christos * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
343 1.6 christos * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
344 1.5 wiz * symbols are written.) The closest the writing gets to what is unread is
345 1.6 christos * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
346 1.5 wiz * can range from 128 to 32768.
347 1.5 wiz *
348 1.5 wiz * Therefore, at a minimum, there are 142 bits of space between what is
349 1.5 wiz * written and what is read in the overlain buffers, so the symbols cannot
350 1.5 wiz * be overwritten by the compressed data. That space is actually 139 bits,
351 1.5 wiz * due to the three-bit fixed-code block header.
352 1.5 wiz *
353 1.5 wiz * That covers the case where either Z_FIXED is specified, forcing fixed
354 1.5 wiz * codes, or when the use of fixed codes is chosen, because that choice
355 1.5 wiz * results in a smaller compressed block than dynamic codes. That latter
356 1.5 wiz * condition then assures that the above analysis also covers all dynamic
357 1.5 wiz * blocks. A dynamic-code block will only be chosen to be emitted if it has
358 1.5 wiz * fewer bits than a fixed-code block would for the same set of symbols.
359 1.5 wiz * Therefore its average symbol length is assured to be less than 31. So
360 1.5 wiz * the compressed data for a dynamic block also cannot overwrite the
361 1.5 wiz * symbols from which it is being constructed.
362 1.5 wiz */
363 1.5 wiz
364 1.5 wiz s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
365 1.5 wiz s->pending_buf_size = (ulg)s->lit_bufsize * 4;
366 1.1 christos
367 1.1 christos if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
368 1.1 christos s->pending_buf == Z_NULL) {
369 1.1 christos s->status = FINISH_STATE;
370 1.3 christos strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR));
371 1.1 christos deflateEnd (strm);
372 1.1 christos return Z_MEM_ERROR;
373 1.1 christos }
374 1.5 wiz s->sym_buf = s->pending_buf + s->lit_bufsize;
375 1.5 wiz s->sym_end = (s->lit_bufsize - 1) * 3;
376 1.5 wiz /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
377 1.5 wiz * on 16 bit machines and because stored blocks are restricted to
378 1.5 wiz * 64K-1 bytes.
379 1.5 wiz */
380 1.1 christos
381 1.1 christos s->level = level;
382 1.1 christos s->strategy = strategy;
383 1.1 christos s->method = (Byte)method;
384 1.1 christos
385 1.1 christos return deflateReset(strm);
386 1.1 christos }
387 1.1 christos
388 1.4 christos /* =========================================================================
389 1.4 christos * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
390 1.4 christos */
391 1.6 christos local int deflateStateCheck(strm)
392 1.4 christos z_streamp strm;
393 1.4 christos {
394 1.4 christos deflate_state *s;
395 1.4 christos if (strm == Z_NULL ||
396 1.4 christos strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
397 1.4 christos return 1;
398 1.4 christos s = strm->state;
399 1.4 christos if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
400 1.4 christos #ifdef GZIP
401 1.4 christos s->status != GZIP_STATE &&
402 1.4 christos #endif
403 1.4 christos s->status != EXTRA_STATE &&
404 1.4 christos s->status != NAME_STATE &&
405 1.4 christos s->status != COMMENT_STATE &&
406 1.4 christos s->status != HCRC_STATE &&
407 1.4 christos s->status != BUSY_STATE &&
408 1.4 christos s->status != FINISH_STATE))
409 1.4 christos return 1;
410 1.4 christos return 0;
411 1.4 christos }
412 1.4 christos
413 1.1 christos /* ========================================================================= */
414 1.6 christos int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
415 1.1 christos z_streamp strm;
416 1.1 christos const Bytef *dictionary;
417 1.1 christos uInt dictLength;
418 1.1 christos {
419 1.1 christos deflate_state *s;
420 1.4 christos uInt str, n;
421 1.4 christos int wrap;
422 1.4 christos unsigned avail;
423 1.4 christos z_const unsigned char *next;
424 1.4 christos
425 1.4 christos if (deflateStateCheck(strm) || dictionary == Z_NULL)
426 1.4 christos return Z_STREAM_ERROR;
427 1.4 christos s = strm->state;
428 1.4 christos wrap = s->wrap;
429 1.4 christos if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
430 1.1 christos return Z_STREAM_ERROR;
431 1.1 christos
432 1.4 christos /* when using zlib wrappers, compute Adler-32 for provided dictionary */
433 1.4 christos if (wrap == 1)
434 1.1 christos strm->adler = adler32(strm->adler, dictionary, dictLength);
435 1.4 christos s->wrap = 0; /* avoid computing Adler-32 in read_buf */
436 1.4 christos
437 1.4 christos /* if dictionary would fill window, just replace the history */
438 1.4 christos if (dictLength >= s->w_size) {
439 1.4 christos if (wrap == 0) { /* already empty otherwise */
440 1.4 christos CLEAR_HASH(s);
441 1.4 christos s->strstart = 0;
442 1.4 christos s->block_start = 0L;
443 1.4 christos s->insert = 0;
444 1.4 christos }
445 1.4 christos dictionary += dictLength - s->w_size; /* use the tail */
446 1.4 christos dictLength = s->w_size;
447 1.4 christos }
448 1.4 christos
449 1.4 christos /* insert dictionary into window and hash */
450 1.4 christos avail = strm->avail_in;
451 1.4 christos next = strm->next_in;
452 1.4 christos strm->avail_in = dictLength;
453 1.4 christos strm->next_in = __UNCONST(dictionary);
454 1.4 christos fill_window(s);
455 1.4 christos while (s->lookahead >= MIN_MATCH) {
456 1.4 christos str = s->strstart;
457 1.4 christos n = s->lookahead - (MIN_MATCH-1);
458 1.4 christos do {
459 1.4 christos UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
460 1.4 christos #ifndef FASTEST
461 1.4 christos s->prev[str & s->w_mask] = s->head[s->ins_h];
462 1.4 christos #endif
463 1.4 christos s->head[s->ins_h] = (Pos)str;
464 1.4 christos str++;
465 1.4 christos } while (--n);
466 1.4 christos s->strstart = str;
467 1.4 christos s->lookahead = MIN_MATCH-1;
468 1.4 christos fill_window(s);
469 1.4 christos }
470 1.4 christos s->strstart += s->lookahead;
471 1.4 christos s->block_start = (long)s->strstart;
472 1.4 christos s->insert = s->lookahead;
473 1.4 christos s->lookahead = 0;
474 1.4 christos s->match_length = s->prev_length = MIN_MATCH-1;
475 1.4 christos s->match_available = 0;
476 1.4 christos strm->next_in = next;
477 1.4 christos strm->avail_in = avail;
478 1.4 christos s->wrap = wrap;
479 1.4 christos return Z_OK;
480 1.4 christos }
481 1.1 christos
482 1.4 christos /* ========================================================================= */
483 1.6 christos int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
484 1.4 christos z_streamp strm;
485 1.4 christos Bytef *dictionary;
486 1.4 christos uInt *dictLength;
487 1.4 christos {
488 1.4 christos deflate_state *s;
489 1.4 christos uInt len;
490 1.4 christos
491 1.4 christos if (deflateStateCheck(strm))
492 1.4 christos return Z_STREAM_ERROR;
493 1.4 christos s = strm->state;
494 1.4 christos len = s->strstart + s->lookahead;
495 1.4 christos if (len > s->w_size)
496 1.4 christos len = s->w_size;
497 1.4 christos if (dictionary != Z_NULL && len)
498 1.4 christos zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
499 1.4 christos if (dictLength != Z_NULL)
500 1.4 christos *dictLength = len;
501 1.1 christos return Z_OK;
502 1.1 christos }
503 1.1 christos
504 1.1 christos /* ========================================================================= */
505 1.6 christos int ZEXPORT deflateResetKeep(strm)
506 1.1 christos z_streamp strm;
507 1.1 christos {
508 1.1 christos deflate_state *s;
509 1.1 christos
510 1.4 christos if (deflateStateCheck(strm)) {
511 1.1 christos return Z_STREAM_ERROR;
512 1.1 christos }
513 1.1 christos
514 1.1 christos strm->total_in = strm->total_out = 0;
515 1.1 christos strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
516 1.1 christos strm->data_type = Z_UNKNOWN;
517 1.1 christos
518 1.1 christos s = (deflate_state *)strm->state;
519 1.1 christos s->pending = 0;
520 1.1 christos s->pending_out = s->pending_buf;
521 1.1 christos
522 1.1 christos if (s->wrap < 0) {
523 1.1 christos s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
524 1.1 christos }
525 1.4 christos s->status =
526 1.4 christos #ifdef GZIP
527 1.4 christos s->wrap == 2 ? GZIP_STATE :
528 1.4 christos #endif
529 1.6 christos INIT_STATE;
530 1.1 christos strm->adler =
531 1.1 christos #ifdef GZIP
532 1.1 christos s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
533 1.1 christos #endif
534 1.1 christos adler32(0L, Z_NULL, 0);
535 1.6 christos s->last_flush = -2;
536 1.1 christos
537 1.1 christos _tr_init(s);
538 1.1 christos
539 1.1 christos return Z_OK;
540 1.1 christos }
541 1.1 christos
542 1.1 christos /* ========================================================================= */
543 1.6 christos int ZEXPORT deflateReset(strm)
544 1.4 christos z_streamp strm;
545 1.4 christos {
546 1.4 christos int ret;
547 1.4 christos
548 1.4 christos ret = deflateResetKeep(strm);
549 1.4 christos if (ret == Z_OK)
550 1.4 christos lm_init(strm->state);
551 1.4 christos return ret;
552 1.4 christos }
553 1.4 christos
554 1.4 christos /* ========================================================================= */
555 1.6 christos int ZEXPORT deflateSetHeader(strm, head)
556 1.1 christos z_streamp strm;
557 1.1 christos gz_headerp head;
558 1.1 christos {
559 1.4 christos if (deflateStateCheck(strm) || strm->state->wrap != 2)
560 1.4 christos return Z_STREAM_ERROR;
561 1.1 christos strm->state->gzhead = head;
562 1.1 christos return Z_OK;
563 1.1 christos }
564 1.1 christos
565 1.1 christos /* ========================================================================= */
566 1.6 christos int ZEXPORT deflatePending(strm, pending, bits)
567 1.4 christos unsigned *pending;
568 1.4 christos int *bits;
569 1.4 christos z_streamp strm;
570 1.4 christos {
571 1.4 christos if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
572 1.4 christos if (pending != Z_NULL)
573 1.4 christos *pending = strm->state->pending;
574 1.4 christos if (bits != Z_NULL)
575 1.4 christos *bits = strm->state->bi_valid;
576 1.4 christos return Z_OK;
577 1.4 christos }
578 1.4 christos
579 1.4 christos /* ========================================================================= */
580 1.6 christos int ZEXPORT deflatePrime(strm, bits, value)
581 1.1 christos z_streamp strm;
582 1.1 christos int bits;
583 1.1 christos int value;
584 1.1 christos {
585 1.4 christos deflate_state *s;
586 1.4 christos int put;
587 1.4 christos
588 1.4 christos if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
589 1.4 christos s = strm->state;
590 1.6 christos if (bits < 0 || bits > 16 ||
591 1.6 christos s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
592 1.4 christos return Z_BUF_ERROR;
593 1.4 christos do {
594 1.4 christos put = Buf_size - s->bi_valid;
595 1.4 christos if (put > bits)
596 1.4 christos put = bits;
597 1.4 christos s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
598 1.4 christos s->bi_valid += put;
599 1.4 christos _tr_flush_bits(s);
600 1.4 christos value >>= put;
601 1.4 christos bits -= put;
602 1.4 christos } while (bits);
603 1.1 christos return Z_OK;
604 1.1 christos }
605 1.1 christos
606 1.1 christos /* ========================================================================= */
607 1.1 christos int ZEXPORT deflateParams(strm, level, strategy)
608 1.1 christos z_streamp strm;
609 1.1 christos int level;
610 1.1 christos int strategy;
611 1.1 christos {
612 1.1 christos deflate_state *s;
613 1.1 christos compress_func func;
614 1.1 christos
615 1.4 christos if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
616 1.1 christos s = strm->state;
617 1.1 christos
618 1.1 christos #ifdef FASTEST
619 1.1 christos if (level != 0) level = 1;
620 1.1 christos #else
621 1.1 christos if (level == Z_DEFAULT_COMPRESSION) level = 6;
622 1.1 christos #endif
623 1.1 christos if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
624 1.1 christos return Z_STREAM_ERROR;
625 1.1 christos }
626 1.1 christos func = configuration_table[s->level].func;
627 1.1 christos
628 1.6 christos if ((strategy != s->strategy || func != configuration_table[level].func) &&
629 1.6 christos s->last_flush != -2) {
630 1.1 christos /* Flush the last buffer: */
631 1.4 christos int err = deflate(strm, Z_BLOCK);
632 1.4 christos if (err == Z_STREAM_ERROR)
633 1.4 christos return err;
634 1.6 christos if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
635 1.4 christos return Z_BUF_ERROR;
636 1.1 christos }
637 1.1 christos if (s->level != level) {
638 1.4 christos if (s->level == 0 && s->matches != 0) {
639 1.4 christos if (s->matches == 1)
640 1.4 christos slide_hash(s);
641 1.4 christos else
642 1.4 christos CLEAR_HASH(s);
643 1.4 christos s->matches = 0;
644 1.4 christos }
645 1.1 christos s->level = level;
646 1.1 christos s->max_lazy_match = configuration_table[level].max_lazy;
647 1.1 christos s->good_match = configuration_table[level].good_length;
648 1.1 christos s->nice_match = configuration_table[level].nice_length;
649 1.1 christos s->max_chain_length = configuration_table[level].max_chain;
650 1.1 christos }
651 1.1 christos s->strategy = strategy;
652 1.4 christos return Z_OK;
653 1.1 christos }
654 1.1 christos
655 1.1 christos /* ========================================================================= */
656 1.1 christos int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
657 1.1 christos z_streamp strm;
658 1.1 christos int good_length;
659 1.1 christos int max_lazy;
660 1.1 christos int nice_length;
661 1.1 christos int max_chain;
662 1.1 christos {
663 1.1 christos deflate_state *s;
664 1.1 christos
665 1.4 christos if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
666 1.1 christos s = strm->state;
667 1.4 christos s->good_match = (uInt)good_length;
668 1.4 christos s->max_lazy_match = (uInt)max_lazy;
669 1.1 christos s->nice_match = nice_length;
670 1.4 christos s->max_chain_length = (uInt)max_chain;
671 1.1 christos return Z_OK;
672 1.1 christos }
673 1.1 christos
674 1.1 christos /* =========================================================================
675 1.6 christos * For the default windowBits of 15 and memLevel of 8, this function returns a
676 1.6 christos * close to exact, as well as small, upper bound on the compressed size. This
677 1.6 christos * is an expansion of ~0.03%, plus a small constant.
678 1.1 christos *
679 1.6 christos * For any setting other than those defaults for windowBits and memLevel, one
680 1.6 christos * of two worst case bounds is returned. This is at most an expansion of ~4% or
681 1.6 christos * ~13%, plus a small constant.
682 1.1 christos *
683 1.6 christos * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
684 1.6 christos * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
685 1.6 christos * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
686 1.6 christos * expansion results from five bytes of header for each stored block.
687 1.6 christos *
688 1.6 christos * The larger expansion of 13% results from a window size less than or equal to
689 1.6 christos * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
690 1.6 christos * the data being compressed may have slid out of the sliding window, impeding
691 1.6 christos * a stored block from being emitted. Then the only choice is a fixed or
692 1.6 christos * dynamic block, where a fixed block limits the maximum expansion to 9 bits
693 1.6 christos * per 8-bit byte, plus 10 bits for every block. The smallest block size for
694 1.6 christos * which this can occur is 255 (memLevel == 2).
695 1.6 christos *
696 1.6 christos * Shifts are used to approximate divisions, for speed.
697 1.1 christos */
698 1.1 christos uLong ZEXPORT deflateBound(strm, sourceLen)
699 1.1 christos z_streamp strm;
700 1.1 christos uLong sourceLen;
701 1.1 christos {
702 1.1 christos deflate_state *s;
703 1.6 christos uLong fixedlen, storelen, wraplen;
704 1.4 christos
705 1.6 christos /* upper bound for fixed blocks with 9-bit literals and length 255
706 1.6 christos (memLevel == 2, which is the lowest that may not use stored blocks) --
707 1.6 christos ~13% overhead plus a small constant */
708 1.6 christos fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
709 1.6 christos (sourceLen >> 9) + 4;
710 1.6 christos
711 1.6 christos /* upper bound for stored blocks with length 127 (memLevel == 1) --
712 1.6 christos ~4% overhead plus a small constant */
713 1.6 christos storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
714 1.6 christos (sourceLen >> 11) + 7;
715 1.1 christos
716 1.6 christos /* if can't get parameters, return larger bound plus a zlib wrapper */
717 1.4 christos if (deflateStateCheck(strm))
718 1.6 christos return (fixedlen > storelen ? fixedlen : storelen) + 6;
719 1.4 christos
720 1.4 christos /* compute wrapper length */
721 1.4 christos s = strm->state;
722 1.4 christos switch (s->wrap) {
723 1.4 christos case 0: /* raw deflate */
724 1.4 christos wraplen = 0;
725 1.4 christos break;
726 1.4 christos case 1: /* zlib wrapper */
727 1.4 christos wraplen = 6 + (s->strstart ? 4 : 0);
728 1.4 christos break;
729 1.4 christos #ifdef GZIP
730 1.4 christos case 2: /* gzip wrapper */
731 1.4 christos wraplen = 18;
732 1.4 christos if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
733 1.4 christos Bytef *str;
734 1.4 christos if (s->gzhead->extra != Z_NULL)
735 1.4 christos wraplen += 2 + s->gzhead->extra_len;
736 1.4 christos str = s->gzhead->name;
737 1.4 christos if (str != Z_NULL)
738 1.4 christos do {
739 1.4 christos wraplen++;
740 1.4 christos } while (*str++);
741 1.4 christos str = s->gzhead->comment;
742 1.4 christos if (str != Z_NULL)
743 1.4 christos do {
744 1.4 christos wraplen++;
745 1.4 christos } while (*str++);
746 1.4 christos if (s->gzhead->hcrc)
747 1.4 christos wraplen += 2;
748 1.4 christos }
749 1.4 christos break;
750 1.4 christos #endif
751 1.4 christos default: /* for compiler happiness */
752 1.4 christos wraplen = 6;
753 1.4 christos }
754 1.1 christos
755 1.6 christos /* if not default parameters, return one of the conservative bounds */
756 1.1 christos if (s->w_bits != 15 || s->hash_bits != 8 + 7)
757 1.6 christos return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
758 1.1 christos
759 1.6 christos /* default settings: return tight bound for that case -- ~0.03% overhead
760 1.6 christos plus a small constant */
761 1.4 christos return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
762 1.4 christos (sourceLen >> 25) + 13 - 6 + wraplen;
763 1.1 christos }
764 1.1 christos
765 1.1 christos /* =========================================================================
766 1.1 christos * Put a short in the pending buffer. The 16-bit value is put in MSB order.
767 1.1 christos * IN assertion: the stream state is correct and there is enough room in
768 1.1 christos * pending_buf.
769 1.1 christos */
770 1.6 christos local void putShortMSB(s, b)
771 1.1 christos deflate_state *s;
772 1.1 christos uInt b;
773 1.1 christos {
774 1.1 christos put_byte(s, (Byte)(b >> 8));
775 1.1 christos put_byte(s, (Byte)(b & 0xff));
776 1.1 christos }
777 1.1 christos
778 1.1 christos /* =========================================================================
779 1.4 christos * Flush as much pending output as possible. All deflate() output, except for
780 1.4 christos * some deflate_stored() output, goes through this function so some
781 1.4 christos * applications may wish to modify it to avoid allocating a large
782 1.4 christos * strm->next_out buffer and copying into it. (See also read_buf()).
783 1.1 christos */
784 1.1 christos local void flush_pending(strm)
785 1.1 christos z_streamp strm;
786 1.1 christos {
787 1.4 christos unsigned len;
788 1.4 christos deflate_state *s = strm->state;
789 1.1 christos
790 1.4 christos _tr_flush_bits(s);
791 1.4 christos len = s->pending;
792 1.1 christos if (len > strm->avail_out) len = strm->avail_out;
793 1.1 christos if (len == 0) return;
794 1.1 christos
795 1.4 christos zmemcpy(strm->next_out, s->pending_out, len);
796 1.1 christos strm->next_out += len;
797 1.4 christos s->pending_out += len;
798 1.1 christos strm->total_out += len;
799 1.4 christos strm->avail_out -= len;
800 1.4 christos s->pending -= len;
801 1.4 christos if (s->pending == 0) {
802 1.4 christos s->pending_out = s->pending_buf;
803 1.1 christos }
804 1.1 christos }
805 1.1 christos
806 1.4 christos /* ===========================================================================
807 1.4 christos * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
808 1.4 christos */
809 1.4 christos #define HCRC_UPDATE(beg) \
810 1.4 christos do { \
811 1.4 christos if (s->gzhead->hcrc && s->pending > (beg)) \
812 1.4 christos strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
813 1.4 christos s->pending - (beg)); \
814 1.4 christos } while (0)
815 1.4 christos
816 1.1 christos /* ========================================================================= */
817 1.6 christos int ZEXPORT deflate(strm, flush)
818 1.1 christos z_streamp strm;
819 1.1 christos int flush;
820 1.1 christos {
821 1.1 christos int old_flush; /* value of flush param for previous deflate call */
822 1.1 christos deflate_state *s;
823 1.1 christos
824 1.4 christos if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
825 1.1 christos return Z_STREAM_ERROR;
826 1.1 christos }
827 1.1 christos s = strm->state;
828 1.1 christos
829 1.1 christos if (strm->next_out == Z_NULL ||
830 1.4 christos (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
831 1.1 christos (s->status == FINISH_STATE && flush != Z_FINISH)) {
832 1.1 christos ERR_RETURN(strm, Z_STREAM_ERROR);
833 1.1 christos }
834 1.1 christos if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
835 1.1 christos
836 1.1 christos old_flush = s->last_flush;
837 1.1 christos s->last_flush = flush;
838 1.1 christos
839 1.4 christos /* Flush as much pending output as possible */
840 1.4 christos if (s->pending != 0) {
841 1.4 christos flush_pending(strm);
842 1.4 christos if (strm->avail_out == 0) {
843 1.4 christos /* Since avail_out is 0, deflate will be called again with
844 1.4 christos * more output space, but possibly with both pending and
845 1.4 christos * avail_in equal to zero. There won't be anything to do,
846 1.4 christos * but this is not an error situation so make sure we
847 1.4 christos * return OK instead of BUF_ERROR at next call of deflate:
848 1.4 christos */
849 1.4 christos s->last_flush = -1;
850 1.4 christos return Z_OK;
851 1.4 christos }
852 1.4 christos
853 1.4 christos /* Make sure there is something to do and avoid duplicate consecutive
854 1.4 christos * flushes. For repeated and useless calls with Z_FINISH, we keep
855 1.4 christos * returning Z_STREAM_END instead of Z_BUF_ERROR.
856 1.4 christos */
857 1.4 christos } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
858 1.4 christos flush != Z_FINISH) {
859 1.4 christos ERR_RETURN(strm, Z_BUF_ERROR);
860 1.4 christos }
861 1.4 christos
862 1.4 christos /* User must not provide more input after the first FINISH: */
863 1.4 christos if (s->status == FINISH_STATE && strm->avail_in != 0) {
864 1.4 christos ERR_RETURN(strm, Z_BUF_ERROR);
865 1.4 christos }
866 1.4 christos
867 1.1 christos /* Write the header */
868 1.6 christos if (s->status == INIT_STATE && s->wrap == 0)
869 1.6 christos s->status = BUSY_STATE;
870 1.1 christos if (s->status == INIT_STATE) {
871 1.4 christos /* zlib header */
872 1.6 christos uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
873 1.4 christos uInt level_flags;
874 1.4 christos
875 1.4 christos if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
876 1.4 christos level_flags = 0;
877 1.4 christos else if (s->level < 6)
878 1.4 christos level_flags = 1;
879 1.4 christos else if (s->level == 6)
880 1.4 christos level_flags = 2;
881 1.4 christos else
882 1.4 christos level_flags = 3;
883 1.4 christos header |= (level_flags << 6);
884 1.4 christos if (s->strstart != 0) header |= PRESET_DICT;
885 1.4 christos header += 31 - (header % 31);
886 1.4 christos
887 1.4 christos putShortMSB(s, header);
888 1.4 christos
889 1.4 christos /* Save the adler32 of the preset dictionary: */
890 1.4 christos if (s->strstart != 0) {
891 1.4 christos putShortMSB(s, (uInt)(strm->adler >> 16));
892 1.4 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
893 1.1 christos }
894 1.4 christos strm->adler = adler32(0L, Z_NULL, 0);
895 1.4 christos s->status = BUSY_STATE;
896 1.1 christos
897 1.4 christos /* Compression must start with an empty pending buffer */
898 1.4 christos flush_pending(strm);
899 1.4 christos if (s->pending != 0) {
900 1.4 christos s->last_flush = -1;
901 1.4 christos return Z_OK;
902 1.4 christos }
903 1.4 christos }
904 1.4 christos #ifdef GZIP
905 1.4 christos if (s->status == GZIP_STATE) {
906 1.4 christos /* gzip header */
907 1.4 christos strm->adler = crc32(0L, Z_NULL, 0);
908 1.4 christos put_byte(s, 31);
909 1.4 christos put_byte(s, 139);
910 1.4 christos put_byte(s, 8);
911 1.4 christos if (s->gzhead == Z_NULL) {
912 1.4 christos put_byte(s, 0);
913 1.4 christos put_byte(s, 0);
914 1.4 christos put_byte(s, 0);
915 1.4 christos put_byte(s, 0);
916 1.4 christos put_byte(s, 0);
917 1.4 christos put_byte(s, s->level == 9 ? 2 :
918 1.4 christos (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
919 1.4 christos 4 : 0));
920 1.4 christos put_byte(s, OS_CODE);
921 1.1 christos s->status = BUSY_STATE;
922 1.1 christos
923 1.4 christos /* Compression must start with an empty pending buffer */
924 1.4 christos flush_pending(strm);
925 1.4 christos if (s->pending != 0) {
926 1.4 christos s->last_flush = -1;
927 1.4 christos return Z_OK;
928 1.1 christos }
929 1.4 christos }
930 1.4 christos else {
931 1.4 christos put_byte(s, (s->gzhead->text ? 1 : 0) +
932 1.4 christos (s->gzhead->hcrc ? 2 : 0) +
933 1.4 christos (s->gzhead->extra == Z_NULL ? 0 : 4) +
934 1.4 christos (s->gzhead->name == Z_NULL ? 0 : 8) +
935 1.4 christos (s->gzhead->comment == Z_NULL ? 0 : 16)
936 1.4 christos );
937 1.4 christos put_byte(s, (Byte)(s->gzhead->time & 0xff));
938 1.4 christos put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
939 1.4 christos put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
940 1.4 christos put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
941 1.4 christos put_byte(s, s->level == 9 ? 2 :
942 1.4 christos (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
943 1.4 christos 4 : 0));
944 1.4 christos put_byte(s, s->gzhead->os & 0xff);
945 1.4 christos if (s->gzhead->extra != Z_NULL) {
946 1.4 christos put_byte(s, s->gzhead->extra_len & 0xff);
947 1.4 christos put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
948 1.4 christos }
949 1.4 christos if (s->gzhead->hcrc)
950 1.4 christos strm->adler = crc32(strm->adler, s->pending_buf,
951 1.4 christos s->pending);
952 1.4 christos s->gzindex = 0;
953 1.4 christos s->status = EXTRA_STATE;
954 1.1 christos }
955 1.1 christos }
956 1.1 christos if (s->status == EXTRA_STATE) {
957 1.4 christos if (s->gzhead->extra != Z_NULL) {
958 1.4 christos ulg beg = s->pending; /* start of bytes to update crc */
959 1.4 christos uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
960 1.4 christos while (s->pending + left > s->pending_buf_size) {
961 1.4 christos uInt copy = s->pending_buf_size - s->pending;
962 1.4 christos zmemcpy(s->pending_buf + s->pending,
963 1.4 christos s->gzhead->extra + s->gzindex, copy);
964 1.4 christos s->pending = s->pending_buf_size;
965 1.4 christos HCRC_UPDATE(beg);
966 1.4 christos s->gzindex += copy;
967 1.4 christos flush_pending(strm);
968 1.4 christos if (s->pending != 0) {
969 1.4 christos s->last_flush = -1;
970 1.4 christos return Z_OK;
971 1.1 christos }
972 1.4 christos beg = 0;
973 1.4 christos left -= copy;
974 1.1 christos }
975 1.4 christos zmemcpy(s->pending_buf + s->pending,
976 1.4 christos s->gzhead->extra + s->gzindex, left);
977 1.4 christos s->pending += left;
978 1.4 christos HCRC_UPDATE(beg);
979 1.4 christos s->gzindex = 0;
980 1.1 christos }
981 1.4 christos s->status = NAME_STATE;
982 1.1 christos }
983 1.1 christos if (s->status == NAME_STATE) {
984 1.4 christos if (s->gzhead->name != Z_NULL) {
985 1.4 christos ulg beg = s->pending; /* start of bytes to update crc */
986 1.1 christos int val;
987 1.1 christos do {
988 1.1 christos if (s->pending == s->pending_buf_size) {
989 1.4 christos HCRC_UPDATE(beg);
990 1.1 christos flush_pending(strm);
991 1.4 christos if (s->pending != 0) {
992 1.4 christos s->last_flush = -1;
993 1.4 christos return Z_OK;
994 1.1 christos }
995 1.4 christos beg = 0;
996 1.1 christos }
997 1.1 christos val = s->gzhead->name[s->gzindex++];
998 1.1 christos put_byte(s, val);
999 1.1 christos } while (val != 0);
1000 1.4 christos HCRC_UPDATE(beg);
1001 1.4 christos s->gzindex = 0;
1002 1.1 christos }
1003 1.4 christos s->status = COMMENT_STATE;
1004 1.1 christos }
1005 1.1 christos if (s->status == COMMENT_STATE) {
1006 1.4 christos if (s->gzhead->comment != Z_NULL) {
1007 1.4 christos ulg beg = s->pending; /* start of bytes to update crc */
1008 1.1 christos int val;
1009 1.1 christos do {
1010 1.1 christos if (s->pending == s->pending_buf_size) {
1011 1.4 christos HCRC_UPDATE(beg);
1012 1.1 christos flush_pending(strm);
1013 1.4 christos if (s->pending != 0) {
1014 1.4 christos s->last_flush = -1;
1015 1.4 christos return Z_OK;
1016 1.1 christos }
1017 1.4 christos beg = 0;
1018 1.1 christos }
1019 1.1 christos val = s->gzhead->comment[s->gzindex++];
1020 1.1 christos put_byte(s, val);
1021 1.1 christos } while (val != 0);
1022 1.4 christos HCRC_UPDATE(beg);
1023 1.1 christos }
1024 1.4 christos s->status = HCRC_STATE;
1025 1.1 christos }
1026 1.1 christos if (s->status == HCRC_STATE) {
1027 1.1 christos if (s->gzhead->hcrc) {
1028 1.4 christos if (s->pending + 2 > s->pending_buf_size) {
1029 1.1 christos flush_pending(strm);
1030 1.4 christos if (s->pending != 0) {
1031 1.4 christos s->last_flush = -1;
1032 1.4 christos return Z_OK;
1033 1.4 christos }
1034 1.1 christos }
1035 1.4 christos put_byte(s, (Byte)(strm->adler & 0xff));
1036 1.4 christos put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1037 1.4 christos strm->adler = crc32(0L, Z_NULL, 0);
1038 1.1 christos }
1039 1.4 christos s->status = BUSY_STATE;
1040 1.1 christos
1041 1.4 christos /* Compression must start with an empty pending buffer */
1042 1.1 christos flush_pending(strm);
1043 1.4 christos if (s->pending != 0) {
1044 1.1 christos s->last_flush = -1;
1045 1.1 christos return Z_OK;
1046 1.1 christos }
1047 1.1 christos }
1048 1.4 christos #endif
1049 1.1 christos
1050 1.1 christos /* Start a new block or continue the current one.
1051 1.1 christos */
1052 1.1 christos if (strm->avail_in != 0 || s->lookahead != 0 ||
1053 1.1 christos (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1054 1.1 christos block_state bstate;
1055 1.1 christos
1056 1.4 christos bstate = s->level == 0 ? deflate_stored(s, flush) :
1057 1.4 christos s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1058 1.4 christos s->strategy == Z_RLE ? deflate_rle(s, flush) :
1059 1.4 christos (*(configuration_table[s->level].func))(s, flush);
1060 1.1 christos
1061 1.1 christos if (bstate == finish_started || bstate == finish_done) {
1062 1.1 christos s->status = FINISH_STATE;
1063 1.1 christos }
1064 1.1 christos if (bstate == need_more || bstate == finish_started) {
1065 1.1 christos if (strm->avail_out == 0) {
1066 1.1 christos s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1067 1.1 christos }
1068 1.1 christos return Z_OK;
1069 1.1 christos /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1070 1.1 christos * of deflate should use the same flush parameter to make sure
1071 1.1 christos * that the flush is complete. So we don't have to output an
1072 1.1 christos * empty block here, this will be done at next call. This also
1073 1.1 christos * ensures that for a very small output buffer, we emit at most
1074 1.1 christos * one empty block.
1075 1.1 christos */
1076 1.1 christos }
1077 1.1 christos if (bstate == block_done) {
1078 1.1 christos if (flush == Z_PARTIAL_FLUSH) {
1079 1.1 christos _tr_align(s);
1080 1.4 christos } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1081 1.1 christos _tr_stored_block(s, (char*)0, 0L, 0);
1082 1.1 christos /* For a full flush, this empty block will be recognized
1083 1.1 christos * as a special marker by inflate_sync().
1084 1.1 christos */
1085 1.1 christos if (flush == Z_FULL_FLUSH) {
1086 1.1 christos CLEAR_HASH(s); /* forget history */
1087 1.4 christos if (s->lookahead == 0) {
1088 1.4 christos s->strstart = 0;
1089 1.4 christos s->block_start = 0L;
1090 1.4 christos s->insert = 0;
1091 1.4 christos }
1092 1.1 christos }
1093 1.1 christos }
1094 1.1 christos flush_pending(strm);
1095 1.1 christos if (strm->avail_out == 0) {
1096 1.1 christos s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1097 1.1 christos return Z_OK;
1098 1.1 christos }
1099 1.1 christos }
1100 1.1 christos }
1101 1.1 christos
1102 1.1 christos if (flush != Z_FINISH) return Z_OK;
1103 1.1 christos if (s->wrap <= 0) return Z_STREAM_END;
1104 1.1 christos
1105 1.1 christos /* Write the trailer */
1106 1.1 christos #ifdef GZIP
1107 1.1 christos if (s->wrap == 2) {
1108 1.1 christos put_byte(s, (Byte)(strm->adler & 0xff));
1109 1.1 christos put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1110 1.1 christos put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1111 1.1 christos put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1112 1.1 christos put_byte(s, (Byte)(strm->total_in & 0xff));
1113 1.1 christos put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1114 1.1 christos put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1115 1.1 christos put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1116 1.1 christos }
1117 1.1 christos else
1118 1.1 christos #endif
1119 1.1 christos {
1120 1.1 christos putShortMSB(s, (uInt)(strm->adler >> 16));
1121 1.1 christos putShortMSB(s, (uInt)(strm->adler & 0xffff));
1122 1.1 christos }
1123 1.1 christos flush_pending(strm);
1124 1.1 christos /* If avail_out is zero, the application will call deflate again
1125 1.1 christos * to flush the rest.
1126 1.1 christos */
1127 1.1 christos if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1128 1.1 christos return s->pending != 0 ? Z_OK : Z_STREAM_END;
1129 1.1 christos }
1130 1.1 christos
1131 1.1 christos /* ========================================================================= */
1132 1.6 christos int ZEXPORT deflateEnd(strm)
1133 1.1 christos z_streamp strm;
1134 1.1 christos {
1135 1.1 christos int status;
1136 1.1 christos
1137 1.4 christos if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1138 1.1 christos
1139 1.1 christos status = strm->state->status;
1140 1.1 christos
1141 1.1 christos /* Deallocate in reverse order of allocations: */
1142 1.1 christos TRY_FREE(strm, strm->state->pending_buf);
1143 1.1 christos TRY_FREE(strm, strm->state->head);
1144 1.1 christos TRY_FREE(strm, strm->state->prev);
1145 1.1 christos TRY_FREE(strm, strm->state->window);
1146 1.1 christos
1147 1.1 christos ZFREE(strm, strm->state);
1148 1.1 christos strm->state = Z_NULL;
1149 1.1 christos
1150 1.1 christos return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1151 1.1 christos }
1152 1.1 christos
1153 1.1 christos /* =========================================================================
1154 1.1 christos * Copy the source state to the destination state.
1155 1.1 christos * To simplify the source, this is not supported for 16-bit MSDOS (which
1156 1.1 christos * doesn't have enough memory anyway to duplicate compression states).
1157 1.1 christos */
1158 1.6 christos int ZEXPORT deflateCopy(dest, source)
1159 1.1 christos z_streamp dest;
1160 1.1 christos z_streamp source;
1161 1.1 christos {
1162 1.1 christos #ifdef MAXSEG_64K
1163 1.1 christos return Z_STREAM_ERROR;
1164 1.1 christos #else
1165 1.1 christos deflate_state *ds;
1166 1.1 christos deflate_state *ss;
1167 1.1 christos
1168 1.1 christos
1169 1.4 christos if (deflateStateCheck(source) || dest == Z_NULL) {
1170 1.1 christos return Z_STREAM_ERROR;
1171 1.1 christos }
1172 1.1 christos
1173 1.1 christos ss = source->state;
1174 1.1 christos
1175 1.4 christos zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1176 1.1 christos
1177 1.1 christos ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1178 1.1 christos if (ds == Z_NULL) return Z_MEM_ERROR;
1179 1.1 christos dest->state = (struct internal_state FAR *) ds;
1180 1.4 christos zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1181 1.1 christos ds->strm = dest;
1182 1.1 christos
1183 1.1 christos ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1184 1.1 christos ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1185 1.1 christos ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1186 1.5 wiz ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1187 1.1 christos
1188 1.1 christos if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1189 1.1 christos ds->pending_buf == Z_NULL) {
1190 1.1 christos deflateEnd (dest);
1191 1.1 christos return Z_MEM_ERROR;
1192 1.1 christos }
1193 1.1 christos /* following zmemcpy do not work for 16-bit MSDOS */
1194 1.1 christos zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1195 1.4 christos zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1196 1.4 christos zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1197 1.1 christos zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1198 1.1 christos
1199 1.1 christos ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1200 1.5 wiz ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1201 1.1 christos
1202 1.1 christos ds->l_desc.dyn_tree = ds->dyn_ltree;
1203 1.1 christos ds->d_desc.dyn_tree = ds->dyn_dtree;
1204 1.1 christos ds->bl_desc.dyn_tree = ds->bl_tree;
1205 1.1 christos
1206 1.1 christos return Z_OK;
1207 1.1 christos #endif /* MAXSEG_64K */
1208 1.1 christos }
1209 1.1 christos
1210 1.1 christos /* ===========================================================================
1211 1.1 christos * Read a new buffer from the current input stream, update the adler32
1212 1.1 christos * and total number of bytes read. All deflate() input goes through
1213 1.1 christos * this function so some applications may wish to modify it to avoid
1214 1.1 christos * allocating a large strm->next_in buffer and copying from it.
1215 1.1 christos * (See also flush_pending()).
1216 1.1 christos */
1217 1.4 christos local unsigned read_buf(strm, buf, size)
1218 1.1 christos z_streamp strm;
1219 1.1 christos Bytef *buf;
1220 1.1 christos unsigned size;
1221 1.1 christos {
1222 1.1 christos unsigned len = strm->avail_in;
1223 1.1 christos
1224 1.1 christos if (len > size) len = size;
1225 1.1 christos if (len == 0) return 0;
1226 1.1 christos
1227 1.1 christos strm->avail_in -= len;
1228 1.1 christos
1229 1.4 christos zmemcpy(buf, strm->next_in, len);
1230 1.1 christos if (strm->state->wrap == 1) {
1231 1.4 christos strm->adler = adler32(strm->adler, buf, len);
1232 1.1 christos }
1233 1.1 christos #ifdef GZIP
1234 1.1 christos else if (strm->state->wrap == 2) {
1235 1.4 christos strm->adler = crc32(strm->adler, buf, len);
1236 1.1 christos }
1237 1.1 christos #endif
1238 1.1 christos strm->next_in += len;
1239 1.1 christos strm->total_in += len;
1240 1.1 christos
1241 1.4 christos return len;
1242 1.1 christos }
1243 1.1 christos
1244 1.1 christos /* ===========================================================================
1245 1.1 christos * Initialize the "longest match" routines for a new zlib stream
1246 1.1 christos */
1247 1.6 christos local void lm_init(s)
1248 1.1 christos deflate_state *s;
1249 1.1 christos {
1250 1.1 christos s->window_size = (ulg)2L*s->w_size;
1251 1.1 christos
1252 1.1 christos CLEAR_HASH(s);
1253 1.1 christos
1254 1.1 christos /* Set the default configuration parameters:
1255 1.1 christos */
1256 1.1 christos s->max_lazy_match = configuration_table[s->level].max_lazy;
1257 1.1 christos s->good_match = configuration_table[s->level].good_length;
1258 1.1 christos s->nice_match = configuration_table[s->level].nice_length;
1259 1.1 christos s->max_chain_length = configuration_table[s->level].max_chain;
1260 1.1 christos
1261 1.1 christos s->strstart = 0;
1262 1.1 christos s->block_start = 0L;
1263 1.1 christos s->lookahead = 0;
1264 1.4 christos s->insert = 0;
1265 1.1 christos s->match_length = s->prev_length = MIN_MATCH-1;
1266 1.1 christos s->match_available = 0;
1267 1.1 christos s->ins_h = 0;
1268 1.1 christos }
1269 1.1 christos
1270 1.1 christos #ifndef FASTEST
1271 1.1 christos /* ===========================================================================
1272 1.1 christos * Set match_start to the longest match starting at the given string and
1273 1.1 christos * return its length. Matches shorter or equal to prev_length are discarded,
1274 1.1 christos * in which case the result is equal to prev_length and match_start is
1275 1.1 christos * garbage.
1276 1.1 christos * IN assertions: cur_match is the head of the hash chain for the current
1277 1.1 christos * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1278 1.1 christos * OUT assertion: the match length is not greater than s->lookahead.
1279 1.1 christos */
1280 1.1 christos local uInt longest_match(s, cur_match)
1281 1.1 christos deflate_state *s;
1282 1.1 christos IPos cur_match; /* current match */
1283 1.1 christos {
1284 1.1 christos unsigned chain_length = s->max_chain_length;/* max hash chain length */
1285 1.1 christos register Bytef *scan = s->window + s->strstart; /* current string */
1286 1.4 christos register Bytef *match; /* matched string */
1287 1.1 christos register int len; /* length of current match */
1288 1.4 christos int best_len = (int)s->prev_length; /* best match length so far */
1289 1.1 christos int nice_match = s->nice_match; /* stop if match long enough */
1290 1.1 christos IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1291 1.1 christos s->strstart - (IPos)MAX_DIST(s) : NIL;
1292 1.1 christos /* Stop when cur_match becomes <= limit. To simplify the code,
1293 1.1 christos * we prevent matches with the string of window index 0.
1294 1.1 christos */
1295 1.1 christos Posf *prev = s->prev;
1296 1.1 christos uInt wmask = s->w_mask;
1297 1.1 christos
1298 1.1 christos #ifdef UNALIGNED_OK
1299 1.1 christos /* Compare two bytes at a time. Note: this is not always beneficial.
1300 1.1 christos * Try with and without -DUNALIGNED_OK to check.
1301 1.1 christos */
1302 1.1 christos register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1303 1.1 christos register ush scan_start = *(ushf*)scan;
1304 1.6 christos register ush scan_end = *(ushf*)(scan + best_len - 1);
1305 1.1 christos #else
1306 1.1 christos register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1307 1.6 christos register Byte scan_end1 = scan[best_len - 1];
1308 1.1 christos register Byte scan_end = scan[best_len];
1309 1.1 christos #endif
1310 1.1 christos
1311 1.1 christos /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1312 1.1 christos * It is easy to get rid of this optimization if necessary.
1313 1.1 christos */
1314 1.1 christos Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1315 1.1 christos
1316 1.1 christos /* Do not waste too much time if we already have a good match: */
1317 1.1 christos if (s->prev_length >= s->good_match) {
1318 1.1 christos chain_length >>= 2;
1319 1.1 christos }
1320 1.1 christos /* Do not look for matches beyond the end of the input. This is necessary
1321 1.1 christos * to make deflate deterministic.
1322 1.1 christos */
1323 1.4 christos if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1324 1.1 christos
1325 1.6 christos Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1326 1.6 christos "need lookahead");
1327 1.1 christos
1328 1.1 christos do {
1329 1.1 christos Assert(cur_match < s->strstart, "no future");
1330 1.1 christos match = s->window + cur_match;
1331 1.1 christos
1332 1.1 christos /* Skip to next match if the match length cannot increase
1333 1.1 christos * or if the match length is less than 2. Note that the checks below
1334 1.1 christos * for insufficient lookahead only occur occasionally for performance
1335 1.1 christos * reasons. Therefore uninitialized memory will be accessed, and
1336 1.1 christos * conditional jumps will be made that depend on those values.
1337 1.1 christos * However the length of the match is limited to the lookahead, so
1338 1.1 christos * the output of deflate is not affected by the uninitialized values.
1339 1.1 christos */
1340 1.1 christos #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1341 1.1 christos /* This code assumes sizeof(unsigned short) == 2. Do not use
1342 1.1 christos * UNALIGNED_OK if your compiler uses a different size.
1343 1.1 christos */
1344 1.6 christos if (*(ushf*)(match + best_len - 1) != scan_end ||
1345 1.1 christos *(ushf*)match != scan_start) continue;
1346 1.1 christos
1347 1.1 christos /* It is not necessary to compare scan[2] and match[2] since they are
1348 1.1 christos * always equal when the other bytes match, given that the hash keys
1349 1.1 christos * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1350 1.6 christos * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1351 1.1 christos * lookahead only every 4th comparison; the 128th check will be made
1352 1.6 christos * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1353 1.1 christos * necessary to put more guard bytes at the end of the window, or
1354 1.1 christos * to check more often for insufficient lookahead.
1355 1.1 christos */
1356 1.1 christos Assert(scan[2] == match[2], "scan[2]?");
1357 1.1 christos scan++, match++;
1358 1.1 christos do {
1359 1.6 christos } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1360 1.6 christos *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1361 1.6 christos *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1362 1.6 christos *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1363 1.1 christos scan < strend);
1364 1.1 christos /* The funny "do {}" generates better code on most compilers */
1365 1.1 christos
1366 1.6 christos /* Here, scan <= window + strstart + 257 */
1367 1.6 christos Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1368 1.6 christos "wild scan");
1369 1.1 christos if (*scan == *match) scan++;
1370 1.1 christos
1371 1.6 christos len = (MAX_MATCH - 1) - (int)(strend - scan);
1372 1.1 christos scan = strend - (MAX_MATCH-1);
1373 1.1 christos
1374 1.1 christos #else /* UNALIGNED_OK */
1375 1.1 christos
1376 1.6 christos if (match[best_len] != scan_end ||
1377 1.6 christos match[best_len - 1] != scan_end1 ||
1378 1.6 christos *match != *scan ||
1379 1.6 christos *++match != scan[1]) continue;
1380 1.1 christos
1381 1.6 christos /* The check at best_len - 1 can be removed because it will be made
1382 1.1 christos * again later. (This heuristic is not always a win.)
1383 1.1 christos * It is not necessary to compare scan[2] and match[2] since they
1384 1.1 christos * are always equal when the other bytes match, given that
1385 1.1 christos * the hash keys are equal and that HASH_BITS >= 8.
1386 1.1 christos */
1387 1.1 christos scan += 2, match++;
1388 1.1 christos Assert(*scan == *match, "match[2]?");
1389 1.1 christos
1390 1.1 christos /* We check for insufficient lookahead only every 8th comparison;
1391 1.6 christos * the 256th check will be made at strstart + 258.
1392 1.1 christos */
1393 1.1 christos do {
1394 1.1 christos } while (*++scan == *++match && *++scan == *++match &&
1395 1.1 christos *++scan == *++match && *++scan == *++match &&
1396 1.1 christos *++scan == *++match && *++scan == *++match &&
1397 1.1 christos *++scan == *++match && *++scan == *++match &&
1398 1.1 christos scan < strend);
1399 1.1 christos
1400 1.6 christos Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1401 1.6 christos "wild scan");
1402 1.1 christos
1403 1.1 christos len = MAX_MATCH - (int)(strend - scan);
1404 1.1 christos scan = strend - MAX_MATCH;
1405 1.1 christos
1406 1.1 christos #endif /* UNALIGNED_OK */
1407 1.1 christos
1408 1.1 christos if (len > best_len) {
1409 1.1 christos s->match_start = cur_match;
1410 1.1 christos best_len = len;
1411 1.1 christos if (len >= nice_match) break;
1412 1.1 christos #ifdef UNALIGNED_OK
1413 1.6 christos scan_end = *(ushf*)(scan + best_len - 1);
1414 1.1 christos #else
1415 1.6 christos scan_end1 = scan[best_len - 1];
1416 1.1 christos scan_end = scan[best_len];
1417 1.1 christos #endif
1418 1.1 christos }
1419 1.1 christos } while ((cur_match = prev[cur_match & wmask]) > limit
1420 1.1 christos && --chain_length != 0);
1421 1.1 christos
1422 1.1 christos if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1423 1.1 christos return s->lookahead;
1424 1.1 christos }
1425 1.4 christos
1426 1.4 christos #else /* FASTEST */
1427 1.1 christos
1428 1.1 christos /* ---------------------------------------------------------------------------
1429 1.4 christos * Optimized version for FASTEST only
1430 1.1 christos */
1431 1.4 christos local uInt longest_match(s, cur_match)
1432 1.1 christos deflate_state *s;
1433 1.1 christos IPos cur_match; /* current match */
1434 1.1 christos {
1435 1.1 christos register Bytef *scan = s->window + s->strstart; /* current string */
1436 1.1 christos register Bytef *match; /* matched string */
1437 1.1 christos register int len; /* length of current match */
1438 1.1 christos register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1439 1.1 christos
1440 1.1 christos /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1441 1.1 christos * It is easy to get rid of this optimization if necessary.
1442 1.1 christos */
1443 1.1 christos Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1444 1.1 christos
1445 1.6 christos Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1446 1.6 christos "need lookahead");
1447 1.1 christos
1448 1.1 christos Assert(cur_match < s->strstart, "no future");
1449 1.1 christos
1450 1.1 christos match = s->window + cur_match;
1451 1.1 christos
1452 1.1 christos /* Return failure if the match length is less than 2:
1453 1.1 christos */
1454 1.1 christos if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1455 1.1 christos
1456 1.6 christos /* The check at best_len - 1 can be removed because it will be made
1457 1.1 christos * again later. (This heuristic is not always a win.)
1458 1.1 christos * It is not necessary to compare scan[2] and match[2] since they
1459 1.1 christos * are always equal when the other bytes match, given that
1460 1.1 christos * the hash keys are equal and that HASH_BITS >= 8.
1461 1.1 christos */
1462 1.1 christos scan += 2, match += 2;
1463 1.1 christos Assert(*scan == *match, "match[2]?");
1464 1.1 christos
1465 1.1 christos /* We check for insufficient lookahead only every 8th comparison;
1466 1.6 christos * the 256th check will be made at strstart + 258.
1467 1.1 christos */
1468 1.1 christos do {
1469 1.1 christos } while (*++scan == *++match && *++scan == *++match &&
1470 1.1 christos *++scan == *++match && *++scan == *++match &&
1471 1.1 christos *++scan == *++match && *++scan == *++match &&
1472 1.1 christos *++scan == *++match && *++scan == *++match &&
1473 1.1 christos scan < strend);
1474 1.1 christos
1475 1.6 christos Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1476 1.1 christos
1477 1.1 christos len = MAX_MATCH - (int)(strend - scan);
1478 1.1 christos
1479 1.1 christos if (len < MIN_MATCH) return MIN_MATCH - 1;
1480 1.1 christos
1481 1.1 christos s->match_start = cur_match;
1482 1.1 christos return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1483 1.1 christos }
1484 1.1 christos
1485 1.4 christos #endif /* FASTEST */
1486 1.4 christos
1487 1.2 christos #ifdef ZLIB_DEBUG
1488 1.4 christos
1489 1.4 christos #define EQUAL 0
1490 1.4 christos /* result of memcmp for equal strings */
1491 1.4 christos
1492 1.1 christos /* ===========================================================================
1493 1.1 christos * Check that the match at match_start is indeed a match.
1494 1.1 christos */
1495 1.1 christos local void check_match(s, start, match, length)
1496 1.1 christos deflate_state *s;
1497 1.1 christos IPos start, match;
1498 1.1 christos int length;
1499 1.1 christos {
1500 1.1 christos /* check that the match is indeed a match */
1501 1.1 christos if (zmemcmp(s->window + match,
1502 1.1 christos s->window + start, length) != EQUAL) {
1503 1.1 christos fprintf(stderr, " start %u, match %u, length %d\n",
1504 1.1 christos start, match, length);
1505 1.1 christos do {
1506 1.1 christos fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1507 1.1 christos } while (--length != 0);
1508 1.1 christos z_error("invalid match");
1509 1.1 christos }
1510 1.1 christos if (z_verbose > 1) {
1511 1.6 christos fprintf(stderr,"\\[%d,%d]", start - match, length);
1512 1.1 christos do { putc(s->window[start++], stderr); } while (--length != 0);
1513 1.1 christos }
1514 1.1 christos }
1515 1.1 christos #else
1516 1.1 christos # define check_match(s, start, match, length)
1517 1.2 christos #endif /* ZLIB_DEBUG */
1518 1.1 christos
1519 1.1 christos /* ===========================================================================
1520 1.1 christos * Fill the window when the lookahead becomes insufficient.
1521 1.1 christos * Updates strstart and lookahead.
1522 1.1 christos *
1523 1.1 christos * IN assertion: lookahead < MIN_LOOKAHEAD
1524 1.1 christos * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1525 1.1 christos * At least one byte has been read, or avail_in == 0; reads are
1526 1.1 christos * performed for at least two bytes (required for the zip translate_eol
1527 1.1 christos * option -- not supported here).
1528 1.1 christos */
1529 1.1 christos local void fill_window(s)
1530 1.1 christos deflate_state *s;
1531 1.1 christos {
1532 1.4 christos unsigned n;
1533 1.1 christos unsigned more; /* Amount of free space at the end of the window. */
1534 1.1 christos uInt wsize = s->w_size;
1535 1.1 christos
1536 1.4 christos Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1537 1.4 christos
1538 1.1 christos do {
1539 1.1 christos more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1540 1.1 christos
1541 1.1 christos /* Deal with !@#$% 64K limit: */
1542 1.1 christos if (sizeof(int) <= 2) {
1543 1.1 christos if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1544 1.1 christos more = wsize;
1545 1.1 christos
1546 1.1 christos } else if (more == (unsigned)(-1)) {
1547 1.1 christos /* Very unlikely, but possible on 16 bit machine if
1548 1.1 christos * strstart == 0 && lookahead == 1 (input done a byte at time)
1549 1.1 christos */
1550 1.1 christos more--;
1551 1.1 christos }
1552 1.1 christos }
1553 1.1 christos
1554 1.1 christos /* If the window is almost full and there is insufficient lookahead,
1555 1.1 christos * move the upper half to the lower one to make room in the upper half.
1556 1.1 christos */
1557 1.6 christos if (s->strstart >= wsize + MAX_DIST(s)) {
1558 1.1 christos
1559 1.6 christos zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1560 1.1 christos s->match_start -= wsize;
1561 1.1 christos s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1562 1.1 christos s->block_start -= (long) wsize;
1563 1.6 christos if (s->insert > s->strstart)
1564 1.6 christos s->insert = s->strstart;
1565 1.4 christos slide_hash(s);
1566 1.1 christos more += wsize;
1567 1.1 christos }
1568 1.4 christos if (s->strm->avail_in == 0) break;
1569 1.1 christos
1570 1.1 christos /* If there was no sliding:
1571 1.1 christos * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1572 1.1 christos * more == window_size - lookahead - strstart
1573 1.1 christos * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1574 1.1 christos * => more >= window_size - 2*WSIZE + 2
1575 1.1 christos * In the BIG_MEM or MMAP case (not yet supported),
1576 1.1 christos * window_size == input_size + MIN_LOOKAHEAD &&
1577 1.1 christos * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1578 1.1 christos * Otherwise, window_size == 2*WSIZE so more >= 2.
1579 1.1 christos * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1580 1.1 christos */
1581 1.1 christos Assert(more >= 2, "more < 2");
1582 1.1 christos
1583 1.1 christos n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1584 1.1 christos s->lookahead += n;
1585 1.1 christos
1586 1.1 christos /* Initialize the hash value now that we have some input: */
1587 1.4 christos if (s->lookahead + s->insert >= MIN_MATCH) {
1588 1.4 christos uInt str = s->strstart - s->insert;
1589 1.4 christos s->ins_h = s->window[str];
1590 1.4 christos UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1591 1.1 christos #if MIN_MATCH != 3
1592 1.1 christos Call UPDATE_HASH() MIN_MATCH-3 more times
1593 1.1 christos #endif
1594 1.4 christos while (s->insert) {
1595 1.4 christos UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1596 1.4 christos #ifndef FASTEST
1597 1.4 christos s->prev[str & s->w_mask] = s->head[s->ins_h];
1598 1.4 christos #endif
1599 1.4 christos s->head[s->ins_h] = (Pos)str;
1600 1.4 christos str++;
1601 1.4 christos s->insert--;
1602 1.4 christos if (s->lookahead + s->insert < MIN_MATCH)
1603 1.4 christos break;
1604 1.4 christos }
1605 1.1 christos }
1606 1.1 christos /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1607 1.1 christos * but this is not important since only literal bytes will be emitted.
1608 1.1 christos */
1609 1.1 christos
1610 1.1 christos } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1611 1.4 christos
1612 1.4 christos /* If the WIN_INIT bytes after the end of the current data have never been
1613 1.4 christos * written, then zero those bytes in order to avoid memory check reports of
1614 1.4 christos * the use of uninitialized (or uninitialised as Julian writes) bytes by
1615 1.4 christos * the longest match routines. Update the high water mark for the next
1616 1.4 christos * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1617 1.4 christos * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1618 1.4 christos */
1619 1.4 christos if (s->high_water < s->window_size) {
1620 1.4 christos ulg curr = s->strstart + (ulg)(s->lookahead);
1621 1.4 christos ulg init;
1622 1.4 christos
1623 1.4 christos if (s->high_water < curr) {
1624 1.4 christos /* Previous high water mark below current data -- zero WIN_INIT
1625 1.4 christos * bytes or up to end of window, whichever is less.
1626 1.4 christos */
1627 1.4 christos init = s->window_size - curr;
1628 1.4 christos if (init > WIN_INIT)
1629 1.4 christos init = WIN_INIT;
1630 1.4 christos zmemzero(s->window + curr, (unsigned)init);
1631 1.4 christos s->high_water = curr + init;
1632 1.4 christos }
1633 1.4 christos else if (s->high_water < (ulg)curr + WIN_INIT) {
1634 1.4 christos /* High water mark at or above current data, but below current data
1635 1.4 christos * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1636 1.4 christos * to end of window, whichever is less.
1637 1.4 christos */
1638 1.4 christos init = (ulg)curr + WIN_INIT - s->high_water;
1639 1.4 christos if (init > s->window_size - s->high_water)
1640 1.4 christos init = s->window_size - s->high_water;
1641 1.4 christos zmemzero(s->window + s->high_water, (unsigned)init);
1642 1.4 christos s->high_water += init;
1643 1.4 christos }
1644 1.4 christos }
1645 1.4 christos
1646 1.4 christos Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1647 1.4 christos "not enough room for search");
1648 1.1 christos }
1649 1.1 christos
1650 1.1 christos /* ===========================================================================
1651 1.1 christos * Flush the current block, with given end-of-file flag.
1652 1.1 christos * IN assertion: strstart is set to the end of the current match.
1653 1.1 christos */
1654 1.4 christos #define FLUSH_BLOCK_ONLY(s, last) { \
1655 1.1 christos _tr_flush_block(s, (s->block_start >= 0L ? \
1656 1.1 christos (charf *)&s->window[(unsigned)s->block_start] : \
1657 1.1 christos (charf *)Z_NULL), \
1658 1.1 christos (ulg)((long)s->strstart - s->block_start), \
1659 1.4 christos (last)); \
1660 1.1 christos s->block_start = s->strstart; \
1661 1.1 christos flush_pending(s->strm); \
1662 1.1 christos Tracev((stderr,"[FLUSH]")); \
1663 1.1 christos }
1664 1.1 christos
1665 1.1 christos /* Same but force premature exit if necessary. */
1666 1.4 christos #define FLUSH_BLOCK(s, last) { \
1667 1.4 christos FLUSH_BLOCK_ONLY(s, last); \
1668 1.4 christos if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1669 1.1 christos }
1670 1.1 christos
1671 1.4 christos /* Maximum stored block length in deflate format (not including header). */
1672 1.4 christos #define MAX_STORED 65535
1673 1.4 christos
1674 1.4 christos /* Minimum of a and b. */
1675 1.4 christos #define MIN(a, b) ((a) > (b) ? (b) : (a))
1676 1.4 christos
1677 1.1 christos /* ===========================================================================
1678 1.1 christos * Copy without compression as much as possible from the input stream, return
1679 1.1 christos * the current block state.
1680 1.4 christos *
1681 1.4 christos * In case deflateParams() is used to later switch to a non-zero compression
1682 1.4 christos * level, s->matches (otherwise unused when storing) keeps track of the number
1683 1.4 christos * of hash table slides to perform. If s->matches is 1, then one hash table
1684 1.4 christos * slide will be done when switching. If s->matches is 2, the maximum value
1685 1.4 christos * allowed here, then the hash table will be cleared, since two or more slides
1686 1.4 christos * is the same as a clear.
1687 1.4 christos *
1688 1.4 christos * deflate_stored() is written to minimize the number of times an input byte is
1689 1.4 christos * copied. It is most efficient with large input and output buffers, which
1690 1.6 christos * maximizes the opportunities to have a single copy from next_in to next_out.
1691 1.1 christos */
1692 1.1 christos local block_state deflate_stored(s, flush)
1693 1.1 christos deflate_state *s;
1694 1.1 christos int flush;
1695 1.1 christos {
1696 1.4 christos /* Smallest worthy block size when not flushing or finishing. By default
1697 1.4 christos * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1698 1.4 christos * large input and output buffers, the stored block size will be larger.
1699 1.1 christos */
1700 1.4 christos unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1701 1.1 christos
1702 1.4 christos /* Copy as many min_block or larger stored blocks directly to next_out as
1703 1.4 christos * possible. If flushing, copy the remaining available input to next_out as
1704 1.4 christos * stored blocks, if there is enough space.
1705 1.4 christos */
1706 1.4 christos unsigned len, left, have, last = 0;
1707 1.4 christos unsigned used = s->strm->avail_in;
1708 1.4 christos do {
1709 1.4 christos /* Set len to the maximum size block that we can copy directly with the
1710 1.4 christos * available input data and output space. Set left to how much of that
1711 1.4 christos * would be copied from what's left in the window.
1712 1.4 christos */
1713 1.4 christos len = MAX_STORED; /* maximum deflate stored block length */
1714 1.4 christos have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1715 1.4 christos if (s->strm->avail_out < have) /* need room for header */
1716 1.4 christos break;
1717 1.4 christos /* maximum stored block length that will fit in avail_out: */
1718 1.4 christos have = s->strm->avail_out - have;
1719 1.4 christos left = s->strstart - s->block_start; /* bytes left in window */
1720 1.4 christos if (len > (ulg)left + s->strm->avail_in)
1721 1.4 christos len = left + s->strm->avail_in; /* limit len to the input */
1722 1.4 christos if (len > have)
1723 1.4 christos len = have; /* limit len to the output */
1724 1.4 christos
1725 1.4 christos /* If the stored block would be less than min_block in length, or if
1726 1.4 christos * unable to copy all of the available input when flushing, then try
1727 1.4 christos * copying to the window and the pending buffer instead. Also don't
1728 1.4 christos * write an empty block when flushing -- deflate() does that.
1729 1.4 christos */
1730 1.4 christos if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1731 1.4 christos flush == Z_NO_FLUSH ||
1732 1.6 christos len != left + s->strm->avail_in))
1733 1.4 christos break;
1734 1.4 christos
1735 1.4 christos /* Make a dummy stored block in pending to get the header bytes,
1736 1.4 christos * including any pending bits. This also updates the debugging counts.
1737 1.4 christos */
1738 1.6 christos last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1739 1.4 christos _tr_stored_block(s, (char *)0, 0L, last);
1740 1.1 christos
1741 1.4 christos /* Replace the lengths in the dummy stored block with len. */
1742 1.4 christos s->pending_buf[s->pending - 4] = len;
1743 1.4 christos s->pending_buf[s->pending - 3] = len >> 8;
1744 1.4 christos s->pending_buf[s->pending - 2] = ~len;
1745 1.4 christos s->pending_buf[s->pending - 1] = ~len >> 8;
1746 1.1 christos
1747 1.4 christos /* Write the stored block header bytes. */
1748 1.4 christos flush_pending(s->strm);
1749 1.1 christos
1750 1.6 christos #ifdef ZLIB_DEBUG
1751 1.4 christos /* Update debugging counts for the data about to be copied. */
1752 1.4 christos s->compressed_len += len << 3;
1753 1.4 christos s->bits_sent += len << 3;
1754 1.4 christos #endif
1755 1.1 christos
1756 1.4 christos /* Copy uncompressed bytes from the window to next_out. */
1757 1.4 christos if (left) {
1758 1.6 christos if (left > len)
1759 1.6 christos left = len;
1760 1.4 christos zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1761 1.4 christos s->strm->next_out += left;
1762 1.4 christos s->strm->avail_out -= left;
1763 1.4 christos s->strm->total_out += left;
1764 1.4 christos s->block_start += left;
1765 1.4 christos len -= left;
1766 1.1 christos }
1767 1.1 christos
1768 1.4 christos /* Copy uncompressed bytes directly from next_in to next_out, updating
1769 1.4 christos * the check value.
1770 1.4 christos */
1771 1.4 christos if (len) {
1772 1.4 christos read_buf(s->strm, s->strm->next_out, len);
1773 1.4 christos s->strm->next_out += len;
1774 1.4 christos s->strm->avail_out -= len;
1775 1.4 christos s->strm->total_out += len;
1776 1.4 christos }
1777 1.4 christos } while (last == 0);
1778 1.4 christos
1779 1.4 christos /* Update the sliding window with the last s->w_size bytes of the copied
1780 1.4 christos * data, or append all of the copied data to the existing window if less
1781 1.4 christos * than s->w_size bytes were copied. Also update the number of bytes to
1782 1.4 christos * insert in the hash tables, in the event that deflateParams() switches to
1783 1.4 christos * a non-zero compression level.
1784 1.4 christos */
1785 1.4 christos used -= s->strm->avail_in; /* number of input bytes directly copied */
1786 1.4 christos if (used) {
1787 1.4 christos /* If any input was used, then no unused input remains in the window,
1788 1.4 christos * therefore s->block_start == s->strstart.
1789 1.1 christos */
1790 1.4 christos if (used >= s->w_size) { /* supplant the previous history */
1791 1.4 christos s->matches = 2; /* clear hash */
1792 1.4 christos zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1793 1.4 christos s->strstart = s->w_size;
1794 1.6 christos s->insert = s->strstart;
1795 1.4 christos }
1796 1.4 christos else {
1797 1.4 christos if (s->window_size - s->strstart <= used) {
1798 1.4 christos /* Slide the window down. */
1799 1.4 christos s->strstart -= s->w_size;
1800 1.4 christos zmemcpy(s->window, s->window + s->w_size, s->strstart);
1801 1.4 christos if (s->matches < 2)
1802 1.4 christos s->matches++; /* add a pending slide_hash() */
1803 1.6 christos if (s->insert > s->strstart)
1804 1.6 christos s->insert = s->strstart;
1805 1.4 christos }
1806 1.4 christos zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1807 1.4 christos s->strstart += used;
1808 1.6 christos s->insert += MIN(used, s->w_size - s->insert);
1809 1.1 christos }
1810 1.4 christos s->block_start = s->strstart;
1811 1.1 christos }
1812 1.6 christos if (s->high_water < s->strstart)
1813 1.6 christos s->high_water = s->strstart;
1814 1.4 christos
1815 1.4 christos /* If the last block was written to next_out, then done. */
1816 1.4 christos if (last)
1817 1.4 christos return finish_done;
1818 1.4 christos
1819 1.4 christos /* If flushing and all input has been consumed, then done. */
1820 1.4 christos if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1821 1.4 christos s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1822 1.4 christos return block_done;
1823 1.4 christos
1824 1.4 christos /* Fill the window with any remaining input. */
1825 1.6 christos have = s->window_size - s->strstart;
1826 1.4 christos if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1827 1.4 christos /* Slide the window down. */
1828 1.4 christos s->block_start -= s->w_size;
1829 1.4 christos s->strstart -= s->w_size;
1830 1.4 christos zmemcpy(s->window, s->window + s->w_size, s->strstart);
1831 1.4 christos if (s->matches < 2)
1832 1.4 christos s->matches++; /* add a pending slide_hash() */
1833 1.4 christos have += s->w_size; /* more space now */
1834 1.6 christos if (s->insert > s->strstart)
1835 1.6 christos s->insert = s->strstart;
1836 1.4 christos }
1837 1.4 christos if (have > s->strm->avail_in)
1838 1.4 christos have = s->strm->avail_in;
1839 1.4 christos if (have) {
1840 1.4 christos read_buf(s->strm, s->window + s->strstart, have);
1841 1.4 christos s->strstart += have;
1842 1.6 christos s->insert += MIN(have, s->w_size - s->insert);
1843 1.4 christos }
1844 1.6 christos if (s->high_water < s->strstart)
1845 1.6 christos s->high_water = s->strstart;
1846 1.4 christos
1847 1.4 christos /* There was not enough avail_out to write a complete worthy or flushed
1848 1.4 christos * stored block to next_out. Write a stored block to pending instead, if we
1849 1.4 christos * have enough input for a worthy block, or if flushing and there is enough
1850 1.4 christos * room for the remaining input as a stored block in the pending buffer.
1851 1.4 christos */
1852 1.4 christos have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1853 1.4 christos /* maximum stored block length that will fit in pending: */
1854 1.4 christos have = MIN(s->pending_buf_size - have, MAX_STORED);
1855 1.4 christos min_block = MIN(have, s->w_size);
1856 1.4 christos left = s->strstart - s->block_start;
1857 1.4 christos if (left >= min_block ||
1858 1.4 christos ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1859 1.4 christos s->strm->avail_in == 0 && left <= have)) {
1860 1.4 christos len = MIN(left, have);
1861 1.4 christos last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1862 1.4 christos len == left ? 1 : 0;
1863 1.4 christos _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1864 1.4 christos s->block_start += len;
1865 1.4 christos flush_pending(s->strm);
1866 1.4 christos }
1867 1.4 christos
1868 1.4 christos /* We've done all we can with the available input and output. */
1869 1.4 christos return last ? finish_started : need_more;
1870 1.1 christos }
1871 1.1 christos
1872 1.1 christos /* ===========================================================================
1873 1.1 christos * Compress as much as possible from the input stream, return the current
1874 1.1 christos * block state.
1875 1.1 christos * This function does not perform lazy evaluation of matches and inserts
1876 1.1 christos * new strings in the dictionary only for unmatched strings or for short
1877 1.1 christos * matches. It is used only for the fast compression options.
1878 1.1 christos */
1879 1.1 christos local block_state deflate_fast(s, flush)
1880 1.1 christos deflate_state *s;
1881 1.1 christos int flush;
1882 1.1 christos {
1883 1.4 christos IPos hash_head; /* head of the hash chain */
1884 1.1 christos int bflush; /* set if current block must be flushed */
1885 1.1 christos
1886 1.1 christos for (;;) {
1887 1.1 christos /* Make sure that we always have enough lookahead, except
1888 1.1 christos * at the end of the input file. We need MAX_MATCH bytes
1889 1.1 christos * for the next match, plus MIN_MATCH bytes to insert the
1890 1.1 christos * string following the next match.
1891 1.1 christos */
1892 1.1 christos if (s->lookahead < MIN_LOOKAHEAD) {
1893 1.1 christos fill_window(s);
1894 1.1 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1895 1.1 christos return need_more;
1896 1.1 christos }
1897 1.1 christos if (s->lookahead == 0) break; /* flush the current block */
1898 1.1 christos }
1899 1.1 christos
1900 1.6 christos /* Insert the string window[strstart .. strstart + 2] in the
1901 1.1 christos * dictionary, and set hash_head to the head of the hash chain:
1902 1.1 christos */
1903 1.4 christos hash_head = NIL;
1904 1.1 christos if (s->lookahead >= MIN_MATCH) {
1905 1.1 christos INSERT_STRING(s, s->strstart, hash_head);
1906 1.1 christos }
1907 1.1 christos
1908 1.1 christos /* Find the longest match, discarding those <= prev_length.
1909 1.1 christos * At this point we have always match_length < MIN_MATCH
1910 1.1 christos */
1911 1.1 christos if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1912 1.1 christos /* To simplify the code, we prevent matches with the string
1913 1.1 christos * of window index 0 (in particular we have to avoid a match
1914 1.1 christos * of the string with itself at the start of the input file).
1915 1.1 christos */
1916 1.4 christos s->match_length = longest_match (s, hash_head);
1917 1.4 christos /* longest_match() sets match_start */
1918 1.1 christos }
1919 1.1 christos if (s->match_length >= MIN_MATCH) {
1920 1.1 christos check_match(s, s->strstart, s->match_start, s->match_length);
1921 1.1 christos
1922 1.1 christos _tr_tally_dist(s, s->strstart - s->match_start,
1923 1.1 christos s->match_length - MIN_MATCH, bflush);
1924 1.1 christos
1925 1.1 christos s->lookahead -= s->match_length;
1926 1.1 christos
1927 1.1 christos /* Insert new strings in the hash table only if the match length
1928 1.1 christos * is not too large. This saves time but degrades compression.
1929 1.1 christos */
1930 1.1 christos #ifndef FASTEST
1931 1.1 christos if (s->match_length <= s->max_insert_length &&
1932 1.1 christos s->lookahead >= MIN_MATCH) {
1933 1.1 christos s->match_length--; /* string at strstart already in table */
1934 1.1 christos do {
1935 1.1 christos s->strstart++;
1936 1.1 christos INSERT_STRING(s, s->strstart, hash_head);
1937 1.1 christos /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1938 1.1 christos * always MIN_MATCH bytes ahead.
1939 1.1 christos */
1940 1.1 christos } while (--s->match_length != 0);
1941 1.1 christos s->strstart++;
1942 1.1 christos } else
1943 1.1 christos #endif
1944 1.1 christos {
1945 1.1 christos s->strstart += s->match_length;
1946 1.1 christos s->match_length = 0;
1947 1.1 christos s->ins_h = s->window[s->strstart];
1948 1.6 christos UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1949 1.1 christos #if MIN_MATCH != 3
1950 1.1 christos Call UPDATE_HASH() MIN_MATCH-3 more times
1951 1.1 christos #endif
1952 1.1 christos /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1953 1.1 christos * matter since it will be recomputed at next deflate call.
1954 1.1 christos */
1955 1.1 christos }
1956 1.1 christos } else {
1957 1.1 christos /* No match, output a literal byte */
1958 1.1 christos Tracevv((stderr,"%c", s->window[s->strstart]));
1959 1.6 christos _tr_tally_lit(s, s->window[s->strstart], bflush);
1960 1.1 christos s->lookahead--;
1961 1.1 christos s->strstart++;
1962 1.1 christos }
1963 1.1 christos if (bflush) FLUSH_BLOCK(s, 0);
1964 1.1 christos }
1965 1.4 christos s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1966 1.4 christos if (flush == Z_FINISH) {
1967 1.4 christos FLUSH_BLOCK(s, 1);
1968 1.4 christos return finish_done;
1969 1.4 christos }
1970 1.5 wiz if (s->sym_next)
1971 1.4 christos FLUSH_BLOCK(s, 0);
1972 1.4 christos return block_done;
1973 1.1 christos }
1974 1.1 christos
1975 1.1 christos #ifndef FASTEST
1976 1.1 christos /* ===========================================================================
1977 1.1 christos * Same as above, but achieves better compression. We use a lazy
1978 1.1 christos * evaluation for matches: a match is finally adopted only if there is
1979 1.1 christos * no better match at the next window position.
1980 1.1 christos */
1981 1.1 christos local block_state deflate_slow(s, flush)
1982 1.1 christos deflate_state *s;
1983 1.1 christos int flush;
1984 1.1 christos {
1985 1.4 christos IPos hash_head; /* head of hash chain */
1986 1.1 christos int bflush; /* set if current block must be flushed */
1987 1.1 christos
1988 1.1 christos /* Process the input block. */
1989 1.1 christos for (;;) {
1990 1.1 christos /* Make sure that we always have enough lookahead, except
1991 1.1 christos * at the end of the input file. We need MAX_MATCH bytes
1992 1.1 christos * for the next match, plus MIN_MATCH bytes to insert the
1993 1.1 christos * string following the next match.
1994 1.1 christos */
1995 1.1 christos if (s->lookahead < MIN_LOOKAHEAD) {
1996 1.1 christos fill_window(s);
1997 1.1 christos if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1998 1.1 christos return need_more;
1999 1.1 christos }
2000 1.1 christos if (s->lookahead == 0) break; /* flush the current block */
2001 1.1 christos }
2002 1.1 christos
2003 1.6 christos /* Insert the string window[strstart .. strstart + 2] in the
2004 1.1 christos * dictionary, and set hash_head to the head of the hash chain:
2005 1.1 christos */
2006 1.4 christos hash_head = NIL;
2007 1.1 christos if (s->lookahead >= MIN_MATCH) {
2008 1.1 christos INSERT_STRING(s, s->strstart, hash_head);
2009 1.1 christos }
2010 1.1 christos
2011 1.1 christos /* Find the longest match, discarding those <= prev_length.
2012 1.1 christos */
2013 1.1 christos s->prev_length = s->match_length, s->prev_match = s->match_start;
2014 1.1 christos s->match_length = MIN_MATCH-1;
2015 1.1 christos
2016 1.1 christos if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2017 1.1 christos s->strstart - hash_head <= MAX_DIST(s)) {
2018 1.1 christos /* To simplify the code, we prevent matches with the string
2019 1.1 christos * of window index 0 (in particular we have to avoid a match
2020 1.1 christos * of the string with itself at the start of the input file).
2021 1.1 christos */
2022 1.4 christos s->match_length = longest_match (s, hash_head);
2023 1.4 christos /* longest_match() sets match_start */
2024 1.1 christos
2025 1.1 christos if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2026 1.1 christos #if TOO_FAR <= 32767
2027 1.1 christos || (s->match_length == MIN_MATCH &&
2028 1.1 christos s->strstart - s->match_start > TOO_FAR)
2029 1.1 christos #endif
2030 1.1 christos )) {
2031 1.1 christos
2032 1.1 christos /* If prev_match is also MIN_MATCH, match_start is garbage
2033 1.1 christos * but we will ignore the current match anyway.
2034 1.1 christos */
2035 1.1 christos s->match_length = MIN_MATCH-1;
2036 1.1 christos }
2037 1.1 christos }
2038 1.1 christos /* If there was a match at the previous step and the current
2039 1.1 christos * match is not better, output the previous match:
2040 1.1 christos */
2041 1.1 christos if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2042 1.1 christos uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2043 1.1 christos /* Do not insert strings in hash table beyond this. */
2044 1.1 christos
2045 1.6 christos check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2046 1.1 christos
2047 1.6 christos _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2048 1.1 christos s->prev_length - MIN_MATCH, bflush);
2049 1.1 christos
2050 1.1 christos /* Insert in hash table all strings up to the end of the match.
2051 1.6 christos * strstart - 1 and strstart are already inserted. If there is not
2052 1.1 christos * enough lookahead, the last two strings are not inserted in
2053 1.1 christos * the hash table.
2054 1.1 christos */
2055 1.6 christos s->lookahead -= s->prev_length - 1;
2056 1.1 christos s->prev_length -= 2;
2057 1.1 christos do {
2058 1.1 christos if (++s->strstart <= max_insert) {
2059 1.1 christos INSERT_STRING(s, s->strstart, hash_head);
2060 1.1 christos }
2061 1.1 christos } while (--s->prev_length != 0);
2062 1.1 christos s->match_available = 0;
2063 1.1 christos s->match_length = MIN_MATCH-1;
2064 1.1 christos s->strstart++;
2065 1.1 christos
2066 1.1 christos if (bflush) FLUSH_BLOCK(s, 0);
2067 1.1 christos
2068 1.1 christos } else if (s->match_available) {
2069 1.1 christos /* If there was no match at the previous position, output a
2070 1.1 christos * single literal. If there was a match but the current match
2071 1.1 christos * is longer, truncate the previous match to a single literal.
2072 1.1 christos */
2073 1.6 christos Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2074 1.6 christos _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2075 1.1 christos if (bflush) {
2076 1.1 christos FLUSH_BLOCK_ONLY(s, 0);
2077 1.1 christos }
2078 1.1 christos s->strstart++;
2079 1.1 christos s->lookahead--;
2080 1.1 christos if (s->strm->avail_out == 0) return need_more;
2081 1.1 christos } else {
2082 1.1 christos /* There is no previous match to compare with, wait for
2083 1.1 christos * the next step to decide.
2084 1.1 christos */
2085 1.1 christos s->match_available = 1;
2086 1.1 christos s->strstart++;
2087 1.1 christos s->lookahead--;
2088 1.1 christos }
2089 1.1 christos }
2090 1.1 christos Assert (flush != Z_NO_FLUSH, "no flush?");
2091 1.1 christos if (s->match_available) {
2092 1.6 christos Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2093 1.6 christos _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2094 1.1 christos s->match_available = 0;
2095 1.1 christos }
2096 1.4 christos s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2097 1.4 christos if (flush == Z_FINISH) {
2098 1.4 christos FLUSH_BLOCK(s, 1);
2099 1.4 christos return finish_done;
2100 1.4 christos }
2101 1.5 wiz if (s->sym_next)
2102 1.4 christos FLUSH_BLOCK(s, 0);
2103 1.4 christos return block_done;
2104 1.1 christos }
2105 1.1 christos #endif /* FASTEST */
2106 1.1 christos
2107 1.1 christos /* ===========================================================================
2108 1.1 christos * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2109 1.1 christos * one. Do not maintain a hash table. (It will be regenerated if this run of
2110 1.1 christos * deflate switches away from Z_RLE.)
2111 1.1 christos */
2112 1.1 christos local block_state deflate_rle(s, flush)
2113 1.1 christos deflate_state *s;
2114 1.1 christos int flush;
2115 1.1 christos {
2116 1.4 christos int bflush; /* set if current block must be flushed */
2117 1.4 christos uInt prev; /* byte at distance one to match */
2118 1.4 christos Bytef *scan, *strend; /* scan goes up to strend for length of run */
2119 1.1 christos
2120 1.1 christos for (;;) {
2121 1.1 christos /* Make sure that we always have enough lookahead, except
2122 1.1 christos * at the end of the input file. We need MAX_MATCH bytes
2123 1.4 christos * for the longest run, plus one for the unrolled loop.
2124 1.1 christos */
2125 1.4 christos if (s->lookahead <= MAX_MATCH) {
2126 1.1 christos fill_window(s);
2127 1.4 christos if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2128 1.1 christos return need_more;
2129 1.1 christos }
2130 1.1 christos if (s->lookahead == 0) break; /* flush the current block */
2131 1.1 christos }
2132 1.1 christos
2133 1.1 christos /* See how many times the previous byte repeats */
2134 1.4 christos s->match_length = 0;
2135 1.4 christos if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2136 1.1 christos scan = s->window + s->strstart - 1;
2137 1.4 christos prev = *scan;
2138 1.4 christos if (prev == *++scan && prev == *++scan && prev == *++scan) {
2139 1.4 christos strend = s->window + s->strstart + MAX_MATCH;
2140 1.4 christos do {
2141 1.4 christos } while (prev == *++scan && prev == *++scan &&
2142 1.4 christos prev == *++scan && prev == *++scan &&
2143 1.4 christos prev == *++scan && prev == *++scan &&
2144 1.4 christos prev == *++scan && prev == *++scan &&
2145 1.4 christos scan < strend);
2146 1.4 christos s->match_length = MAX_MATCH - (uInt)(strend - scan);
2147 1.4 christos if (s->match_length > s->lookahead)
2148 1.4 christos s->match_length = s->lookahead;
2149 1.4 christos }
2150 1.6 christos Assert(scan <= s->window + (uInt)(s->window_size - 1),
2151 1.6 christos "wild scan");
2152 1.1 christos }
2153 1.1 christos
2154 1.1 christos /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2155 1.4 christos if (s->match_length >= MIN_MATCH) {
2156 1.4 christos check_match(s, s->strstart, s->strstart - 1, s->match_length);
2157 1.4 christos
2158 1.4 christos _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2159 1.4 christos
2160 1.4 christos s->lookahead -= s->match_length;
2161 1.4 christos s->strstart += s->match_length;
2162 1.4 christos s->match_length = 0;
2163 1.1 christos } else {
2164 1.1 christos /* No match, output a literal byte */
2165 1.1 christos Tracevv((stderr,"%c", s->window[s->strstart]));
2166 1.6 christos _tr_tally_lit(s, s->window[s->strstart], bflush);
2167 1.1 christos s->lookahead--;
2168 1.1 christos s->strstart++;
2169 1.1 christos }
2170 1.1 christos if (bflush) FLUSH_BLOCK(s, 0);
2171 1.1 christos }
2172 1.4 christos s->insert = 0;
2173 1.4 christos if (flush == Z_FINISH) {
2174 1.4 christos FLUSH_BLOCK(s, 1);
2175 1.4 christos return finish_done;
2176 1.4 christos }
2177 1.5 wiz if (s->sym_next)
2178 1.4 christos FLUSH_BLOCK(s, 0);
2179 1.4 christos return block_done;
2180 1.4 christos }
2181 1.4 christos
2182 1.4 christos /* ===========================================================================
2183 1.4 christos * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2184 1.4 christos * (It will be regenerated if this run of deflate switches away from Huffman.)
2185 1.4 christos */
2186 1.4 christos local block_state deflate_huff(s, flush)
2187 1.4 christos deflate_state *s;
2188 1.4 christos int flush;
2189 1.4 christos {
2190 1.4 christos int bflush; /* set if current block must be flushed */
2191 1.4 christos
2192 1.4 christos for (;;) {
2193 1.4 christos /* Make sure that we have a literal to write. */
2194 1.4 christos if (s->lookahead == 0) {
2195 1.4 christos fill_window(s);
2196 1.4 christos if (s->lookahead == 0) {
2197 1.4 christos if (flush == Z_NO_FLUSH)
2198 1.4 christos return need_more;
2199 1.4 christos break; /* flush the current block */
2200 1.4 christos }
2201 1.4 christos }
2202 1.4 christos
2203 1.4 christos /* Output a literal byte */
2204 1.4 christos s->match_length = 0;
2205 1.4 christos Tracevv((stderr,"%c", s->window[s->strstart]));
2206 1.6 christos _tr_tally_lit(s, s->window[s->strstart], bflush);
2207 1.4 christos s->lookahead--;
2208 1.4 christos s->strstart++;
2209 1.4 christos if (bflush) FLUSH_BLOCK(s, 0);
2210 1.4 christos }
2211 1.4 christos s->insert = 0;
2212 1.4 christos if (flush == Z_FINISH) {
2213 1.4 christos FLUSH_BLOCK(s, 1);
2214 1.4 christos return finish_done;
2215 1.4 christos }
2216 1.5 wiz if (s->sym_next)
2217 1.4 christos FLUSH_BLOCK(s, 0);
2218 1.4 christos return block_done;
2219 1.1 christos }
2220