Home | History | Annotate | Line # | Download | only in zlib
deflate.c revision 1.6
      1 /*	$NetBSD: deflate.c,v 1.6 2022/10/15 19:49:32 christos Exp $	*/
      2 
      3 /* deflate.c -- compress data using the deflation algorithm
      4  * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
      5  * For conditions of distribution and use, see copyright notice in zlib.h
      6  */
      7 
      8 /*
      9  *  ALGORITHM
     10  *
     11  *      The "deflation" process depends on being able to identify portions
     12  *      of the input text which are identical to earlier input (within a
     13  *      sliding window trailing behind the input currently being processed).
     14  *
     15  *      The most straightforward technique turns out to be the fastest for
     16  *      most input files: try all possible matches and select the longest.
     17  *      The key feature of this algorithm is that insertions into the string
     18  *      dictionary are very simple and thus fast, and deletions are avoided
     19  *      completely. Insertions are performed at each input character, whereas
     20  *      string matches are performed only when the previous match ends. So it
     21  *      is preferable to spend more time in matches to allow very fast string
     22  *      insertions and avoid deletions. The matching algorithm for small
     23  *      strings is inspired from that of Rabin & Karp. A brute force approach
     24  *      is used to find longer strings when a small match has been found.
     25  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
     26  *      (by Leonid Broukhis).
     27  *         A previous version of this file used a more sophisticated algorithm
     28  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
     29  *      time, but has a larger average cost, uses more memory and is patented.
     30  *      However the F&G algorithm may be faster for some highly redundant
     31  *      files if the parameter max_chain_length (described below) is too large.
     32  *
     33  *  ACKNOWLEDGEMENTS
     34  *
     35  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
     36  *      I found it in 'freeze' written by Leonid Broukhis.
     37  *      Thanks to many people for bug reports and testing.
     38  *
     39  *  REFERENCES
     40  *
     41  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
     42  *      Available in http://tools.ietf.org/html/rfc1951
     43  *
     44  *      A description of the Rabin and Karp algorithm is given in the book
     45  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
     46  *
     47  *      Fiala,E.R., and Greene,D.H.
     48  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
     49  *
     50  */
     51 
     52 /* @(#) Id */
     53 
     54 #include "deflate.h"
     55 
     56 const char deflate_copyright[] =
     57    " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
     58 /*
     59   If you use the zlib library in a product, an acknowledgment is welcome
     60   in the documentation of your product. If for some reason you cannot
     61   include such an acknowledgment, I would appreciate that you keep this
     62   copyright string in the executable of your product.
     63  */
     64 
     65 /* ===========================================================================
     66  *  Function prototypes.
     67  */
     68 typedef enum {
     69     need_more,      /* block not completed, need more input or more output */
     70     block_done,     /* block flush performed */
     71     finish_started, /* finish started, need only more output at next deflate */
     72     finish_done     /* finish done, accept no more input or output */
     73 } block_state;
     74 
     75 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
     76 /* Compression function. Returns the block state after the call. */
     77 
     78 local int deflateStateCheck      OF((z_streamp strm));
     79 local void slide_hash     OF((deflate_state *s));
     80 local void fill_window    OF((deflate_state *s));
     81 local block_state deflate_stored OF((deflate_state *s, int flush));
     82 local block_state deflate_fast   OF((deflate_state *s, int flush));
     83 #ifndef FASTEST
     84 local block_state deflate_slow   OF((deflate_state *s, int flush));
     85 #endif
     86 local block_state deflate_rle    OF((deflate_state *s, int flush));
     87 local block_state deflate_huff   OF((deflate_state *s, int flush));
     88 local void lm_init        OF((deflate_state *s));
     89 local void putShortMSB    OF((deflate_state *s, uInt b));
     90 local void flush_pending  OF((z_streamp strm));
     91 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
     92 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
     93 
     94 #ifdef ZLIB_DEBUG
     95 local  void check_match OF((deflate_state *s, IPos start, IPos match,
     96                             int length));
     97 #endif
     98 
     99 /* ===========================================================================
    100  * Local data
    101  */
    102 
    103 #define NIL 0
    104 /* Tail of hash chains */
    105 
    106 #ifndef TOO_FAR
    107 #  define TOO_FAR 4096
    108 #endif
    109 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
    110 
    111 /* Values for max_lazy_match, good_match and max_chain_length, depending on
    112  * the desired pack level (0..9). The values given below have been tuned to
    113  * exclude worst case performance for pathological files. Better values may be
    114  * found for specific files.
    115  */
    116 typedef struct config_s {
    117    ush good_length; /* reduce lazy search above this match length */
    118    ush max_lazy;    /* do not perform lazy search above this match length */
    119    ush nice_length; /* quit search above this match length */
    120    ush max_chain;
    121    compress_func func;
    122 } config;
    123 
    124 #ifdef FASTEST
    125 local const config configuration_table[2] = {
    126 /*      good lazy nice chain */
    127 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    128 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
    129 #else
    130 local const config configuration_table[10] = {
    131 /*      good lazy nice chain */
    132 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
    133 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
    134 /* 2 */ {4,    5, 16,    8, deflate_fast},
    135 /* 3 */ {4,    6, 32,   32, deflate_fast},
    136 
    137 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
    138 /* 5 */ {8,   16, 32,   32, deflate_slow},
    139 /* 6 */ {8,   16, 128, 128, deflate_slow},
    140 /* 7 */ {8,   32, 128, 256, deflate_slow},
    141 /* 8 */ {32, 128, 258, 1024, deflate_slow},
    142 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
    143 #endif
    144 
    145 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
    146  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
    147  * meaning.
    148  */
    149 
    150 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
    151 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
    152 
    153 /* ===========================================================================
    154  * Update a hash value with the given input byte
    155  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
    156  *    characters, so that a running hash key can be computed from the previous
    157  *    key instead of complete recalculation each time.
    158  */
    159 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
    160 
    161 
    162 /* ===========================================================================
    163  * Insert string str in the dictionary and set match_head to the previous head
    164  * of the hash chain (the most recent string with same hash key). Return
    165  * the previous length of the hash chain.
    166  * If this file is compiled with -DFASTEST, the compression level is forced
    167  * to 1, and no hash chains are maintained.
    168  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
    169  *    characters and the first MIN_MATCH bytes of str are valid (except for
    170  *    the last MIN_MATCH-1 bytes of the input file).
    171  */
    172 #ifdef FASTEST
    173 #define INSERT_STRING(s, str, match_head) \
    174    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    175     match_head = s->head[s->ins_h], \
    176     s->head[s->ins_h] = (Pos)(str))
    177 #else
    178 #define INSERT_STRING(s, str, match_head) \
    179    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
    180     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
    181     s->head[s->ins_h] = (Pos)(str))
    182 #endif
    183 
    184 /* ===========================================================================
    185  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
    186  * prev[] will be initialized on the fly.
    187  */
    188 #define CLEAR_HASH(s) \
    189     do { \
    190         s->head[s->hash_size - 1] = NIL; \
    191         zmemzero((Bytef *)s->head, \
    192                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
    193     } while (0)
    194 
    195 /* ===========================================================================
    196  * Slide the hash table when sliding the window down (could be avoided with 32
    197  * bit values at the expense of memory usage). We slide even when level == 0 to
    198  * keep the hash table consistent if we switch back to level > 0 later.
    199  */
    200 local void slide_hash(s)
    201     deflate_state *s;
    202 {
    203     unsigned n, m;
    204     Posf *p;
    205     uInt wsize = s->w_size;
    206 
    207     n = s->hash_size;
    208     p = &s->head[n];
    209     do {
    210         m = *--p;
    211         *p = (Pos)(m >= wsize ? m - wsize : NIL);
    212     } while (--n);
    213     n = wsize;
    214 #ifndef FASTEST
    215     p = &s->prev[n];
    216     do {
    217         m = *--p;
    218         *p = (Pos)(m >= wsize ? m - wsize : NIL);
    219         /* If n is not on any hash chain, prev[n] is garbage but
    220          * its value will never be used.
    221          */
    222     } while (--n);
    223 #endif
    224 }
    225 
    226 /* ========================================================================= */
    227 int ZEXPORT deflateInit_(strm, level, version, stream_size)
    228     z_streamp strm;
    229     int level;
    230     const char *version;
    231     int stream_size;
    232 {
    233     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
    234                          Z_DEFAULT_STRATEGY, version, stream_size);
    235     /* To do: ignore strm->next_in if we use it as window */
    236 }
    237 
    238 /* ========================================================================= */
    239 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
    240                   version, stream_size)
    241     z_streamp strm;
    242     int  level;
    243     int  method;
    244     int  windowBits;
    245     int  memLevel;
    246     int  strategy;
    247     const char *version;
    248     int stream_size;
    249 {
    250     deflate_state *s;
    251     int wrap = 1;
    252     static const char my_version[] = ZLIB_VERSION;
    253 
    254     if (version == Z_NULL || version[0] != my_version[0] ||
    255         stream_size != sizeof(z_stream)) {
    256         return Z_VERSION_ERROR;
    257     }
    258     if (strm == Z_NULL) return Z_STREAM_ERROR;
    259 
    260     strm->msg = Z_NULL;
    261     if (strm->zalloc == (alloc_func)0) {
    262 #ifdef Z_SOLO
    263         return Z_STREAM_ERROR;
    264 #else
    265         strm->zalloc = zcalloc;
    266         strm->opaque = (voidpf)0;
    267 #endif
    268     }
    269     if (strm->zfree == (free_func)0)
    270 #ifdef Z_SOLO
    271         return Z_STREAM_ERROR;
    272 #else
    273         strm->zfree = zcfree;
    274 #endif
    275 
    276 #ifdef FASTEST
    277     if (level != 0) level = 1;
    278 #else
    279     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    280 #endif
    281 
    282     if (windowBits < 0) { /* suppress zlib wrapper */
    283         wrap = 0;
    284         if (windowBits < -15)
    285             return Z_STREAM_ERROR;
    286         windowBits = -windowBits;
    287     }
    288 #ifdef GZIP
    289     else if (windowBits > 15) {
    290         wrap = 2;       /* write gzip wrapper instead */
    291         windowBits -= 16;
    292     }
    293 #endif
    294     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    295         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
    296         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
    297         return Z_STREAM_ERROR;
    298     }
    299     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
    300     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
    301     if (s == Z_NULL) return Z_MEM_ERROR;
    302     strm->state = (struct internal_state FAR *)s;
    303     s->strm = strm;
    304     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
    305 
    306     s->wrap = wrap;
    307     s->gzhead = Z_NULL;
    308     s->w_bits = (uInt)windowBits;
    309     s->w_size = 1 << s->w_bits;
    310     s->w_mask = s->w_size - 1;
    311 
    312     s->hash_bits = (uInt)memLevel + 7;
    313     s->hash_size = 1 << s->hash_bits;
    314     s->hash_mask = s->hash_size - 1;
    315     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
    316 
    317     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
    318     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
    319     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
    320 
    321     s->high_water = 0;      /* nothing written to s->window yet */
    322 
    323     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
    324 
    325     /* We overlay pending_buf and sym_buf. This works since the average size
    326      * for length/distance pairs over any compressed block is assured to be 31
    327      * bits or less.
    328      *
    329      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
    330      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
    331      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
    332      * possible fixed-codes length/distance pair is then 31 bits total.
    333      *
    334      * sym_buf starts one-fourth of the way into pending_buf. So there are
    335      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
    336      * in sym_buf is three bytes -- two for the distance and one for the
    337      * literal/length. As each symbol is consumed, the pointer to the next
    338      * sym_buf value to read moves forward three bytes. From that symbol, up to
    339      * 31 bits are written to pending_buf. The closest the written pending_buf
    340      * bits gets to the next sym_buf symbol to read is just before the last
    341      * code is written. At that time, 31*(n - 2) bits have been written, just
    342      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
    343      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
    344      * symbols are written.) The closest the writing gets to what is unread is
    345      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
    346      * can range from 128 to 32768.
    347      *
    348      * Therefore, at a minimum, there are 142 bits of space between what is
    349      * written and what is read in the overlain buffers, so the symbols cannot
    350      * be overwritten by the compressed data. That space is actually 139 bits,
    351      * due to the three-bit fixed-code block header.
    352      *
    353      * That covers the case where either Z_FIXED is specified, forcing fixed
    354      * codes, or when the use of fixed codes is chosen, because that choice
    355      * results in a smaller compressed block than dynamic codes. That latter
    356      * condition then assures that the above analysis also covers all dynamic
    357      * blocks. A dynamic-code block will only be chosen to be emitted if it has
    358      * fewer bits than a fixed-code block would for the same set of symbols.
    359      * Therefore its average symbol length is assured to be less than 31. So
    360      * the compressed data for a dynamic block also cannot overwrite the
    361      * symbols from which it is being constructed.
    362      */
    363 
    364     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
    365     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
    366 
    367     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    368         s->pending_buf == Z_NULL) {
    369         s->status = FINISH_STATE;
    370         strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR));
    371         deflateEnd (strm);
    372         return Z_MEM_ERROR;
    373     }
    374     s->sym_buf = s->pending_buf + s->lit_bufsize;
    375     s->sym_end = (s->lit_bufsize - 1) * 3;
    376     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
    377      * on 16 bit machines and because stored blocks are restricted to
    378      * 64K-1 bytes.
    379      */
    380 
    381     s->level = level;
    382     s->strategy = strategy;
    383     s->method = (Byte)method;
    384 
    385     return deflateReset(strm);
    386 }
    387 
    388 /* =========================================================================
    389  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
    390  */
    391 local int deflateStateCheck(strm)
    392     z_streamp strm;
    393 {
    394     deflate_state *s;
    395     if (strm == Z_NULL ||
    396         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
    397         return 1;
    398     s = strm->state;
    399     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
    400 #ifdef GZIP
    401                                            s->status != GZIP_STATE &&
    402 #endif
    403                                            s->status != EXTRA_STATE &&
    404                                            s->status != NAME_STATE &&
    405                                            s->status != COMMENT_STATE &&
    406                                            s->status != HCRC_STATE &&
    407                                            s->status != BUSY_STATE &&
    408                                            s->status != FINISH_STATE))
    409         return 1;
    410     return 0;
    411 }
    412 
    413 /* ========================================================================= */
    414 int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
    415     z_streamp strm;
    416     const Bytef *dictionary;
    417     uInt  dictLength;
    418 {
    419     deflate_state *s;
    420     uInt str, n;
    421     int wrap;
    422     unsigned avail;
    423     z_const unsigned char *next;
    424 
    425     if (deflateStateCheck(strm) || dictionary == Z_NULL)
    426         return Z_STREAM_ERROR;
    427     s = strm->state;
    428     wrap = s->wrap;
    429     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
    430         return Z_STREAM_ERROR;
    431 
    432     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
    433     if (wrap == 1)
    434         strm->adler = adler32(strm->adler, dictionary, dictLength);
    435     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
    436 
    437     /* if dictionary would fill window, just replace the history */
    438     if (dictLength >= s->w_size) {
    439         if (wrap == 0) {            /* already empty otherwise */
    440             CLEAR_HASH(s);
    441             s->strstart = 0;
    442             s->block_start = 0L;
    443             s->insert = 0;
    444         }
    445         dictionary += dictLength - s->w_size;  /* use the tail */
    446         dictLength = s->w_size;
    447     }
    448 
    449     /* insert dictionary into window and hash */
    450     avail = strm->avail_in;
    451     next = strm->next_in;
    452     strm->avail_in = dictLength;
    453     strm->next_in = __UNCONST(dictionary);
    454     fill_window(s);
    455     while (s->lookahead >= MIN_MATCH) {
    456         str = s->strstart;
    457         n = s->lookahead - (MIN_MATCH-1);
    458         do {
    459             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
    460 #ifndef FASTEST
    461             s->prev[str & s->w_mask] = s->head[s->ins_h];
    462 #endif
    463             s->head[s->ins_h] = (Pos)str;
    464             str++;
    465         } while (--n);
    466         s->strstart = str;
    467         s->lookahead = MIN_MATCH-1;
    468         fill_window(s);
    469     }
    470     s->strstart += s->lookahead;
    471     s->block_start = (long)s->strstart;
    472     s->insert = s->lookahead;
    473     s->lookahead = 0;
    474     s->match_length = s->prev_length = MIN_MATCH-1;
    475     s->match_available = 0;
    476     strm->next_in = next;
    477     strm->avail_in = avail;
    478     s->wrap = wrap;
    479     return Z_OK;
    480 }
    481 
    482 /* ========================================================================= */
    483 int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
    484     z_streamp strm;
    485     Bytef *dictionary;
    486     uInt  *dictLength;
    487 {
    488     deflate_state *s;
    489     uInt len;
    490 
    491     if (deflateStateCheck(strm))
    492         return Z_STREAM_ERROR;
    493     s = strm->state;
    494     len = s->strstart + s->lookahead;
    495     if (len > s->w_size)
    496         len = s->w_size;
    497     if (dictionary != Z_NULL && len)
    498         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
    499     if (dictLength != Z_NULL)
    500         *dictLength = len;
    501     return Z_OK;
    502 }
    503 
    504 /* ========================================================================= */
    505 int ZEXPORT deflateResetKeep(strm)
    506     z_streamp strm;
    507 {
    508     deflate_state *s;
    509 
    510     if (deflateStateCheck(strm)) {
    511         return Z_STREAM_ERROR;
    512     }
    513 
    514     strm->total_in = strm->total_out = 0;
    515     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
    516     strm->data_type = Z_UNKNOWN;
    517 
    518     s = (deflate_state *)strm->state;
    519     s->pending = 0;
    520     s->pending_out = s->pending_buf;
    521 
    522     if (s->wrap < 0) {
    523         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
    524     }
    525     s->status =
    526 #ifdef GZIP
    527         s->wrap == 2 ? GZIP_STATE :
    528 #endif
    529         INIT_STATE;
    530     strm->adler =
    531 #ifdef GZIP
    532         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
    533 #endif
    534         adler32(0L, Z_NULL, 0);
    535     s->last_flush = -2;
    536 
    537     _tr_init(s);
    538 
    539     return Z_OK;
    540 }
    541 
    542 /* ========================================================================= */
    543 int ZEXPORT deflateReset(strm)
    544     z_streamp strm;
    545 {
    546     int ret;
    547 
    548     ret = deflateResetKeep(strm);
    549     if (ret == Z_OK)
    550         lm_init(strm->state);
    551     return ret;
    552 }
    553 
    554 /* ========================================================================= */
    555 int ZEXPORT deflateSetHeader(strm, head)
    556     z_streamp strm;
    557     gz_headerp head;
    558 {
    559     if (deflateStateCheck(strm) || strm->state->wrap != 2)
    560         return Z_STREAM_ERROR;
    561     strm->state->gzhead = head;
    562     return Z_OK;
    563 }
    564 
    565 /* ========================================================================= */
    566 int ZEXPORT deflatePending(strm, pending, bits)
    567     unsigned *pending;
    568     int *bits;
    569     z_streamp strm;
    570 {
    571     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    572     if (pending != Z_NULL)
    573         *pending = strm->state->pending;
    574     if (bits != Z_NULL)
    575         *bits = strm->state->bi_valid;
    576     return Z_OK;
    577 }
    578 
    579 /* ========================================================================= */
    580 int ZEXPORT deflatePrime(strm, bits, value)
    581     z_streamp strm;
    582     int bits;
    583     int value;
    584 {
    585     deflate_state *s;
    586     int put;
    587 
    588     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    589     s = strm->state;
    590     if (bits < 0 || bits > 16 ||
    591         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
    592         return Z_BUF_ERROR;
    593     do {
    594         put = Buf_size - s->bi_valid;
    595         if (put > bits)
    596             put = bits;
    597         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
    598         s->bi_valid += put;
    599         _tr_flush_bits(s);
    600         value >>= put;
    601         bits -= put;
    602     } while (bits);
    603     return Z_OK;
    604 }
    605 
    606 /* ========================================================================= */
    607 int ZEXPORT deflateParams(strm, level, strategy)
    608     z_streamp strm;
    609     int level;
    610     int strategy;
    611 {
    612     deflate_state *s;
    613     compress_func func;
    614 
    615     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    616     s = strm->state;
    617 
    618 #ifdef FASTEST
    619     if (level != 0) level = 1;
    620 #else
    621     if (level == Z_DEFAULT_COMPRESSION) level = 6;
    622 #endif
    623     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
    624         return Z_STREAM_ERROR;
    625     }
    626     func = configuration_table[s->level].func;
    627 
    628     if ((strategy != s->strategy || func != configuration_table[level].func) &&
    629         s->last_flush != -2) {
    630         /* Flush the last buffer: */
    631         int err = deflate(strm, Z_BLOCK);
    632         if (err == Z_STREAM_ERROR)
    633             return err;
    634         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
    635             return Z_BUF_ERROR;
    636     }
    637     if (s->level != level) {
    638         if (s->level == 0 && s->matches != 0) {
    639             if (s->matches == 1)
    640                 slide_hash(s);
    641             else
    642                 CLEAR_HASH(s);
    643             s->matches = 0;
    644         }
    645         s->level = level;
    646         s->max_lazy_match   = configuration_table[level].max_lazy;
    647         s->good_match       = configuration_table[level].good_length;
    648         s->nice_match       = configuration_table[level].nice_length;
    649         s->max_chain_length = configuration_table[level].max_chain;
    650     }
    651     s->strategy = strategy;
    652     return Z_OK;
    653 }
    654 
    655 /* ========================================================================= */
    656 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
    657     z_streamp strm;
    658     int good_length;
    659     int max_lazy;
    660     int nice_length;
    661     int max_chain;
    662 {
    663     deflate_state *s;
    664 
    665     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
    666     s = strm->state;
    667     s->good_match = (uInt)good_length;
    668     s->max_lazy_match = (uInt)max_lazy;
    669     s->nice_match = nice_length;
    670     s->max_chain_length = (uInt)max_chain;
    671     return Z_OK;
    672 }
    673 
    674 /* =========================================================================
    675  * For the default windowBits of 15 and memLevel of 8, this function returns a
    676  * close to exact, as well as small, upper bound on the compressed size. This
    677  * is an expansion of ~0.03%, plus a small constant.
    678  *
    679  * For any setting other than those defaults for windowBits and memLevel, one
    680  * of two worst case bounds is returned. This is at most an expansion of ~4% or
    681  * ~13%, plus a small constant.
    682  *
    683  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
    684  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
    685  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
    686  * expansion results from five bytes of header for each stored block.
    687  *
    688  * The larger expansion of 13% results from a window size less than or equal to
    689  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
    690  * the data being compressed may have slid out of the sliding window, impeding
    691  * a stored block from being emitted. Then the only choice is a fixed or
    692  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
    693  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
    694  * which this can occur is 255 (memLevel == 2).
    695  *
    696  * Shifts are used to approximate divisions, for speed.
    697  */
    698 uLong ZEXPORT deflateBound(strm, sourceLen)
    699     z_streamp strm;
    700     uLong sourceLen;
    701 {
    702     deflate_state *s;
    703     uLong fixedlen, storelen, wraplen;
    704 
    705     /* upper bound for fixed blocks with 9-bit literals and length 255
    706        (memLevel == 2, which is the lowest that may not use stored blocks) --
    707        ~13% overhead plus a small constant */
    708     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
    709                (sourceLen >> 9) + 4;
    710 
    711     /* upper bound for stored blocks with length 127 (memLevel == 1) --
    712        ~4% overhead plus a small constant */
    713     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
    714                (sourceLen >> 11) + 7;
    715 
    716     /* if can't get parameters, return larger bound plus a zlib wrapper */
    717     if (deflateStateCheck(strm))
    718         return (fixedlen > storelen ? fixedlen : storelen) + 6;
    719 
    720     /* compute wrapper length */
    721     s = strm->state;
    722     switch (s->wrap) {
    723     case 0:                                 /* raw deflate */
    724         wraplen = 0;
    725         break;
    726     case 1:                                 /* zlib wrapper */
    727         wraplen = 6 + (s->strstart ? 4 : 0);
    728         break;
    729 #ifdef GZIP
    730     case 2:                                 /* gzip wrapper */
    731         wraplen = 18;
    732         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
    733             Bytef *str;
    734             if (s->gzhead->extra != Z_NULL)
    735                 wraplen += 2 + s->gzhead->extra_len;
    736             str = s->gzhead->name;
    737             if (str != Z_NULL)
    738                 do {
    739                     wraplen++;
    740                 } while (*str++);
    741             str = s->gzhead->comment;
    742             if (str != Z_NULL)
    743                 do {
    744                     wraplen++;
    745                 } while (*str++);
    746             if (s->gzhead->hcrc)
    747                 wraplen += 2;
    748         }
    749         break;
    750 #endif
    751     default:                                /* for compiler happiness */
    752         wraplen = 6;
    753     }
    754 
    755     /* if not default parameters, return one of the conservative bounds */
    756     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
    757         return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
    758 
    759     /* default settings: return tight bound for that case -- ~0.03% overhead
    760        plus a small constant */
    761     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
    762            (sourceLen >> 25) + 13 - 6 + wraplen;
    763 }
    764 
    765 /* =========================================================================
    766  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
    767  * IN assertion: the stream state is correct and there is enough room in
    768  * pending_buf.
    769  */
    770 local void putShortMSB(s, b)
    771     deflate_state *s;
    772     uInt b;
    773 {
    774     put_byte(s, (Byte)(b >> 8));
    775     put_byte(s, (Byte)(b & 0xff));
    776 }
    777 
    778 /* =========================================================================
    779  * Flush as much pending output as possible. All deflate() output, except for
    780  * some deflate_stored() output, goes through this function so some
    781  * applications may wish to modify it to avoid allocating a large
    782  * strm->next_out buffer and copying into it. (See also read_buf()).
    783  */
    784 local void flush_pending(strm)
    785     z_streamp strm;
    786 {
    787     unsigned len;
    788     deflate_state *s = strm->state;
    789 
    790     _tr_flush_bits(s);
    791     len = s->pending;
    792     if (len > strm->avail_out) len = strm->avail_out;
    793     if (len == 0) return;
    794 
    795     zmemcpy(strm->next_out, s->pending_out, len);
    796     strm->next_out  += len;
    797     s->pending_out  += len;
    798     strm->total_out += len;
    799     strm->avail_out -= len;
    800     s->pending      -= len;
    801     if (s->pending == 0) {
    802         s->pending_out = s->pending_buf;
    803     }
    804 }
    805 
    806 /* ===========================================================================
    807  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
    808  */
    809 #define HCRC_UPDATE(beg) \
    810     do { \
    811         if (s->gzhead->hcrc && s->pending > (beg)) \
    812             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
    813                                 s->pending - (beg)); \
    814     } while (0)
    815 
    816 /* ========================================================================= */
    817 int ZEXPORT deflate(strm, flush)
    818     z_streamp strm;
    819     int flush;
    820 {
    821     int old_flush; /* value of flush param for previous deflate call */
    822     deflate_state *s;
    823 
    824     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
    825         return Z_STREAM_ERROR;
    826     }
    827     s = strm->state;
    828 
    829     if (strm->next_out == Z_NULL ||
    830         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
    831         (s->status == FINISH_STATE && flush != Z_FINISH)) {
    832         ERR_RETURN(strm, Z_STREAM_ERROR);
    833     }
    834     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
    835 
    836     old_flush = s->last_flush;
    837     s->last_flush = flush;
    838 
    839     /* Flush as much pending output as possible */
    840     if (s->pending != 0) {
    841         flush_pending(strm);
    842         if (strm->avail_out == 0) {
    843             /* Since avail_out is 0, deflate will be called again with
    844              * more output space, but possibly with both pending and
    845              * avail_in equal to zero. There won't be anything to do,
    846              * but this is not an error situation so make sure we
    847              * return OK instead of BUF_ERROR at next call of deflate:
    848              */
    849             s->last_flush = -1;
    850             return Z_OK;
    851         }
    852 
    853     /* Make sure there is something to do and avoid duplicate consecutive
    854      * flushes. For repeated and useless calls with Z_FINISH, we keep
    855      * returning Z_STREAM_END instead of Z_BUF_ERROR.
    856      */
    857     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
    858                flush != Z_FINISH) {
    859         ERR_RETURN(strm, Z_BUF_ERROR);
    860     }
    861 
    862     /* User must not provide more input after the first FINISH: */
    863     if (s->status == FINISH_STATE && strm->avail_in != 0) {
    864         ERR_RETURN(strm, Z_BUF_ERROR);
    865     }
    866 
    867     /* Write the header */
    868     if (s->status == INIT_STATE && s->wrap == 0)
    869         s->status = BUSY_STATE;
    870     if (s->status == INIT_STATE) {
    871         /* zlib header */
    872         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
    873         uInt level_flags;
    874 
    875         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
    876             level_flags = 0;
    877         else if (s->level < 6)
    878             level_flags = 1;
    879         else if (s->level == 6)
    880             level_flags = 2;
    881         else
    882             level_flags = 3;
    883         header |= (level_flags << 6);
    884         if (s->strstart != 0) header |= PRESET_DICT;
    885         header += 31 - (header % 31);
    886 
    887         putShortMSB(s, header);
    888 
    889         /* Save the adler32 of the preset dictionary: */
    890         if (s->strstart != 0) {
    891             putShortMSB(s, (uInt)(strm->adler >> 16));
    892             putShortMSB(s, (uInt)(strm->adler & 0xffff));
    893         }
    894         strm->adler = adler32(0L, Z_NULL, 0);
    895         s->status = BUSY_STATE;
    896 
    897         /* Compression must start with an empty pending buffer */
    898         flush_pending(strm);
    899         if (s->pending != 0) {
    900             s->last_flush = -1;
    901             return Z_OK;
    902         }
    903     }
    904 #ifdef GZIP
    905     if (s->status == GZIP_STATE) {
    906         /* gzip header */
    907         strm->adler = crc32(0L, Z_NULL, 0);
    908         put_byte(s, 31);
    909         put_byte(s, 139);
    910         put_byte(s, 8);
    911         if (s->gzhead == Z_NULL) {
    912             put_byte(s, 0);
    913             put_byte(s, 0);
    914             put_byte(s, 0);
    915             put_byte(s, 0);
    916             put_byte(s, 0);
    917             put_byte(s, s->level == 9 ? 2 :
    918                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
    919                       4 : 0));
    920             put_byte(s, OS_CODE);
    921             s->status = BUSY_STATE;
    922 
    923             /* Compression must start with an empty pending buffer */
    924             flush_pending(strm);
    925             if (s->pending != 0) {
    926                 s->last_flush = -1;
    927                 return Z_OK;
    928             }
    929         }
    930         else {
    931             put_byte(s, (s->gzhead->text ? 1 : 0) +
    932                      (s->gzhead->hcrc ? 2 : 0) +
    933                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
    934                      (s->gzhead->name == Z_NULL ? 0 : 8) +
    935                      (s->gzhead->comment == Z_NULL ? 0 : 16)
    936                      );
    937             put_byte(s, (Byte)(s->gzhead->time & 0xff));
    938             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
    939             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
    940             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
    941             put_byte(s, s->level == 9 ? 2 :
    942                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
    943                       4 : 0));
    944             put_byte(s, s->gzhead->os & 0xff);
    945             if (s->gzhead->extra != Z_NULL) {
    946                 put_byte(s, s->gzhead->extra_len & 0xff);
    947                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
    948             }
    949             if (s->gzhead->hcrc)
    950                 strm->adler = crc32(strm->adler, s->pending_buf,
    951                                     s->pending);
    952             s->gzindex = 0;
    953             s->status = EXTRA_STATE;
    954         }
    955     }
    956     if (s->status == EXTRA_STATE) {
    957         if (s->gzhead->extra != Z_NULL) {
    958             ulg beg = s->pending;   /* start of bytes to update crc */
    959             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
    960             while (s->pending + left > s->pending_buf_size) {
    961                 uInt copy = s->pending_buf_size - s->pending;
    962                 zmemcpy(s->pending_buf + s->pending,
    963                         s->gzhead->extra + s->gzindex, copy);
    964                 s->pending = s->pending_buf_size;
    965                 HCRC_UPDATE(beg);
    966                 s->gzindex += copy;
    967                 flush_pending(strm);
    968                 if (s->pending != 0) {
    969                     s->last_flush = -1;
    970                     return Z_OK;
    971                 }
    972                 beg = 0;
    973                 left -= copy;
    974             }
    975             zmemcpy(s->pending_buf + s->pending,
    976                     s->gzhead->extra + s->gzindex, left);
    977             s->pending += left;
    978             HCRC_UPDATE(beg);
    979             s->gzindex = 0;
    980         }
    981         s->status = NAME_STATE;
    982     }
    983     if (s->status == NAME_STATE) {
    984         if (s->gzhead->name != Z_NULL) {
    985             ulg beg = s->pending;   /* start of bytes to update crc */
    986             int val;
    987             do {
    988                 if (s->pending == s->pending_buf_size) {
    989                     HCRC_UPDATE(beg);
    990                     flush_pending(strm);
    991                     if (s->pending != 0) {
    992                         s->last_flush = -1;
    993                         return Z_OK;
    994                     }
    995                     beg = 0;
    996                 }
    997                 val = s->gzhead->name[s->gzindex++];
    998                 put_byte(s, val);
    999             } while (val != 0);
   1000             HCRC_UPDATE(beg);
   1001             s->gzindex = 0;
   1002         }
   1003         s->status = COMMENT_STATE;
   1004     }
   1005     if (s->status == COMMENT_STATE) {
   1006         if (s->gzhead->comment != Z_NULL) {
   1007             ulg beg = s->pending;   /* start of bytes to update crc */
   1008             int val;
   1009             do {
   1010                 if (s->pending == s->pending_buf_size) {
   1011                     HCRC_UPDATE(beg);
   1012                     flush_pending(strm);
   1013                     if (s->pending != 0) {
   1014                         s->last_flush = -1;
   1015                         return Z_OK;
   1016                     }
   1017                     beg = 0;
   1018                 }
   1019                 val = s->gzhead->comment[s->gzindex++];
   1020                 put_byte(s, val);
   1021             } while (val != 0);
   1022             HCRC_UPDATE(beg);
   1023         }
   1024         s->status = HCRC_STATE;
   1025     }
   1026     if (s->status == HCRC_STATE) {
   1027         if (s->gzhead->hcrc) {
   1028             if (s->pending + 2 > s->pending_buf_size) {
   1029                 flush_pending(strm);
   1030                 if (s->pending != 0) {
   1031                     s->last_flush = -1;
   1032                     return Z_OK;
   1033                 }
   1034             }
   1035             put_byte(s, (Byte)(strm->adler & 0xff));
   1036             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
   1037             strm->adler = crc32(0L, Z_NULL, 0);
   1038         }
   1039         s->status = BUSY_STATE;
   1040 
   1041         /* Compression must start with an empty pending buffer */
   1042         flush_pending(strm);
   1043         if (s->pending != 0) {
   1044             s->last_flush = -1;
   1045             return Z_OK;
   1046         }
   1047     }
   1048 #endif
   1049 
   1050     /* Start a new block or continue the current one.
   1051      */
   1052     if (strm->avail_in != 0 || s->lookahead != 0 ||
   1053         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
   1054         block_state bstate;
   1055 
   1056         bstate = s->level == 0 ? deflate_stored(s, flush) :
   1057                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
   1058                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
   1059                  (*(configuration_table[s->level].func))(s, flush);
   1060 
   1061         if (bstate == finish_started || bstate == finish_done) {
   1062             s->status = FINISH_STATE;
   1063         }
   1064         if (bstate == need_more || bstate == finish_started) {
   1065             if (strm->avail_out == 0) {
   1066                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
   1067             }
   1068             return Z_OK;
   1069             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
   1070              * of deflate should use the same flush parameter to make sure
   1071              * that the flush is complete. So we don't have to output an
   1072              * empty block here, this will be done at next call. This also
   1073              * ensures that for a very small output buffer, we emit at most
   1074              * one empty block.
   1075              */
   1076         }
   1077         if (bstate == block_done) {
   1078             if (flush == Z_PARTIAL_FLUSH) {
   1079                 _tr_align(s);
   1080             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
   1081                 _tr_stored_block(s, (char*)0, 0L, 0);
   1082                 /* For a full flush, this empty block will be recognized
   1083                  * as a special marker by inflate_sync().
   1084                  */
   1085                 if (flush == Z_FULL_FLUSH) {
   1086                     CLEAR_HASH(s);             /* forget history */
   1087                     if (s->lookahead == 0) {
   1088                         s->strstart = 0;
   1089                         s->block_start = 0L;
   1090                         s->insert = 0;
   1091                     }
   1092                 }
   1093             }
   1094             flush_pending(strm);
   1095             if (strm->avail_out == 0) {
   1096               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
   1097               return Z_OK;
   1098             }
   1099         }
   1100     }
   1101 
   1102     if (flush != Z_FINISH) return Z_OK;
   1103     if (s->wrap <= 0) return Z_STREAM_END;
   1104 
   1105     /* Write the trailer */
   1106 #ifdef GZIP
   1107     if (s->wrap == 2) {
   1108         put_byte(s, (Byte)(strm->adler & 0xff));
   1109         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
   1110         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
   1111         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
   1112         put_byte(s, (Byte)(strm->total_in & 0xff));
   1113         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
   1114         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
   1115         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
   1116     }
   1117     else
   1118 #endif
   1119     {
   1120         putShortMSB(s, (uInt)(strm->adler >> 16));
   1121         putShortMSB(s, (uInt)(strm->adler & 0xffff));
   1122     }
   1123     flush_pending(strm);
   1124     /* If avail_out is zero, the application will call deflate again
   1125      * to flush the rest.
   1126      */
   1127     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
   1128     return s->pending != 0 ? Z_OK : Z_STREAM_END;
   1129 }
   1130 
   1131 /* ========================================================================= */
   1132 int ZEXPORT deflateEnd(strm)
   1133     z_streamp strm;
   1134 {
   1135     int status;
   1136 
   1137     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
   1138 
   1139     status = strm->state->status;
   1140 
   1141     /* Deallocate in reverse order of allocations: */
   1142     TRY_FREE(strm, strm->state->pending_buf);
   1143     TRY_FREE(strm, strm->state->head);
   1144     TRY_FREE(strm, strm->state->prev);
   1145     TRY_FREE(strm, strm->state->window);
   1146 
   1147     ZFREE(strm, strm->state);
   1148     strm->state = Z_NULL;
   1149 
   1150     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
   1151 }
   1152 
   1153 /* =========================================================================
   1154  * Copy the source state to the destination state.
   1155  * To simplify the source, this is not supported for 16-bit MSDOS (which
   1156  * doesn't have enough memory anyway to duplicate compression states).
   1157  */
   1158 int ZEXPORT deflateCopy(dest, source)
   1159     z_streamp dest;
   1160     z_streamp source;
   1161 {
   1162 #ifdef MAXSEG_64K
   1163     return Z_STREAM_ERROR;
   1164 #else
   1165     deflate_state *ds;
   1166     deflate_state *ss;
   1167 
   1168 
   1169     if (deflateStateCheck(source) || dest == Z_NULL) {
   1170         return Z_STREAM_ERROR;
   1171     }
   1172 
   1173     ss = source->state;
   1174 
   1175     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
   1176 
   1177     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   1178     if (ds == Z_NULL) return Z_MEM_ERROR;
   1179     dest->state = (struct internal_state FAR *) ds;
   1180     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
   1181     ds->strm = dest;
   1182 
   1183     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   1184     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   1185     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   1186     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
   1187 
   1188     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
   1189         ds->pending_buf == Z_NULL) {
   1190         deflateEnd (dest);
   1191         return Z_MEM_ERROR;
   1192     }
   1193     /* following zmemcpy do not work for 16-bit MSDOS */
   1194     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   1195     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
   1196     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
   1197     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
   1198 
   1199     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   1200     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
   1201 
   1202     ds->l_desc.dyn_tree = ds->dyn_ltree;
   1203     ds->d_desc.dyn_tree = ds->dyn_dtree;
   1204     ds->bl_desc.dyn_tree = ds->bl_tree;
   1205 
   1206     return Z_OK;
   1207 #endif /* MAXSEG_64K */
   1208 }
   1209 
   1210 /* ===========================================================================
   1211  * Read a new buffer from the current input stream, update the adler32
   1212  * and total number of bytes read.  All deflate() input goes through
   1213  * this function so some applications may wish to modify it to avoid
   1214  * allocating a large strm->next_in buffer and copying from it.
   1215  * (See also flush_pending()).
   1216  */
   1217 local unsigned read_buf(strm, buf, size)
   1218     z_streamp strm;
   1219     Bytef *buf;
   1220     unsigned size;
   1221 {
   1222     unsigned len = strm->avail_in;
   1223 
   1224     if (len > size) len = size;
   1225     if (len == 0) return 0;
   1226 
   1227     strm->avail_in  -= len;
   1228 
   1229     zmemcpy(buf, strm->next_in, len);
   1230     if (strm->state->wrap == 1) {
   1231         strm->adler = adler32(strm->adler, buf, len);
   1232     }
   1233 #ifdef GZIP
   1234     else if (strm->state->wrap == 2) {
   1235         strm->adler = crc32(strm->adler, buf, len);
   1236     }
   1237 #endif
   1238     strm->next_in  += len;
   1239     strm->total_in += len;
   1240 
   1241     return len;
   1242 }
   1243 
   1244 /* ===========================================================================
   1245  * Initialize the "longest match" routines for a new zlib stream
   1246  */
   1247 local void lm_init(s)
   1248     deflate_state *s;
   1249 {
   1250     s->window_size = (ulg)2L*s->w_size;
   1251 
   1252     CLEAR_HASH(s);
   1253 
   1254     /* Set the default configuration parameters:
   1255      */
   1256     s->max_lazy_match   = configuration_table[s->level].max_lazy;
   1257     s->good_match       = configuration_table[s->level].good_length;
   1258     s->nice_match       = configuration_table[s->level].nice_length;
   1259     s->max_chain_length = configuration_table[s->level].max_chain;
   1260 
   1261     s->strstart = 0;
   1262     s->block_start = 0L;
   1263     s->lookahead = 0;
   1264     s->insert = 0;
   1265     s->match_length = s->prev_length = MIN_MATCH-1;
   1266     s->match_available = 0;
   1267     s->ins_h = 0;
   1268 }
   1269 
   1270 #ifndef FASTEST
   1271 /* ===========================================================================
   1272  * Set match_start to the longest match starting at the given string and
   1273  * return its length. Matches shorter or equal to prev_length are discarded,
   1274  * in which case the result is equal to prev_length and match_start is
   1275  * garbage.
   1276  * IN assertions: cur_match is the head of the hash chain for the current
   1277  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
   1278  * OUT assertion: the match length is not greater than s->lookahead.
   1279  */
   1280 local uInt longest_match(s, cur_match)
   1281     deflate_state *s;
   1282     IPos cur_match;                             /* current match */
   1283 {
   1284     unsigned chain_length = s->max_chain_length;/* max hash chain length */
   1285     register Bytef *scan = s->window + s->strstart; /* current string */
   1286     register Bytef *match;                      /* matched string */
   1287     register int len;                           /* length of current match */
   1288     int best_len = (int)s->prev_length;         /* best match length so far */
   1289     int nice_match = s->nice_match;             /* stop if match long enough */
   1290     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
   1291         s->strstart - (IPos)MAX_DIST(s) : NIL;
   1292     /* Stop when cur_match becomes <= limit. To simplify the code,
   1293      * we prevent matches with the string of window index 0.
   1294      */
   1295     Posf *prev = s->prev;
   1296     uInt wmask = s->w_mask;
   1297 
   1298 #ifdef UNALIGNED_OK
   1299     /* Compare two bytes at a time. Note: this is not always beneficial.
   1300      * Try with and without -DUNALIGNED_OK to check.
   1301      */
   1302     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   1303     register ush scan_start = *(ushf*)scan;
   1304     register ush scan_end   = *(ushf*)(scan + best_len - 1);
   1305 #else
   1306     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1307     register Byte scan_end1  = scan[best_len - 1];
   1308     register Byte scan_end   = scan[best_len];
   1309 #endif
   1310 
   1311     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1312      * It is easy to get rid of this optimization if necessary.
   1313      */
   1314     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1315 
   1316     /* Do not waste too much time if we already have a good match: */
   1317     if (s->prev_length >= s->good_match) {
   1318         chain_length >>= 2;
   1319     }
   1320     /* Do not look for matches beyond the end of the input. This is necessary
   1321      * to make deflate deterministic.
   1322      */
   1323     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
   1324 
   1325     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
   1326            "need lookahead");
   1327 
   1328     do {
   1329         Assert(cur_match < s->strstart, "no future");
   1330         match = s->window + cur_match;
   1331 
   1332         /* Skip to next match if the match length cannot increase
   1333          * or if the match length is less than 2.  Note that the checks below
   1334          * for insufficient lookahead only occur occasionally for performance
   1335          * reasons.  Therefore uninitialized memory will be accessed, and
   1336          * conditional jumps will be made that depend on those values.
   1337          * However the length of the match is limited to the lookahead, so
   1338          * the output of deflate is not affected by the uninitialized values.
   1339          */
   1340 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
   1341         /* This code assumes sizeof(unsigned short) == 2. Do not use
   1342          * UNALIGNED_OK if your compiler uses a different size.
   1343          */
   1344         if (*(ushf*)(match + best_len - 1) != scan_end ||
   1345             *(ushf*)match != scan_start) continue;
   1346 
   1347         /* It is not necessary to compare scan[2] and match[2] since they are
   1348          * always equal when the other bytes match, given that the hash keys
   1349          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
   1350          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
   1351          * lookahead only every 4th comparison; the 128th check will be made
   1352          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
   1353          * necessary to put more guard bytes at the end of the window, or
   1354          * to check more often for insufficient lookahead.
   1355          */
   1356         Assert(scan[2] == match[2], "scan[2]?");
   1357         scan++, match++;
   1358         do {
   1359         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1360                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1361                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1362                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
   1363                  scan < strend);
   1364         /* The funny "do {}" generates better code on most compilers */
   1365 
   1366         /* Here, scan <= window + strstart + 257 */
   1367         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
   1368                "wild scan");
   1369         if (*scan == *match) scan++;
   1370 
   1371         len = (MAX_MATCH - 1) - (int)(strend - scan);
   1372         scan = strend - (MAX_MATCH-1);
   1373 
   1374 #else /* UNALIGNED_OK */
   1375 
   1376         if (match[best_len]     != scan_end  ||
   1377             match[best_len - 1] != scan_end1 ||
   1378             *match              != *scan     ||
   1379             *++match            != scan[1])      continue;
   1380 
   1381         /* The check at best_len - 1 can be removed because it will be made
   1382          * again later. (This heuristic is not always a win.)
   1383          * It is not necessary to compare scan[2] and match[2] since they
   1384          * are always equal when the other bytes match, given that
   1385          * the hash keys are equal and that HASH_BITS >= 8.
   1386          */
   1387         scan += 2, match++;
   1388         Assert(*scan == *match, "match[2]?");
   1389 
   1390         /* We check for insufficient lookahead only every 8th comparison;
   1391          * the 256th check will be made at strstart + 258.
   1392          */
   1393         do {
   1394         } while (*++scan == *++match && *++scan == *++match &&
   1395                  *++scan == *++match && *++scan == *++match &&
   1396                  *++scan == *++match && *++scan == *++match &&
   1397                  *++scan == *++match && *++scan == *++match &&
   1398                  scan < strend);
   1399 
   1400         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
   1401                "wild scan");
   1402 
   1403         len = MAX_MATCH - (int)(strend - scan);
   1404         scan = strend - MAX_MATCH;
   1405 
   1406 #endif /* UNALIGNED_OK */
   1407 
   1408         if (len > best_len) {
   1409             s->match_start = cur_match;
   1410             best_len = len;
   1411             if (len >= nice_match) break;
   1412 #ifdef UNALIGNED_OK
   1413             scan_end = *(ushf*)(scan + best_len - 1);
   1414 #else
   1415             scan_end1  = scan[best_len - 1];
   1416             scan_end   = scan[best_len];
   1417 #endif
   1418         }
   1419     } while ((cur_match = prev[cur_match & wmask]) > limit
   1420              && --chain_length != 0);
   1421 
   1422     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   1423     return s->lookahead;
   1424 }
   1425 
   1426 #else /* FASTEST */
   1427 
   1428 /* ---------------------------------------------------------------------------
   1429  * Optimized version for FASTEST only
   1430  */
   1431 local uInt longest_match(s, cur_match)
   1432     deflate_state *s;
   1433     IPos cur_match;                             /* current match */
   1434 {
   1435     register Bytef *scan = s->window + s->strstart; /* current string */
   1436     register Bytef *match;                       /* matched string */
   1437     register int len;                           /* length of current match */
   1438     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   1439 
   1440     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
   1441      * It is easy to get rid of this optimization if necessary.
   1442      */
   1443     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
   1444 
   1445     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
   1446            "need lookahead");
   1447 
   1448     Assert(cur_match < s->strstart, "no future");
   1449 
   1450     match = s->window + cur_match;
   1451 
   1452     /* Return failure if the match length is less than 2:
   1453      */
   1454     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
   1455 
   1456     /* The check at best_len - 1 can be removed because it will be made
   1457      * again later. (This heuristic is not always a win.)
   1458      * It is not necessary to compare scan[2] and match[2] since they
   1459      * are always equal when the other bytes match, given that
   1460      * the hash keys are equal and that HASH_BITS >= 8.
   1461      */
   1462     scan += 2, match += 2;
   1463     Assert(*scan == *match, "match[2]?");
   1464 
   1465     /* We check for insufficient lookahead only every 8th comparison;
   1466      * the 256th check will be made at strstart + 258.
   1467      */
   1468     do {
   1469     } while (*++scan == *++match && *++scan == *++match &&
   1470              *++scan == *++match && *++scan == *++match &&
   1471              *++scan == *++match && *++scan == *++match &&
   1472              *++scan == *++match && *++scan == *++match &&
   1473              scan < strend);
   1474 
   1475     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
   1476 
   1477     len = MAX_MATCH - (int)(strend - scan);
   1478 
   1479     if (len < MIN_MATCH) return MIN_MATCH - 1;
   1480 
   1481     s->match_start = cur_match;
   1482     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
   1483 }
   1484 
   1485 #endif /* FASTEST */
   1486 
   1487 #ifdef ZLIB_DEBUG
   1488 
   1489 #define EQUAL 0
   1490 /* result of memcmp for equal strings */
   1491 
   1492 /* ===========================================================================
   1493  * Check that the match at match_start is indeed a match.
   1494  */
   1495 local void check_match(s, start, match, length)
   1496     deflate_state *s;
   1497     IPos start, match;
   1498     int length;
   1499 {
   1500     /* check that the match is indeed a match */
   1501     if (zmemcmp(s->window + match,
   1502                 s->window + start, length) != EQUAL) {
   1503         fprintf(stderr, " start %u, match %u, length %d\n",
   1504                 start, match, length);
   1505         do {
   1506             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
   1507         } while (--length != 0);
   1508         z_error("invalid match");
   1509     }
   1510     if (z_verbose > 1) {
   1511         fprintf(stderr,"\\[%d,%d]", start - match, length);
   1512         do { putc(s->window[start++], stderr); } while (--length != 0);
   1513     }
   1514 }
   1515 #else
   1516 #  define check_match(s, start, match, length)
   1517 #endif /* ZLIB_DEBUG */
   1518 
   1519 /* ===========================================================================
   1520  * Fill the window when the lookahead becomes insufficient.
   1521  * Updates strstart and lookahead.
   1522  *
   1523  * IN assertion: lookahead < MIN_LOOKAHEAD
   1524  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
   1525  *    At least one byte has been read, or avail_in == 0; reads are
   1526  *    performed for at least two bytes (required for the zip translate_eol
   1527  *    option -- not supported here).
   1528  */
   1529 local void fill_window(s)
   1530     deflate_state *s;
   1531 {
   1532     unsigned n;
   1533     unsigned more;    /* Amount of free space at the end of the window. */
   1534     uInt wsize = s->w_size;
   1535 
   1536     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
   1537 
   1538     do {
   1539         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
   1540 
   1541         /* Deal with !@#$% 64K limit: */
   1542         if (sizeof(int) <= 2) {
   1543             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
   1544                 more = wsize;
   1545 
   1546             } else if (more == (unsigned)(-1)) {
   1547                 /* Very unlikely, but possible on 16 bit machine if
   1548                  * strstart == 0 && lookahead == 1 (input done a byte at time)
   1549                  */
   1550                 more--;
   1551             }
   1552         }
   1553 
   1554         /* If the window is almost full and there is insufficient lookahead,
   1555          * move the upper half to the lower one to make room in the upper half.
   1556          */
   1557         if (s->strstart >= wsize + MAX_DIST(s)) {
   1558 
   1559             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
   1560             s->match_start -= wsize;
   1561             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
   1562             s->block_start -= (long) wsize;
   1563             if (s->insert > s->strstart)
   1564                 s->insert = s->strstart;
   1565             slide_hash(s);
   1566             more += wsize;
   1567         }
   1568         if (s->strm->avail_in == 0) break;
   1569 
   1570         /* If there was no sliding:
   1571          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
   1572          *    more == window_size - lookahead - strstart
   1573          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
   1574          * => more >= window_size - 2*WSIZE + 2
   1575          * In the BIG_MEM or MMAP case (not yet supported),
   1576          *   window_size == input_size + MIN_LOOKAHEAD  &&
   1577          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
   1578          * Otherwise, window_size == 2*WSIZE so more >= 2.
   1579          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
   1580          */
   1581         Assert(more >= 2, "more < 2");
   1582 
   1583         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
   1584         s->lookahead += n;
   1585 
   1586         /* Initialize the hash value now that we have some input: */
   1587         if (s->lookahead + s->insert >= MIN_MATCH) {
   1588             uInt str = s->strstart - s->insert;
   1589             s->ins_h = s->window[str];
   1590             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
   1591 #if MIN_MATCH != 3
   1592             Call UPDATE_HASH() MIN_MATCH-3 more times
   1593 #endif
   1594             while (s->insert) {
   1595                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
   1596 #ifndef FASTEST
   1597                 s->prev[str & s->w_mask] = s->head[s->ins_h];
   1598 #endif
   1599                 s->head[s->ins_h] = (Pos)str;
   1600                 str++;
   1601                 s->insert--;
   1602                 if (s->lookahead + s->insert < MIN_MATCH)
   1603                     break;
   1604             }
   1605         }
   1606         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
   1607          * but this is not important since only literal bytes will be emitted.
   1608          */
   1609 
   1610     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
   1611 
   1612     /* If the WIN_INIT bytes after the end of the current data have never been
   1613      * written, then zero those bytes in order to avoid memory check reports of
   1614      * the use of uninitialized (or uninitialised as Julian writes) bytes by
   1615      * the longest match routines.  Update the high water mark for the next
   1616      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
   1617      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
   1618      */
   1619     if (s->high_water < s->window_size) {
   1620         ulg curr = s->strstart + (ulg)(s->lookahead);
   1621         ulg init;
   1622 
   1623         if (s->high_water < curr) {
   1624             /* Previous high water mark below current data -- zero WIN_INIT
   1625              * bytes or up to end of window, whichever is less.
   1626              */
   1627             init = s->window_size - curr;
   1628             if (init > WIN_INIT)
   1629                 init = WIN_INIT;
   1630             zmemzero(s->window + curr, (unsigned)init);
   1631             s->high_water = curr + init;
   1632         }
   1633         else if (s->high_water < (ulg)curr + WIN_INIT) {
   1634             /* High water mark at or above current data, but below current data
   1635              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
   1636              * to end of window, whichever is less.
   1637              */
   1638             init = (ulg)curr + WIN_INIT - s->high_water;
   1639             if (init > s->window_size - s->high_water)
   1640                 init = s->window_size - s->high_water;
   1641             zmemzero(s->window + s->high_water, (unsigned)init);
   1642             s->high_water += init;
   1643         }
   1644     }
   1645 
   1646     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
   1647            "not enough room for search");
   1648 }
   1649 
   1650 /* ===========================================================================
   1651  * Flush the current block, with given end-of-file flag.
   1652  * IN assertion: strstart is set to the end of the current match.
   1653  */
   1654 #define FLUSH_BLOCK_ONLY(s, last) { \
   1655    _tr_flush_block(s, (s->block_start >= 0L ? \
   1656                    (charf *)&s->window[(unsigned)s->block_start] : \
   1657                    (charf *)Z_NULL), \
   1658                 (ulg)((long)s->strstart - s->block_start), \
   1659                 (last)); \
   1660    s->block_start = s->strstart; \
   1661    flush_pending(s->strm); \
   1662    Tracev((stderr,"[FLUSH]")); \
   1663 }
   1664 
   1665 /* Same but force premature exit if necessary. */
   1666 #define FLUSH_BLOCK(s, last) { \
   1667    FLUSH_BLOCK_ONLY(s, last); \
   1668    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
   1669 }
   1670 
   1671 /* Maximum stored block length in deflate format (not including header). */
   1672 #define MAX_STORED 65535
   1673 
   1674 /* Minimum of a and b. */
   1675 #define MIN(a, b) ((a) > (b) ? (b) : (a))
   1676 
   1677 /* ===========================================================================
   1678  * Copy without compression as much as possible from the input stream, return
   1679  * the current block state.
   1680  *
   1681  * In case deflateParams() is used to later switch to a non-zero compression
   1682  * level, s->matches (otherwise unused when storing) keeps track of the number
   1683  * of hash table slides to perform. If s->matches is 1, then one hash table
   1684  * slide will be done when switching. If s->matches is 2, the maximum value
   1685  * allowed here, then the hash table will be cleared, since two or more slides
   1686  * is the same as a clear.
   1687  *
   1688  * deflate_stored() is written to minimize the number of times an input byte is
   1689  * copied. It is most efficient with large input and output buffers, which
   1690  * maximizes the opportunities to have a single copy from next_in to next_out.
   1691  */
   1692 local block_state deflate_stored(s, flush)
   1693     deflate_state *s;
   1694     int flush;
   1695 {
   1696     /* Smallest worthy block size when not flushing or finishing. By default
   1697      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
   1698      * large input and output buffers, the stored block size will be larger.
   1699      */
   1700     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
   1701 
   1702     /* Copy as many min_block or larger stored blocks directly to next_out as
   1703      * possible. If flushing, copy the remaining available input to next_out as
   1704      * stored blocks, if there is enough space.
   1705      */
   1706     unsigned len, left, have, last = 0;
   1707     unsigned used = s->strm->avail_in;
   1708     do {
   1709         /* Set len to the maximum size block that we can copy directly with the
   1710          * available input data and output space. Set left to how much of that
   1711          * would be copied from what's left in the window.
   1712          */
   1713         len = MAX_STORED;       /* maximum deflate stored block length */
   1714         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
   1715         if (s->strm->avail_out < have)          /* need room for header */
   1716             break;
   1717             /* maximum stored block length that will fit in avail_out: */
   1718         have = s->strm->avail_out - have;
   1719         left = s->strstart - s->block_start;    /* bytes left in window */
   1720         if (len > (ulg)left + s->strm->avail_in)
   1721             len = left + s->strm->avail_in;     /* limit len to the input */
   1722         if (len > have)
   1723             len = have;                         /* limit len to the output */
   1724 
   1725         /* If the stored block would be less than min_block in length, or if
   1726          * unable to copy all of the available input when flushing, then try
   1727          * copying to the window and the pending buffer instead. Also don't
   1728          * write an empty block when flushing -- deflate() does that.
   1729          */
   1730         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
   1731                                 flush == Z_NO_FLUSH ||
   1732                                 len != left + s->strm->avail_in))
   1733             break;
   1734 
   1735         /* Make a dummy stored block in pending to get the header bytes,
   1736          * including any pending bits. This also updates the debugging counts.
   1737          */
   1738         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
   1739         _tr_stored_block(s, (char *)0, 0L, last);
   1740 
   1741         /* Replace the lengths in the dummy stored block with len. */
   1742         s->pending_buf[s->pending - 4] = len;
   1743         s->pending_buf[s->pending - 3] = len >> 8;
   1744         s->pending_buf[s->pending - 2] = ~len;
   1745         s->pending_buf[s->pending - 1] = ~len >> 8;
   1746 
   1747         /* Write the stored block header bytes. */
   1748         flush_pending(s->strm);
   1749 
   1750 #ifdef ZLIB_DEBUG
   1751         /* Update debugging counts for the data about to be copied. */
   1752         s->compressed_len += len << 3;
   1753         s->bits_sent += len << 3;
   1754 #endif
   1755 
   1756         /* Copy uncompressed bytes from the window to next_out. */
   1757         if (left) {
   1758             if (left > len)
   1759                 left = len;
   1760             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
   1761             s->strm->next_out += left;
   1762             s->strm->avail_out -= left;
   1763             s->strm->total_out += left;
   1764             s->block_start += left;
   1765             len -= left;
   1766         }
   1767 
   1768         /* Copy uncompressed bytes directly from next_in to next_out, updating
   1769          * the check value.
   1770          */
   1771         if (len) {
   1772             read_buf(s->strm, s->strm->next_out, len);
   1773             s->strm->next_out += len;
   1774             s->strm->avail_out -= len;
   1775             s->strm->total_out += len;
   1776         }
   1777     } while (last == 0);
   1778 
   1779     /* Update the sliding window with the last s->w_size bytes of the copied
   1780      * data, or append all of the copied data to the existing window if less
   1781      * than s->w_size bytes were copied. Also update the number of bytes to
   1782      * insert in the hash tables, in the event that deflateParams() switches to
   1783      * a non-zero compression level.
   1784      */
   1785     used -= s->strm->avail_in;      /* number of input bytes directly copied */
   1786     if (used) {
   1787         /* If any input was used, then no unused input remains in the window,
   1788          * therefore s->block_start == s->strstart.
   1789          */
   1790         if (used >= s->w_size) {    /* supplant the previous history */
   1791             s->matches = 2;         /* clear hash */
   1792             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
   1793             s->strstart = s->w_size;
   1794             s->insert = s->strstart;
   1795         }
   1796         else {
   1797             if (s->window_size - s->strstart <= used) {
   1798                 /* Slide the window down. */
   1799                 s->strstart -= s->w_size;
   1800                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
   1801                 if (s->matches < 2)
   1802                     s->matches++;   /* add a pending slide_hash() */
   1803                 if (s->insert > s->strstart)
   1804                     s->insert = s->strstart;
   1805             }
   1806             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
   1807             s->strstart += used;
   1808             s->insert += MIN(used, s->w_size - s->insert);
   1809         }
   1810         s->block_start = s->strstart;
   1811     }
   1812     if (s->high_water < s->strstart)
   1813         s->high_water = s->strstart;
   1814 
   1815     /* If the last block was written to next_out, then done. */
   1816     if (last)
   1817         return finish_done;
   1818 
   1819     /* If flushing and all input has been consumed, then done. */
   1820     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
   1821         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
   1822         return block_done;
   1823 
   1824     /* Fill the window with any remaining input. */
   1825     have = s->window_size - s->strstart;
   1826     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
   1827         /* Slide the window down. */
   1828         s->block_start -= s->w_size;
   1829         s->strstart -= s->w_size;
   1830         zmemcpy(s->window, s->window + s->w_size, s->strstart);
   1831         if (s->matches < 2)
   1832             s->matches++;           /* add a pending slide_hash() */
   1833         have += s->w_size;          /* more space now */
   1834         if (s->insert > s->strstart)
   1835             s->insert = s->strstart;
   1836     }
   1837     if (have > s->strm->avail_in)
   1838         have = s->strm->avail_in;
   1839     if (have) {
   1840         read_buf(s->strm, s->window + s->strstart, have);
   1841         s->strstart += have;
   1842         s->insert += MIN(have, s->w_size - s->insert);
   1843     }
   1844     if (s->high_water < s->strstart)
   1845         s->high_water = s->strstart;
   1846 
   1847     /* There was not enough avail_out to write a complete worthy or flushed
   1848      * stored block to next_out. Write a stored block to pending instead, if we
   1849      * have enough input for a worthy block, or if flushing and there is enough
   1850      * room for the remaining input as a stored block in the pending buffer.
   1851      */
   1852     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
   1853         /* maximum stored block length that will fit in pending: */
   1854     have = MIN(s->pending_buf_size - have, MAX_STORED);
   1855     min_block = MIN(have, s->w_size);
   1856     left = s->strstart - s->block_start;
   1857     if (left >= min_block ||
   1858         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
   1859          s->strm->avail_in == 0 && left <= have)) {
   1860         len = MIN(left, have);
   1861         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
   1862                len == left ? 1 : 0;
   1863         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
   1864         s->block_start += len;
   1865         flush_pending(s->strm);
   1866     }
   1867 
   1868     /* We've done all we can with the available input and output. */
   1869     return last ? finish_started : need_more;
   1870 }
   1871 
   1872 /* ===========================================================================
   1873  * Compress as much as possible from the input stream, return the current
   1874  * block state.
   1875  * This function does not perform lazy evaluation of matches and inserts
   1876  * new strings in the dictionary only for unmatched strings or for short
   1877  * matches. It is used only for the fast compression options.
   1878  */
   1879 local block_state deflate_fast(s, flush)
   1880     deflate_state *s;
   1881     int flush;
   1882 {
   1883     IPos hash_head;       /* head of the hash chain */
   1884     int bflush;           /* set if current block must be flushed */
   1885 
   1886     for (;;) {
   1887         /* Make sure that we always have enough lookahead, except
   1888          * at the end of the input file. We need MAX_MATCH bytes
   1889          * for the next match, plus MIN_MATCH bytes to insert the
   1890          * string following the next match.
   1891          */
   1892         if (s->lookahead < MIN_LOOKAHEAD) {
   1893             fill_window(s);
   1894             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1895                 return need_more;
   1896             }
   1897             if (s->lookahead == 0) break; /* flush the current block */
   1898         }
   1899 
   1900         /* Insert the string window[strstart .. strstart + 2] in the
   1901          * dictionary, and set hash_head to the head of the hash chain:
   1902          */
   1903         hash_head = NIL;
   1904         if (s->lookahead >= MIN_MATCH) {
   1905             INSERT_STRING(s, s->strstart, hash_head);
   1906         }
   1907 
   1908         /* Find the longest match, discarding those <= prev_length.
   1909          * At this point we have always match_length < MIN_MATCH
   1910          */
   1911         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
   1912             /* To simplify the code, we prevent matches with the string
   1913              * of window index 0 (in particular we have to avoid a match
   1914              * of the string with itself at the start of the input file).
   1915              */
   1916             s->match_length = longest_match (s, hash_head);
   1917             /* longest_match() sets match_start */
   1918         }
   1919         if (s->match_length >= MIN_MATCH) {
   1920             check_match(s, s->strstart, s->match_start, s->match_length);
   1921 
   1922             _tr_tally_dist(s, s->strstart - s->match_start,
   1923                            s->match_length - MIN_MATCH, bflush);
   1924 
   1925             s->lookahead -= s->match_length;
   1926 
   1927             /* Insert new strings in the hash table only if the match length
   1928              * is not too large. This saves time but degrades compression.
   1929              */
   1930 #ifndef FASTEST
   1931             if (s->match_length <= s->max_insert_length &&
   1932                 s->lookahead >= MIN_MATCH) {
   1933                 s->match_length--; /* string at strstart already in table */
   1934                 do {
   1935                     s->strstart++;
   1936                     INSERT_STRING(s, s->strstart, hash_head);
   1937                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
   1938                      * always MIN_MATCH bytes ahead.
   1939                      */
   1940                 } while (--s->match_length != 0);
   1941                 s->strstart++;
   1942             } else
   1943 #endif
   1944             {
   1945                 s->strstart += s->match_length;
   1946                 s->match_length = 0;
   1947                 s->ins_h = s->window[s->strstart];
   1948                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
   1949 #if MIN_MATCH != 3
   1950                 Call UPDATE_HASH() MIN_MATCH-3 more times
   1951 #endif
   1952                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
   1953                  * matter since it will be recomputed at next deflate call.
   1954                  */
   1955             }
   1956         } else {
   1957             /* No match, output a literal byte */
   1958             Tracevv((stderr,"%c", s->window[s->strstart]));
   1959             _tr_tally_lit(s, s->window[s->strstart], bflush);
   1960             s->lookahead--;
   1961             s->strstart++;
   1962         }
   1963         if (bflush) FLUSH_BLOCK(s, 0);
   1964     }
   1965     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
   1966     if (flush == Z_FINISH) {
   1967         FLUSH_BLOCK(s, 1);
   1968         return finish_done;
   1969     }
   1970     if (s->sym_next)
   1971         FLUSH_BLOCK(s, 0);
   1972     return block_done;
   1973 }
   1974 
   1975 #ifndef FASTEST
   1976 /* ===========================================================================
   1977  * Same as above, but achieves better compression. We use a lazy
   1978  * evaluation for matches: a match is finally adopted only if there is
   1979  * no better match at the next window position.
   1980  */
   1981 local block_state deflate_slow(s, flush)
   1982     deflate_state *s;
   1983     int flush;
   1984 {
   1985     IPos hash_head;          /* head of hash chain */
   1986     int bflush;              /* set if current block must be flushed */
   1987 
   1988     /* Process the input block. */
   1989     for (;;) {
   1990         /* Make sure that we always have enough lookahead, except
   1991          * at the end of the input file. We need MAX_MATCH bytes
   1992          * for the next match, plus MIN_MATCH bytes to insert the
   1993          * string following the next match.
   1994          */
   1995         if (s->lookahead < MIN_LOOKAHEAD) {
   1996             fill_window(s);
   1997             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
   1998                 return need_more;
   1999             }
   2000             if (s->lookahead == 0) break; /* flush the current block */
   2001         }
   2002 
   2003         /* Insert the string window[strstart .. strstart + 2] in the
   2004          * dictionary, and set hash_head to the head of the hash chain:
   2005          */
   2006         hash_head = NIL;
   2007         if (s->lookahead >= MIN_MATCH) {
   2008             INSERT_STRING(s, s->strstart, hash_head);
   2009         }
   2010 
   2011         /* Find the longest match, discarding those <= prev_length.
   2012          */
   2013         s->prev_length = s->match_length, s->prev_match = s->match_start;
   2014         s->match_length = MIN_MATCH-1;
   2015 
   2016         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
   2017             s->strstart - hash_head <= MAX_DIST(s)) {
   2018             /* To simplify the code, we prevent matches with the string
   2019              * of window index 0 (in particular we have to avoid a match
   2020              * of the string with itself at the start of the input file).
   2021              */
   2022             s->match_length = longest_match (s, hash_head);
   2023             /* longest_match() sets match_start */
   2024 
   2025             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
   2026 #if TOO_FAR <= 32767
   2027                 || (s->match_length == MIN_MATCH &&
   2028                     s->strstart - s->match_start > TOO_FAR)
   2029 #endif
   2030                 )) {
   2031 
   2032                 /* If prev_match is also MIN_MATCH, match_start is garbage
   2033                  * but we will ignore the current match anyway.
   2034                  */
   2035                 s->match_length = MIN_MATCH-1;
   2036             }
   2037         }
   2038         /* If there was a match at the previous step and the current
   2039          * match is not better, output the previous match:
   2040          */
   2041         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
   2042             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
   2043             /* Do not insert strings in hash table beyond this. */
   2044 
   2045             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
   2046 
   2047             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
   2048                            s->prev_length - MIN_MATCH, bflush);
   2049 
   2050             /* Insert in hash table all strings up to the end of the match.
   2051              * strstart - 1 and strstart are already inserted. If there is not
   2052              * enough lookahead, the last two strings are not inserted in
   2053              * the hash table.
   2054              */
   2055             s->lookahead -= s->prev_length - 1;
   2056             s->prev_length -= 2;
   2057             do {
   2058                 if (++s->strstart <= max_insert) {
   2059                     INSERT_STRING(s, s->strstart, hash_head);
   2060                 }
   2061             } while (--s->prev_length != 0);
   2062             s->match_available = 0;
   2063             s->match_length = MIN_MATCH-1;
   2064             s->strstart++;
   2065 
   2066             if (bflush) FLUSH_BLOCK(s, 0);
   2067 
   2068         } else if (s->match_available) {
   2069             /* If there was no match at the previous position, output a
   2070              * single literal. If there was a match but the current match
   2071              * is longer, truncate the previous match to a single literal.
   2072              */
   2073             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
   2074             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
   2075             if (bflush) {
   2076                 FLUSH_BLOCK_ONLY(s, 0);
   2077             }
   2078             s->strstart++;
   2079             s->lookahead--;
   2080             if (s->strm->avail_out == 0) return need_more;
   2081         } else {
   2082             /* There is no previous match to compare with, wait for
   2083              * the next step to decide.
   2084              */
   2085             s->match_available = 1;
   2086             s->strstart++;
   2087             s->lookahead--;
   2088         }
   2089     }
   2090     Assert (flush != Z_NO_FLUSH, "no flush?");
   2091     if (s->match_available) {
   2092         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
   2093         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
   2094         s->match_available = 0;
   2095     }
   2096     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
   2097     if (flush == Z_FINISH) {
   2098         FLUSH_BLOCK(s, 1);
   2099         return finish_done;
   2100     }
   2101     if (s->sym_next)
   2102         FLUSH_BLOCK(s, 0);
   2103     return block_done;
   2104 }
   2105 #endif /* FASTEST */
   2106 
   2107 /* ===========================================================================
   2108  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
   2109  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
   2110  * deflate switches away from Z_RLE.)
   2111  */
   2112 local block_state deflate_rle(s, flush)
   2113     deflate_state *s;
   2114     int flush;
   2115 {
   2116     int bflush;             /* set if current block must be flushed */
   2117     uInt prev;              /* byte at distance one to match */
   2118     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
   2119 
   2120     for (;;) {
   2121         /* Make sure that we always have enough lookahead, except
   2122          * at the end of the input file. We need MAX_MATCH bytes
   2123          * for the longest run, plus one for the unrolled loop.
   2124          */
   2125         if (s->lookahead <= MAX_MATCH) {
   2126             fill_window(s);
   2127             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
   2128                 return need_more;
   2129             }
   2130             if (s->lookahead == 0) break; /* flush the current block */
   2131         }
   2132 
   2133         /* See how many times the previous byte repeats */
   2134         s->match_length = 0;
   2135         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
   2136             scan = s->window + s->strstart - 1;
   2137             prev = *scan;
   2138             if (prev == *++scan && prev == *++scan && prev == *++scan) {
   2139                 strend = s->window + s->strstart + MAX_MATCH;
   2140                 do {
   2141                 } while (prev == *++scan && prev == *++scan &&
   2142                          prev == *++scan && prev == *++scan &&
   2143                          prev == *++scan && prev == *++scan &&
   2144                          prev == *++scan && prev == *++scan &&
   2145                          scan < strend);
   2146                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
   2147                 if (s->match_length > s->lookahead)
   2148                     s->match_length = s->lookahead;
   2149             }
   2150             Assert(scan <= s->window + (uInt)(s->window_size - 1),
   2151                    "wild scan");
   2152         }
   2153 
   2154         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
   2155         if (s->match_length >= MIN_MATCH) {
   2156             check_match(s, s->strstart, s->strstart - 1, s->match_length);
   2157 
   2158             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
   2159 
   2160             s->lookahead -= s->match_length;
   2161             s->strstart += s->match_length;
   2162             s->match_length = 0;
   2163         } else {
   2164             /* No match, output a literal byte */
   2165             Tracevv((stderr,"%c", s->window[s->strstart]));
   2166             _tr_tally_lit(s, s->window[s->strstart], bflush);
   2167             s->lookahead--;
   2168             s->strstart++;
   2169         }
   2170         if (bflush) FLUSH_BLOCK(s, 0);
   2171     }
   2172     s->insert = 0;
   2173     if (flush == Z_FINISH) {
   2174         FLUSH_BLOCK(s, 1);
   2175         return finish_done;
   2176     }
   2177     if (s->sym_next)
   2178         FLUSH_BLOCK(s, 0);
   2179     return block_done;
   2180 }
   2181 
   2182 /* ===========================================================================
   2183  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
   2184  * (It will be regenerated if this run of deflate switches away from Huffman.)
   2185  */
   2186 local block_state deflate_huff(s, flush)
   2187     deflate_state *s;
   2188     int flush;
   2189 {
   2190     int bflush;             /* set if current block must be flushed */
   2191 
   2192     for (;;) {
   2193         /* Make sure that we have a literal to write. */
   2194         if (s->lookahead == 0) {
   2195             fill_window(s);
   2196             if (s->lookahead == 0) {
   2197                 if (flush == Z_NO_FLUSH)
   2198                     return need_more;
   2199                 break;      /* flush the current block */
   2200             }
   2201         }
   2202 
   2203         /* Output a literal byte */
   2204         s->match_length = 0;
   2205         Tracevv((stderr,"%c", s->window[s->strstart]));
   2206         _tr_tally_lit(s, s->window[s->strstart], bflush);
   2207         s->lookahead--;
   2208         s->strstart++;
   2209         if (bflush) FLUSH_BLOCK(s, 0);
   2210     }
   2211     s->insert = 0;
   2212     if (flush == Z_FINISH) {
   2213         FLUSH_BLOCK(s, 1);
   2214         return finish_done;
   2215     }
   2216     if (s->sym_next)
   2217         FLUSH_BLOCK(s, 0);
   2218     return block_done;
   2219 }
   2220