deflate.c revision 1.7 1 /* $NetBSD: deflate.c,v 1.7 2024/09/22 19:12:27 christos Exp $ */
2
3 /* deflate.c -- compress data using the deflation algorithm
4 * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
5 * For conditions of distribution and use, see copyright notice in zlib.h
6 */
7
8 /*
9 * ALGORITHM
10 *
11 * The "deflation" process depends on being able to identify portions
12 * of the input text which are identical to earlier input (within a
13 * sliding window trailing behind the input currently being processed).
14 *
15 * The most straightforward technique turns out to be the fastest for
16 * most input files: try all possible matches and select the longest.
17 * The key feature of this algorithm is that insertions into the string
18 * dictionary are very simple and thus fast, and deletions are avoided
19 * completely. Insertions are performed at each input character, whereas
20 * string matches are performed only when the previous match ends. So it
21 * is preferable to spend more time in matches to allow very fast string
22 * insertions and avoid deletions. The matching algorithm for small
23 * strings is inspired from that of Rabin & Karp. A brute force approach
24 * is used to find longer strings when a small match has been found.
25 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
26 * (by Leonid Broukhis).
27 * A previous version of this file used a more sophisticated algorithm
28 * (by Fiala and Greene) which is guaranteed to run in linear amortized
29 * time, but has a larger average cost, uses more memory and is patented.
30 * However the F&G algorithm may be faster for some highly redundant
31 * files if the parameter max_chain_length (described below) is too large.
32 *
33 * ACKNOWLEDGEMENTS
34 *
35 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
36 * I found it in 'freeze' written by Leonid Broukhis.
37 * Thanks to many people for bug reports and testing.
38 *
39 * REFERENCES
40 *
41 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
42 * Available in http://tools.ietf.org/html/rfc1951
43 *
44 * A description of the Rabin and Karp algorithm is given in the book
45 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
46 *
47 * Fiala,E.R., and Greene,D.H.
48 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
49 *
50 */
51
52 /* @(#) Id */
53
54 #include "deflate.h"
55
56 const char deflate_copyright[] =
57 " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
58 /*
59 If you use the zlib library in a product, an acknowledgment is welcome
60 in the documentation of your product. If for some reason you cannot
61 include such an acknowledgment, I would appreciate that you keep this
62 copyright string in the executable of your product.
63 */
64
65 typedef enum {
66 need_more, /* block not completed, need more input or more output */
67 block_done, /* block flush performed */
68 finish_started, /* finish started, need only more output at next deflate */
69 finish_done /* finish done, accept no more input or output */
70 } block_state;
71
72 typedef block_state (*compress_func)(deflate_state *s, int flush);
73 /* Compression function. Returns the block state after the call. */
74
75 local block_state deflate_stored(deflate_state *s, int flush);
76 local block_state deflate_fast(deflate_state *s, int flush);
77 #ifndef FASTEST
78 local block_state deflate_slow(deflate_state *s, int flush);
79 #endif
80 local block_state deflate_rle(deflate_state *s, int flush);
81 local block_state deflate_huff(deflate_state *s, int flush);
82
83 /* ===========================================================================
84 * Local data
85 */
86
87 #define NIL 0
88 /* Tail of hash chains */
89
90 #ifndef TOO_FAR
91 # define TOO_FAR 4096
92 #endif
93 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
94
95 /* Values for max_lazy_match, good_match and max_chain_length, depending on
96 * the desired pack level (0..9). The values given below have been tuned to
97 * exclude worst case performance for pathological files. Better values may be
98 * found for specific files.
99 */
100 typedef struct config_s {
101 ush good_length; /* reduce lazy search above this match length */
102 ush max_lazy; /* do not perform lazy search above this match length */
103 ush nice_length; /* quit search above this match length */
104 ush max_chain;
105 compress_func func;
106 } config;
107
108 #ifdef FASTEST
109 local const config configuration_table[2] = {
110 /* good lazy nice chain */
111 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
112 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
113 #else
114 local const config configuration_table[10] = {
115 /* good lazy nice chain */
116 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
117 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
118 /* 2 */ {4, 5, 16, 8, deflate_fast},
119 /* 3 */ {4, 6, 32, 32, deflate_fast},
120
121 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
122 /* 5 */ {8, 16, 32, 32, deflate_slow},
123 /* 6 */ {8, 16, 128, 128, deflate_slow},
124 /* 7 */ {8, 32, 128, 256, deflate_slow},
125 /* 8 */ {32, 128, 258, 1024, deflate_slow},
126 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
127 #endif
128
129 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
130 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
131 * meaning.
132 */
133
134 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
135 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
136
137 /* ===========================================================================
138 * Update a hash value with the given input byte
139 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
140 * characters, so that a running hash key can be computed from the previous
141 * key instead of complete recalculation each time.
142 */
143 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
144
145
146 /* ===========================================================================
147 * Insert string str in the dictionary and set match_head to the previous head
148 * of the hash chain (the most recent string with same hash key). Return
149 * the previous length of the hash chain.
150 * If this file is compiled with -DFASTEST, the compression level is forced
151 * to 1, and no hash chains are maintained.
152 * IN assertion: all calls to INSERT_STRING are made with consecutive input
153 * characters and the first MIN_MATCH bytes of str are valid (except for
154 * the last MIN_MATCH-1 bytes of the input file).
155 */
156 #ifdef FASTEST
157 #define INSERT_STRING(s, str, match_head) \
158 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
159 match_head = s->head[s->ins_h], \
160 s->head[s->ins_h] = (Pos)(str))
161 #else
162 #define INSERT_STRING(s, str, match_head) \
163 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
164 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
165 s->head[s->ins_h] = (Pos)(str))
166 #endif
167
168 /* ===========================================================================
169 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
170 * prev[] will be initialized on the fly.
171 */
172 #define CLEAR_HASH(s) \
173 do { \
174 s->head[s->hash_size - 1] = NIL; \
175 zmemzero((Bytef *)s->head, \
176 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
177 } while (0)
178
179 /* ===========================================================================
180 * Slide the hash table when sliding the window down (could be avoided with 32
181 * bit values at the expense of memory usage). We slide even when level == 0 to
182 * keep the hash table consistent if we switch back to level > 0 later.
183 */
184 #if defined(__has_feature)
185 # if __has_feature(memory_sanitizer)
186 __attribute__((no_sanitize("memory")))
187 # endif
188 #endif
189 local void slide_hash(deflate_state *s) {
190 unsigned n, m;
191 Posf *p;
192 uInt wsize = s->w_size;
193
194 n = s->hash_size;
195 p = &s->head[n];
196 do {
197 m = *--p;
198 *p = (Pos)(m >= wsize ? m - wsize : NIL);
199 } while (--n);
200 n = wsize;
201 #ifndef FASTEST
202 p = &s->prev[n];
203 do {
204 m = *--p;
205 *p = (Pos)(m >= wsize ? m - wsize : NIL);
206 /* If n is not on any hash chain, prev[n] is garbage but
207 * its value will never be used.
208 */
209 } while (--n);
210 #endif
211 }
212
213 /* ===========================================================================
214 * Read a new buffer from the current input stream, update the adler32
215 * and total number of bytes read. All deflate() input goes through
216 * this function so some applications may wish to modify it to avoid
217 * allocating a large strm->next_in buffer and copying from it.
218 * (See also flush_pending()).
219 */
220 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
221 unsigned len = strm->avail_in;
222
223 if (len > size) len = size;
224 if (len == 0) return 0;
225
226 strm->avail_in -= len;
227
228 zmemcpy(buf, strm->next_in, len);
229 if (strm->state->wrap == 1) {
230 strm->adler = adler32(strm->adler, buf, len);
231 }
232 #ifdef GZIP
233 else if (strm->state->wrap == 2) {
234 strm->adler = crc32(strm->adler, buf, len);
235 }
236 #endif
237 strm->next_in += len;
238 strm->total_in += len;
239
240 return len;
241 }
242
243 /* ===========================================================================
244 * Fill the window when the lookahead becomes insufficient.
245 * Updates strstart and lookahead.
246 *
247 * IN assertion: lookahead < MIN_LOOKAHEAD
248 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
249 * At least one byte has been read, or avail_in == 0; reads are
250 * performed for at least two bytes (required for the zip translate_eol
251 * option -- not supported here).
252 */
253 local void fill_window(deflate_state *s) {
254 unsigned n;
255 unsigned more; /* Amount of free space at the end of the window. */
256 uInt wsize = s->w_size;
257
258 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
259
260 do {
261 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
262
263 /* Deal with !@#$% 64K limit: */
264 if (sizeof(int) <= 2) {
265 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
266 more = wsize;
267
268 } else if (more == (unsigned)(-1)) {
269 /* Very unlikely, but possible on 16 bit machine if
270 * strstart == 0 && lookahead == 1 (input done a byte at time)
271 */
272 more--;
273 }
274 }
275
276 /* If the window is almost full and there is insufficient lookahead,
277 * move the upper half to the lower one to make room in the upper half.
278 */
279 if (s->strstart >= wsize + MAX_DIST(s)) {
280
281 zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
282 s->match_start -= wsize;
283 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
284 s->block_start -= (long) wsize;
285 if (s->insert > s->strstart)
286 s->insert = s->strstart;
287 slide_hash(s);
288 more += wsize;
289 }
290 if (s->strm->avail_in == 0) break;
291
292 /* If there was no sliding:
293 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
294 * more == window_size - lookahead - strstart
295 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
296 * => more >= window_size - 2*WSIZE + 2
297 * In the BIG_MEM or MMAP case (not yet supported),
298 * window_size == input_size + MIN_LOOKAHEAD &&
299 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
300 * Otherwise, window_size == 2*WSIZE so more >= 2.
301 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
302 */
303 Assert(more >= 2, "more < 2");
304
305 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
306 s->lookahead += n;
307
308 /* Initialize the hash value now that we have some input: */
309 if (s->lookahead + s->insert >= MIN_MATCH) {
310 uInt str = s->strstart - s->insert;
311 s->ins_h = s->window[str];
312 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
313 #if MIN_MATCH != 3
314 Call UPDATE_HASH() MIN_MATCH-3 more times
315 #endif
316 while (s->insert) {
317 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
318 #ifndef FASTEST
319 s->prev[str & s->w_mask] = s->head[s->ins_h];
320 #endif
321 s->head[s->ins_h] = (Pos)str;
322 str++;
323 s->insert--;
324 if (s->lookahead + s->insert < MIN_MATCH)
325 break;
326 }
327 }
328 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
329 * but this is not important since only literal bytes will be emitted.
330 */
331
332 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
333
334 /* If the WIN_INIT bytes after the end of the current data have never been
335 * written, then zero those bytes in order to avoid memory check reports of
336 * the use of uninitialized (or uninitialised as Julian writes) bytes by
337 * the longest match routines. Update the high water mark for the next
338 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
339 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
340 */
341 if (s->high_water < s->window_size) {
342 ulg curr = s->strstart + (ulg)(s->lookahead);
343 ulg init;
344
345 if (s->high_water < curr) {
346 /* Previous high water mark below current data -- zero WIN_INIT
347 * bytes or up to end of window, whichever is less.
348 */
349 init = s->window_size - curr;
350 if (init > WIN_INIT)
351 init = WIN_INIT;
352 zmemzero(s->window + curr, (unsigned)init);
353 s->high_water = curr + init;
354 }
355 else if (s->high_water < (ulg)curr + WIN_INIT) {
356 /* High water mark at or above current data, but below current data
357 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
358 * to end of window, whichever is less.
359 */
360 init = (ulg)curr + WIN_INIT - s->high_water;
361 if (init > s->window_size - s->high_water)
362 init = s->window_size - s->high_water;
363 zmemzero(s->window + s->high_water, (unsigned)init);
364 s->high_water += init;
365 }
366 }
367
368 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
369 "not enough room for search");
370 }
371
372 /* ========================================================================= */
373 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
374 int stream_size) {
375 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
376 Z_DEFAULT_STRATEGY, version, stream_size);
377 /* To do: ignore strm->next_in if we use it as window */
378 }
379
380 /* ========================================================================= */
381 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
382 int windowBits, int memLevel, int strategy,
383 const char *version, int stream_size) {
384 deflate_state *s;
385 int wrap = 1;
386 static const char my_version[] = ZLIB_VERSION;
387
388 if (version == Z_NULL || version[0] != my_version[0] ||
389 stream_size != sizeof(z_stream)) {
390 return Z_VERSION_ERROR;
391 }
392 if (strm == Z_NULL) return Z_STREAM_ERROR;
393
394 strm->msg = Z_NULL;
395 if (strm->zalloc == (alloc_func)0) {
396 #ifdef Z_SOLO
397 return Z_STREAM_ERROR;
398 #else
399 strm->zalloc = zcalloc;
400 strm->opaque = (voidpf)0;
401 #endif
402 }
403 if (strm->zfree == (free_func)0)
404 #ifdef Z_SOLO
405 return Z_STREAM_ERROR;
406 #else
407 strm->zfree = zcfree;
408 #endif
409
410 #ifdef FASTEST
411 if (level != 0) level = 1;
412 #else
413 if (level == Z_DEFAULT_COMPRESSION) level = 6;
414 #endif
415
416 if (windowBits < 0) { /* suppress zlib wrapper */
417 wrap = 0;
418 if (windowBits < -15)
419 return Z_STREAM_ERROR;
420 windowBits = -windowBits;
421 }
422 #ifdef GZIP
423 else if (windowBits > 15) {
424 wrap = 2; /* write gzip wrapper instead */
425 windowBits -= 16;
426 }
427 #endif
428 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
429 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
430 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
431 return Z_STREAM_ERROR;
432 }
433 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
434 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
435 if (s == Z_NULL) return Z_MEM_ERROR;
436 strm->state = (struct internal_state FAR *)s;
437 s->strm = strm;
438 s->status = INIT_STATE; /* to pass state test in deflateReset() */
439
440 s->wrap = wrap;
441 s->gzhead = Z_NULL;
442 s->w_bits = (uInt)windowBits;
443 s->w_size = 1 << s->w_bits;
444 s->w_mask = s->w_size - 1;
445
446 s->hash_bits = (uInt)memLevel + 7;
447 s->hash_size = 1 << s->hash_bits;
448 s->hash_mask = s->hash_size - 1;
449 s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
450
451 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
452 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
453 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
454
455 s->high_water = 0; /* nothing written to s->window yet */
456
457 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
458
459 /* We overlay pending_buf and sym_buf. This works since the average size
460 * for length/distance pairs over any compressed block is assured to be 31
461 * bits or less.
462 *
463 * Analysis: The longest fixed codes are a length code of 8 bits plus 5
464 * extra bits, for lengths 131 to 257. The longest fixed distance codes are
465 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
466 * possible fixed-codes length/distance pair is then 31 bits total.
467 *
468 * sym_buf starts one-fourth of the way into pending_buf. So there are
469 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
470 * in sym_buf is three bytes -- two for the distance and one for the
471 * literal/length. As each symbol is consumed, the pointer to the next
472 * sym_buf value to read moves forward three bytes. From that symbol, up to
473 * 31 bits are written to pending_buf. The closest the written pending_buf
474 * bits gets to the next sym_buf symbol to read is just before the last
475 * code is written. At that time, 31*(n - 2) bits have been written, just
476 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
477 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
478 * symbols are written.) The closest the writing gets to what is unread is
479 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
480 * can range from 128 to 32768.
481 *
482 * Therefore, at a minimum, there are 142 bits of space between what is
483 * written and what is read in the overlain buffers, so the symbols cannot
484 * be overwritten by the compressed data. That space is actually 139 bits,
485 * due to the three-bit fixed-code block header.
486 *
487 * That covers the case where either Z_FIXED is specified, forcing fixed
488 * codes, or when the use of fixed codes is chosen, because that choice
489 * results in a smaller compressed block than dynamic codes. That latter
490 * condition then assures that the above analysis also covers all dynamic
491 * blocks. A dynamic-code block will only be chosen to be emitted if it has
492 * fewer bits than a fixed-code block would for the same set of symbols.
493 * Therefore its average symbol length is assured to be less than 31. So
494 * the compressed data for a dynamic block also cannot overwrite the
495 * symbols from which it is being constructed.
496 */
497
498 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
499 s->pending_buf_size = (ulg)s->lit_bufsize * 4;
500
501 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
502 s->pending_buf == Z_NULL) {
503 s->status = FINISH_STATE;
504 strm->msg = __UNCONST(ERR_MSG(Z_MEM_ERROR));
505 deflateEnd (strm);
506 return Z_MEM_ERROR;
507 }
508 #ifdef LIT_MEM
509 s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
510 s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
511 s->sym_end = s->lit_bufsize - 1;
512 #else
513 s->sym_buf = s->pending_buf + s->lit_bufsize;
514 s->sym_end = (s->lit_bufsize - 1) * 3;
515 #endif
516 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
517 * on 16 bit machines and because stored blocks are restricted to
518 * 64K-1 bytes.
519 */
520
521 s->level = level;
522 s->strategy = strategy;
523 s->method = (Byte)method;
524
525 return deflateReset(strm);
526 }
527
528 /* =========================================================================
529 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
530 */
531 local int deflateStateCheck(z_streamp strm) {
532 deflate_state *s;
533 if (strm == Z_NULL ||
534 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
535 return 1;
536 s = strm->state;
537 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
538 #ifdef GZIP
539 s->status != GZIP_STATE &&
540 #endif
541 s->status != EXTRA_STATE &&
542 s->status != NAME_STATE &&
543 s->status != COMMENT_STATE &&
544 s->status != HCRC_STATE &&
545 s->status != BUSY_STATE &&
546 s->status != FINISH_STATE))
547 return 1;
548 return 0;
549 }
550
551 /* ========================================================================= */
552 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
553 uInt dictLength) {
554 deflate_state *s;
555 uInt str, n;
556 int wrap;
557 unsigned avail;
558 z_const unsigned char *next;
559
560 if (deflateStateCheck(strm) || dictionary == Z_NULL)
561 return Z_STREAM_ERROR;
562 s = strm->state;
563 wrap = s->wrap;
564 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
565 return Z_STREAM_ERROR;
566
567 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
568 if (wrap == 1)
569 strm->adler = adler32(strm->adler, dictionary, dictLength);
570 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
571
572 /* if dictionary would fill window, just replace the history */
573 if (dictLength >= s->w_size) {
574 if (wrap == 0) { /* already empty otherwise */
575 CLEAR_HASH(s);
576 s->strstart = 0;
577 s->block_start = 0L;
578 s->insert = 0;
579 }
580 dictionary += dictLength - s->w_size; /* use the tail */
581 dictLength = s->w_size;
582 }
583
584 /* insert dictionary into window and hash */
585 avail = strm->avail_in;
586 next = strm->next_in;
587 strm->avail_in = dictLength;
588 strm->next_in = __UNCONST(dictionary);
589 fill_window(s);
590 while (s->lookahead >= MIN_MATCH) {
591 str = s->strstart;
592 n = s->lookahead - (MIN_MATCH-1);
593 do {
594 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
595 #ifndef FASTEST
596 s->prev[str & s->w_mask] = s->head[s->ins_h];
597 #endif
598 s->head[s->ins_h] = (Pos)str;
599 str++;
600 } while (--n);
601 s->strstart = str;
602 s->lookahead = MIN_MATCH-1;
603 fill_window(s);
604 }
605 s->strstart += s->lookahead;
606 s->block_start = (long)s->strstart;
607 s->insert = s->lookahead;
608 s->lookahead = 0;
609 s->match_length = s->prev_length = MIN_MATCH-1;
610 s->match_available = 0;
611 strm->next_in = next;
612 strm->avail_in = avail;
613 s->wrap = wrap;
614 return Z_OK;
615 }
616
617 /* ========================================================================= */
618 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
619 uInt *dictLength) {
620 deflate_state *s;
621 uInt len;
622
623 if (deflateStateCheck(strm))
624 return Z_STREAM_ERROR;
625 s = strm->state;
626 len = s->strstart + s->lookahead;
627 if (len > s->w_size)
628 len = s->w_size;
629 if (dictionary != Z_NULL && len)
630 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
631 if (dictLength != Z_NULL)
632 *dictLength = len;
633 return Z_OK;
634 }
635
636 /* ========================================================================= */
637 int ZEXPORT deflateResetKeep(z_streamp strm) {
638 deflate_state *s;
639
640 if (deflateStateCheck(strm)) {
641 return Z_STREAM_ERROR;
642 }
643
644 strm->total_in = strm->total_out = 0;
645 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
646 strm->data_type = Z_UNKNOWN;
647
648 s = (deflate_state *)strm->state;
649 s->pending = 0;
650 s->pending_out = s->pending_buf;
651
652 if (s->wrap < 0) {
653 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
654 }
655 s->status =
656 #ifdef GZIP
657 s->wrap == 2 ? GZIP_STATE :
658 #endif
659 INIT_STATE;
660 strm->adler =
661 #ifdef GZIP
662 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
663 #endif
664 adler32(0L, Z_NULL, 0);
665 s->last_flush = -2;
666
667 _tr_init(s);
668
669 return Z_OK;
670 }
671
672 /* ===========================================================================
673 * Initialize the "longest match" routines for a new zlib stream
674 */
675 local void lm_init(deflate_state *s) {
676 s->window_size = (ulg)2L*s->w_size;
677
678 CLEAR_HASH(s);
679
680 /* Set the default configuration parameters:
681 */
682 s->max_lazy_match = configuration_table[s->level].max_lazy;
683 s->good_match = configuration_table[s->level].good_length;
684 s->nice_match = configuration_table[s->level].nice_length;
685 s->max_chain_length = configuration_table[s->level].max_chain;
686
687 s->strstart = 0;
688 s->block_start = 0L;
689 s->lookahead = 0;
690 s->insert = 0;
691 s->match_length = s->prev_length = MIN_MATCH-1;
692 s->match_available = 0;
693 s->ins_h = 0;
694 }
695
696 /* ========================================================================= */
697 int ZEXPORT deflateReset(z_streamp strm) {
698 int ret;
699
700 ret = deflateResetKeep(strm);
701 if (ret == Z_OK)
702 lm_init(strm->state);
703 return ret;
704 }
705
706 /* ========================================================================= */
707 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
708 if (deflateStateCheck(strm) || strm->state->wrap != 2)
709 return Z_STREAM_ERROR;
710 strm->state->gzhead = head;
711 return Z_OK;
712 }
713
714 /* ========================================================================= */
715 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
716 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
717 if (pending != Z_NULL)
718 *pending = strm->state->pending;
719 if (bits != Z_NULL)
720 *bits = strm->state->bi_valid;
721 return Z_OK;
722 }
723
724 /* ========================================================================= */
725 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
726 deflate_state *s;
727 int put;
728
729 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
730 s = strm->state;
731 #ifdef LIT_MEM
732 if (bits < 0 || bits > 16 ||
733 (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
734 return Z_BUF_ERROR;
735 #else
736 if (bits < 0 || bits > 16 ||
737 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
738 return Z_BUF_ERROR;
739 #endif
740 do {
741 put = Buf_size - s->bi_valid;
742 if (put > bits)
743 put = bits;
744 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
745 s->bi_valid += put;
746 _tr_flush_bits(s);
747 value >>= put;
748 bits -= put;
749 } while (bits);
750 return Z_OK;
751 }
752
753 /* ========================================================================= */
754 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
755 deflate_state *s;
756 compress_func func;
757
758 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
759 s = strm->state;
760
761 #ifdef FASTEST
762 if (level != 0) level = 1;
763 #else
764 if (level == Z_DEFAULT_COMPRESSION) level = 6;
765 #endif
766 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
767 return Z_STREAM_ERROR;
768 }
769 func = configuration_table[s->level].func;
770
771 if ((strategy != s->strategy || func != configuration_table[level].func) &&
772 s->last_flush != -2) {
773 /* Flush the last buffer: */
774 int err = deflate(strm, Z_BLOCK);
775 if (err == Z_STREAM_ERROR)
776 return err;
777 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
778 return Z_BUF_ERROR;
779 }
780 if (s->level != level) {
781 if (s->level == 0 && s->matches != 0) {
782 if (s->matches == 1)
783 slide_hash(s);
784 else
785 CLEAR_HASH(s);
786 s->matches = 0;
787 }
788 s->level = level;
789 s->max_lazy_match = configuration_table[level].max_lazy;
790 s->good_match = configuration_table[level].good_length;
791 s->nice_match = configuration_table[level].nice_length;
792 s->max_chain_length = configuration_table[level].max_chain;
793 }
794 s->strategy = strategy;
795 return Z_OK;
796 }
797
798 /* ========================================================================= */
799 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
800 int nice_length, int max_chain) {
801 deflate_state *s;
802
803 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
804 s = strm->state;
805 s->good_match = (uInt)good_length;
806 s->max_lazy_match = (uInt)max_lazy;
807 s->nice_match = nice_length;
808 s->max_chain_length = (uInt)max_chain;
809 return Z_OK;
810 }
811
812 /* =========================================================================
813 * For the default windowBits of 15 and memLevel of 8, this function returns a
814 * close to exact, as well as small, upper bound on the compressed size. This
815 * is an expansion of ~0.03%, plus a small constant.
816 *
817 * For any setting other than those defaults for windowBits and memLevel, one
818 * of two worst case bounds is returned. This is at most an expansion of ~4% or
819 * ~13%, plus a small constant.
820 *
821 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
822 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
823 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
824 * expansion results from five bytes of header for each stored block.
825 *
826 * The larger expansion of 13% results from a window size less than or equal to
827 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
828 * the data being compressed may have slid out of the sliding window, impeding
829 * a stored block from being emitted. Then the only choice is a fixed or
830 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
831 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
832 * which this can occur is 255 (memLevel == 2).
833 *
834 * Shifts are used to approximate divisions, for speed.
835 */
836 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
837 deflate_state *s;
838 uLong fixedlen, storelen, wraplen;
839
840 /* upper bound for fixed blocks with 9-bit literals and length 255
841 (memLevel == 2, which is the lowest that may not use stored blocks) --
842 ~13% overhead plus a small constant */
843 fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
844 (sourceLen >> 9) + 4;
845
846 /* upper bound for stored blocks with length 127 (memLevel == 1) --
847 ~4% overhead plus a small constant */
848 storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
849 (sourceLen >> 11) + 7;
850
851 /* if can't get parameters, return larger bound plus a zlib wrapper */
852 if (deflateStateCheck(strm))
853 return (fixedlen > storelen ? fixedlen : storelen) + 6;
854
855 /* compute wrapper length */
856 s = strm->state;
857 switch (s->wrap) {
858 case 0: /* raw deflate */
859 wraplen = 0;
860 break;
861 case 1: /* zlib wrapper */
862 wraplen = 6 + (s->strstart ? 4 : 0);
863 break;
864 #ifdef GZIP
865 case 2: /* gzip wrapper */
866 wraplen = 18;
867 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
868 Bytef *str;
869 if (s->gzhead->extra != Z_NULL)
870 wraplen += 2 + s->gzhead->extra_len;
871 str = s->gzhead->name;
872 if (str != Z_NULL)
873 do {
874 wraplen++;
875 } while (*str++);
876 str = s->gzhead->comment;
877 if (str != Z_NULL)
878 do {
879 wraplen++;
880 } while (*str++);
881 if (s->gzhead->hcrc)
882 wraplen += 2;
883 }
884 break;
885 #endif
886 default: /* for compiler happiness */
887 wraplen = 6;
888 }
889
890 /* if not default parameters, return one of the conservative bounds */
891 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
892 return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
893 wraplen;
894
895 /* default settings: return tight bound for that case -- ~0.03% overhead
896 plus a small constant */
897 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
898 (sourceLen >> 25) + 13 - 6 + wraplen;
899 }
900
901 /* =========================================================================
902 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
903 * IN assertion: the stream state is correct and there is enough room in
904 * pending_buf.
905 */
906 local void putShortMSB(deflate_state *s, uInt b) {
907 put_byte(s, (Byte)(b >> 8));
908 put_byte(s, (Byte)(b & 0xff));
909 }
910
911 /* =========================================================================
912 * Flush as much pending output as possible. All deflate() output, except for
913 * some deflate_stored() output, goes through this function so some
914 * applications may wish to modify it to avoid allocating a large
915 * strm->next_out buffer and copying into it. (See also read_buf()).
916 */
917 local void flush_pending(z_streamp strm) {
918 unsigned len;
919 deflate_state *s = strm->state;
920
921 _tr_flush_bits(s);
922 len = s->pending;
923 if (len > strm->avail_out) len = strm->avail_out;
924 if (len == 0) return;
925
926 zmemcpy(strm->next_out, s->pending_out, len);
927 strm->next_out += len;
928 s->pending_out += len;
929 strm->total_out += len;
930 strm->avail_out -= len;
931 s->pending -= len;
932 if (s->pending == 0) {
933 s->pending_out = s->pending_buf;
934 }
935 }
936
937 /* ===========================================================================
938 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
939 */
940 #define HCRC_UPDATE(beg) \
941 do { \
942 if (s->gzhead->hcrc && s->pending > (beg)) \
943 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
944 s->pending - (beg)); \
945 } while (0)
946
947 /* ========================================================================= */
948 int ZEXPORT deflate(z_streamp strm, int flush) {
949 int old_flush; /* value of flush param for previous deflate call */
950 deflate_state *s;
951
952 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
953 return Z_STREAM_ERROR;
954 }
955 s = strm->state;
956
957 if (strm->next_out == Z_NULL ||
958 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
959 (s->status == FINISH_STATE && flush != Z_FINISH)) {
960 ERR_RETURN(strm, Z_STREAM_ERROR);
961 }
962 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
963
964 old_flush = s->last_flush;
965 s->last_flush = flush;
966
967 /* Flush as much pending output as possible */
968 if (s->pending != 0) {
969 flush_pending(strm);
970 if (strm->avail_out == 0) {
971 /* Since avail_out is 0, deflate will be called again with
972 * more output space, but possibly with both pending and
973 * avail_in equal to zero. There won't be anything to do,
974 * but this is not an error situation so make sure we
975 * return OK instead of BUF_ERROR at next call of deflate:
976 */
977 s->last_flush = -1;
978 return Z_OK;
979 }
980
981 /* Make sure there is something to do and avoid duplicate consecutive
982 * flushes. For repeated and useless calls with Z_FINISH, we keep
983 * returning Z_STREAM_END instead of Z_BUF_ERROR.
984 */
985 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
986 flush != Z_FINISH) {
987 ERR_RETURN(strm, Z_BUF_ERROR);
988 }
989
990 /* User must not provide more input after the first FINISH: */
991 if (s->status == FINISH_STATE && strm->avail_in != 0) {
992 ERR_RETURN(strm, Z_BUF_ERROR);
993 }
994
995 /* Write the header */
996 if (s->status == INIT_STATE && s->wrap == 0)
997 s->status = BUSY_STATE;
998 if (s->status == INIT_STATE) {
999 /* zlib header */
1000 uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1001 uInt level_flags;
1002
1003 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1004 level_flags = 0;
1005 else if (s->level < 6)
1006 level_flags = 1;
1007 else if (s->level == 6)
1008 level_flags = 2;
1009 else
1010 level_flags = 3;
1011 header |= (level_flags << 6);
1012 if (s->strstart != 0) header |= PRESET_DICT;
1013 header += 31 - (header % 31);
1014
1015 putShortMSB(s, header);
1016
1017 /* Save the adler32 of the preset dictionary: */
1018 if (s->strstart != 0) {
1019 putShortMSB(s, (uInt)(strm->adler >> 16));
1020 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1021 }
1022 strm->adler = adler32(0L, Z_NULL, 0);
1023 s->status = BUSY_STATE;
1024
1025 /* Compression must start with an empty pending buffer */
1026 flush_pending(strm);
1027 if (s->pending != 0) {
1028 s->last_flush = -1;
1029 return Z_OK;
1030 }
1031 }
1032 #ifdef GZIP
1033 if (s->status == GZIP_STATE) {
1034 /* gzip header */
1035 strm->adler = crc32(0L, Z_NULL, 0);
1036 put_byte(s, 31);
1037 put_byte(s, 139);
1038 put_byte(s, 8);
1039 if (s->gzhead == Z_NULL) {
1040 put_byte(s, 0);
1041 put_byte(s, 0);
1042 put_byte(s, 0);
1043 put_byte(s, 0);
1044 put_byte(s, 0);
1045 put_byte(s, s->level == 9 ? 2 :
1046 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1047 4 : 0));
1048 put_byte(s, OS_CODE);
1049 s->status = BUSY_STATE;
1050
1051 /* Compression must start with an empty pending buffer */
1052 flush_pending(strm);
1053 if (s->pending != 0) {
1054 s->last_flush = -1;
1055 return Z_OK;
1056 }
1057 }
1058 else {
1059 put_byte(s, (s->gzhead->text ? 1 : 0) +
1060 (s->gzhead->hcrc ? 2 : 0) +
1061 (s->gzhead->extra == Z_NULL ? 0 : 4) +
1062 (s->gzhead->name == Z_NULL ? 0 : 8) +
1063 (s->gzhead->comment == Z_NULL ? 0 : 16)
1064 );
1065 put_byte(s, (Byte)(s->gzhead->time & 0xff));
1066 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1067 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1068 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1069 put_byte(s, s->level == 9 ? 2 :
1070 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1071 4 : 0));
1072 put_byte(s, s->gzhead->os & 0xff);
1073 if (s->gzhead->extra != Z_NULL) {
1074 put_byte(s, s->gzhead->extra_len & 0xff);
1075 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1076 }
1077 if (s->gzhead->hcrc)
1078 strm->adler = crc32(strm->adler, s->pending_buf,
1079 s->pending);
1080 s->gzindex = 0;
1081 s->status = EXTRA_STATE;
1082 }
1083 }
1084 if (s->status == EXTRA_STATE) {
1085 if (s->gzhead->extra != Z_NULL) {
1086 ulg beg = s->pending; /* start of bytes to update crc */
1087 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1088 while (s->pending + left > s->pending_buf_size) {
1089 uInt copy = s->pending_buf_size - s->pending;
1090 zmemcpy(s->pending_buf + s->pending,
1091 s->gzhead->extra + s->gzindex, copy);
1092 s->pending = s->pending_buf_size;
1093 HCRC_UPDATE(beg);
1094 s->gzindex += copy;
1095 flush_pending(strm);
1096 if (s->pending != 0) {
1097 s->last_flush = -1;
1098 return Z_OK;
1099 }
1100 beg = 0;
1101 left -= copy;
1102 }
1103 zmemcpy(s->pending_buf + s->pending,
1104 s->gzhead->extra + s->gzindex, left);
1105 s->pending += left;
1106 HCRC_UPDATE(beg);
1107 s->gzindex = 0;
1108 }
1109 s->status = NAME_STATE;
1110 }
1111 if (s->status == NAME_STATE) {
1112 if (s->gzhead->name != Z_NULL) {
1113 ulg beg = s->pending; /* start of bytes to update crc */
1114 int val;
1115 do {
1116 if (s->pending == s->pending_buf_size) {
1117 HCRC_UPDATE(beg);
1118 flush_pending(strm);
1119 if (s->pending != 0) {
1120 s->last_flush = -1;
1121 return Z_OK;
1122 }
1123 beg = 0;
1124 }
1125 val = s->gzhead->name[s->gzindex++];
1126 put_byte(s, val);
1127 } while (val != 0);
1128 HCRC_UPDATE(beg);
1129 s->gzindex = 0;
1130 }
1131 s->status = COMMENT_STATE;
1132 }
1133 if (s->status == COMMENT_STATE) {
1134 if (s->gzhead->comment != Z_NULL) {
1135 ulg beg = s->pending; /* start of bytes to update crc */
1136 int val;
1137 do {
1138 if (s->pending == s->pending_buf_size) {
1139 HCRC_UPDATE(beg);
1140 flush_pending(strm);
1141 if (s->pending != 0) {
1142 s->last_flush = -1;
1143 return Z_OK;
1144 }
1145 beg = 0;
1146 }
1147 val = s->gzhead->comment[s->gzindex++];
1148 put_byte(s, val);
1149 } while (val != 0);
1150 HCRC_UPDATE(beg);
1151 }
1152 s->status = HCRC_STATE;
1153 }
1154 if (s->status == HCRC_STATE) {
1155 if (s->gzhead->hcrc) {
1156 if (s->pending + 2 > s->pending_buf_size) {
1157 flush_pending(strm);
1158 if (s->pending != 0) {
1159 s->last_flush = -1;
1160 return Z_OK;
1161 }
1162 }
1163 put_byte(s, (Byte)(strm->adler & 0xff));
1164 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1165 strm->adler = crc32(0L, Z_NULL, 0);
1166 }
1167 s->status = BUSY_STATE;
1168
1169 /* Compression must start with an empty pending buffer */
1170 flush_pending(strm);
1171 if (s->pending != 0) {
1172 s->last_flush = -1;
1173 return Z_OK;
1174 }
1175 }
1176 #endif
1177
1178 /* Start a new block or continue the current one.
1179 */
1180 if (strm->avail_in != 0 || s->lookahead != 0 ||
1181 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1182 block_state bstate;
1183
1184 bstate = s->level == 0 ? deflate_stored(s, flush) :
1185 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1186 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1187 (*(configuration_table[s->level].func))(s, flush);
1188
1189 if (bstate == finish_started || bstate == finish_done) {
1190 s->status = FINISH_STATE;
1191 }
1192 if (bstate == need_more || bstate == finish_started) {
1193 if (strm->avail_out == 0) {
1194 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1195 }
1196 return Z_OK;
1197 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1198 * of deflate should use the same flush parameter to make sure
1199 * that the flush is complete. So we don't have to output an
1200 * empty block here, this will be done at next call. This also
1201 * ensures that for a very small output buffer, we emit at most
1202 * one empty block.
1203 */
1204 }
1205 if (bstate == block_done) {
1206 if (flush == Z_PARTIAL_FLUSH) {
1207 _tr_align(s);
1208 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1209 _tr_stored_block(s, (char*)0, 0L, 0);
1210 /* For a full flush, this empty block will be recognized
1211 * as a special marker by inflate_sync().
1212 */
1213 if (flush == Z_FULL_FLUSH) {
1214 CLEAR_HASH(s); /* forget history */
1215 if (s->lookahead == 0) {
1216 s->strstart = 0;
1217 s->block_start = 0L;
1218 s->insert = 0;
1219 }
1220 }
1221 }
1222 flush_pending(strm);
1223 if (strm->avail_out == 0) {
1224 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1225 return Z_OK;
1226 }
1227 }
1228 }
1229
1230 if (flush != Z_FINISH) return Z_OK;
1231 if (s->wrap <= 0) return Z_STREAM_END;
1232
1233 /* Write the trailer */
1234 #ifdef GZIP
1235 if (s->wrap == 2) {
1236 put_byte(s, (Byte)(strm->adler & 0xff));
1237 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1238 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1239 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1240 put_byte(s, (Byte)(strm->total_in & 0xff));
1241 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1242 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1243 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1244 }
1245 else
1246 #endif
1247 {
1248 putShortMSB(s, (uInt)(strm->adler >> 16));
1249 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1250 }
1251 flush_pending(strm);
1252 /* If avail_out is zero, the application will call deflate again
1253 * to flush the rest.
1254 */
1255 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1256 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1257 }
1258
1259 /* ========================================================================= */
1260 int ZEXPORT deflateEnd(z_streamp strm) {
1261 int status;
1262
1263 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1264
1265 status = strm->state->status;
1266
1267 /* Deallocate in reverse order of allocations: */
1268 TRY_FREE(strm, strm->state->pending_buf);
1269 TRY_FREE(strm, strm->state->head);
1270 TRY_FREE(strm, strm->state->prev);
1271 TRY_FREE(strm, strm->state->window);
1272
1273 ZFREE(strm, strm->state);
1274 strm->state = Z_NULL;
1275
1276 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1277 }
1278
1279 /* =========================================================================
1280 * Copy the source state to the destination state.
1281 * To simplify the source, this is not supported for 16-bit MSDOS (which
1282 * doesn't have enough memory anyway to duplicate compression states).
1283 */
1284 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1285 #ifdef MAXSEG_64K
1286 (void)dest;
1287 (void)source;
1288 return Z_STREAM_ERROR;
1289 #else
1290 deflate_state *ds;
1291 deflate_state *ss;
1292
1293
1294 if (deflateStateCheck(source) || dest == Z_NULL) {
1295 return Z_STREAM_ERROR;
1296 }
1297
1298 ss = source->state;
1299
1300 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1301
1302 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1303 if (ds == Z_NULL) return Z_MEM_ERROR;
1304 dest->state = (struct internal_state FAR *) ds;
1305 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1306 ds->strm = dest;
1307
1308 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1309 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1310 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1311 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1312
1313 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1314 ds->pending_buf == Z_NULL) {
1315 deflateEnd (dest);
1316 return Z_MEM_ERROR;
1317 }
1318 /* following zmemcpy do not work for 16-bit MSDOS */
1319 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1320 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1321 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1322 zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1323
1324 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1325 #ifdef LIT_MEM
1326 ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1327 ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1328 #else
1329 ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1330 #endif
1331
1332 ds->l_desc.dyn_tree = ds->dyn_ltree;
1333 ds->d_desc.dyn_tree = ds->dyn_dtree;
1334 ds->bl_desc.dyn_tree = ds->bl_tree;
1335
1336 return Z_OK;
1337 #endif /* MAXSEG_64K */
1338 }
1339
1340 #ifndef FASTEST
1341 /* ===========================================================================
1342 * Set match_start to the longest match starting at the given string and
1343 * return its length. Matches shorter or equal to prev_length are discarded,
1344 * in which case the result is equal to prev_length and match_start is
1345 * garbage.
1346 * IN assertions: cur_match is the head of the hash chain for the current
1347 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1348 * OUT assertion: the match length is not greater than s->lookahead.
1349 */
1350 local uInt longest_match(deflate_state *s, IPos cur_match) {
1351 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1352 register Bytef *scan = s->window + s->strstart; /* current string */
1353 register Bytef *match; /* matched string */
1354 register int len; /* length of current match */
1355 int best_len = (int)s->prev_length; /* best match length so far */
1356 int nice_match = s->nice_match; /* stop if match long enough */
1357 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1358 s->strstart - (IPos)MAX_DIST(s) : NIL;
1359 /* Stop when cur_match becomes <= limit. To simplify the code,
1360 * we prevent matches with the string of window index 0.
1361 */
1362 Posf *prev = s->prev;
1363 uInt wmask = s->w_mask;
1364
1365 #ifdef UNALIGNED_OK
1366 /* Compare two bytes at a time. Note: this is not always beneficial.
1367 * Try with and without -DUNALIGNED_OK to check.
1368 */
1369 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1370 register ush scan_start = *(ushf*)scan;
1371 register ush scan_end = *(ushf*)(scan + best_len - 1);
1372 #else
1373 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1374 register Byte scan_end1 = scan[best_len - 1];
1375 register Byte scan_end = scan[best_len];
1376 #endif
1377
1378 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1379 * It is easy to get rid of this optimization if necessary.
1380 */
1381 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1382
1383 /* Do not waste too much time if we already have a good match: */
1384 if (s->prev_length >= s->good_match) {
1385 chain_length >>= 2;
1386 }
1387 /* Do not look for matches beyond the end of the input. This is necessary
1388 * to make deflate deterministic.
1389 */
1390 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1391
1392 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1393 "need lookahead");
1394
1395 do {
1396 Assert(cur_match < s->strstart, "no future");
1397 match = s->window + cur_match;
1398
1399 /* Skip to next match if the match length cannot increase
1400 * or if the match length is less than 2. Note that the checks below
1401 * for insufficient lookahead only occur occasionally for performance
1402 * reasons. Therefore uninitialized memory will be accessed, and
1403 * conditional jumps will be made that depend on those values.
1404 * However the length of the match is limited to the lookahead, so
1405 * the output of deflate is not affected by the uninitialized values.
1406 */
1407 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1408 /* This code assumes sizeof(unsigned short) == 2. Do not use
1409 * UNALIGNED_OK if your compiler uses a different size.
1410 */
1411 if (*(ushf*)(match + best_len - 1) != scan_end ||
1412 *(ushf*)match != scan_start) continue;
1413
1414 /* It is not necessary to compare scan[2] and match[2] since they are
1415 * always equal when the other bytes match, given that the hash keys
1416 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1417 * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1418 * lookahead only every 4th comparison; the 128th check will be made
1419 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1420 * necessary to put more guard bytes at the end of the window, or
1421 * to check more often for insufficient lookahead.
1422 */
1423 Assert(scan[2] == match[2], "scan[2]?");
1424 scan++, match++;
1425 do {
1426 } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1427 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1428 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1429 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1430 scan < strend);
1431 /* The funny "do {}" generates better code on most compilers */
1432
1433 /* Here, scan <= window + strstart + 257 */
1434 Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1435 "wild scan");
1436 if (*scan == *match) scan++;
1437
1438 len = (MAX_MATCH - 1) - (int)(strend - scan);
1439 scan = strend - (MAX_MATCH-1);
1440
1441 #else /* UNALIGNED_OK */
1442
1443 if (match[best_len] != scan_end ||
1444 match[best_len - 1] != scan_end1 ||
1445 *match != *scan ||
1446 *++match != scan[1]) continue;
1447
1448 /* The check at best_len - 1 can be removed because it will be made
1449 * again later. (This heuristic is not always a win.)
1450 * It is not necessary to compare scan[2] and match[2] since they
1451 * are always equal when the other bytes match, given that
1452 * the hash keys are equal and that HASH_BITS >= 8.
1453 */
1454 scan += 2, match++;
1455 Assert(*scan == *match, "match[2]?");
1456
1457 /* We check for insufficient lookahead only every 8th comparison;
1458 * the 256th check will be made at strstart + 258.
1459 */
1460 do {
1461 } while (*++scan == *++match && *++scan == *++match &&
1462 *++scan == *++match && *++scan == *++match &&
1463 *++scan == *++match && *++scan == *++match &&
1464 *++scan == *++match && *++scan == *++match &&
1465 scan < strend);
1466
1467 Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1468 "wild scan");
1469
1470 len = MAX_MATCH - (int)(strend - scan);
1471 scan = strend - MAX_MATCH;
1472
1473 #endif /* UNALIGNED_OK */
1474
1475 if (len > best_len) {
1476 s->match_start = cur_match;
1477 best_len = len;
1478 if (len >= nice_match) break;
1479 #ifdef UNALIGNED_OK
1480 scan_end = *(ushf*)(scan + best_len - 1);
1481 #else
1482 scan_end1 = scan[best_len - 1];
1483 scan_end = scan[best_len];
1484 #endif
1485 }
1486 } while ((cur_match = prev[cur_match & wmask]) > limit
1487 && --chain_length != 0);
1488
1489 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1490 return s->lookahead;
1491 }
1492
1493 #else /* FASTEST */
1494
1495 /* ---------------------------------------------------------------------------
1496 * Optimized version for FASTEST only
1497 */
1498 local uInt longest_match(deflate_state *s, IPos cur_match) {
1499 register Bytef *scan = s->window + s->strstart; /* current string */
1500 register Bytef *match; /* matched string */
1501 register int len; /* length of current match */
1502 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1503
1504 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1505 * It is easy to get rid of this optimization if necessary.
1506 */
1507 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1508
1509 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1510 "need lookahead");
1511
1512 Assert(cur_match < s->strstart, "no future");
1513
1514 match = s->window + cur_match;
1515
1516 /* Return failure if the match length is less than 2:
1517 */
1518 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1519
1520 /* The check at best_len - 1 can be removed because it will be made
1521 * again later. (This heuristic is not always a win.)
1522 * It is not necessary to compare scan[2] and match[2] since they
1523 * are always equal when the other bytes match, given that
1524 * the hash keys are equal and that HASH_BITS >= 8.
1525 */
1526 scan += 2, match += 2;
1527 Assert(*scan == *match, "match[2]?");
1528
1529 /* We check for insufficient lookahead only every 8th comparison;
1530 * the 256th check will be made at strstart + 258.
1531 */
1532 do {
1533 } while (*++scan == *++match && *++scan == *++match &&
1534 *++scan == *++match && *++scan == *++match &&
1535 *++scan == *++match && *++scan == *++match &&
1536 *++scan == *++match && *++scan == *++match &&
1537 scan < strend);
1538
1539 Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1540
1541 len = MAX_MATCH - (int)(strend - scan);
1542
1543 if (len < MIN_MATCH) return MIN_MATCH - 1;
1544
1545 s->match_start = cur_match;
1546 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1547 }
1548
1549 #endif /* FASTEST */
1550
1551 #ifdef ZLIB_DEBUG
1552
1553 #define EQUAL 0
1554 /* result of memcmp for equal strings */
1555
1556 /* ===========================================================================
1557 * Check that the match at match_start is indeed a match.
1558 */
1559 local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1560 /* check that the match is indeed a match */
1561 Bytef *back = s->window + (int)match, *here = s->window + start;
1562 IPos len = length;
1563 if (match == (IPos)-1) {
1564 /* match starts one byte before the current window -- just compare the
1565 subsequent length-1 bytes */
1566 back++;
1567 here++;
1568 len--;
1569 }
1570 if (zmemcmp(back, here, len) != EQUAL) {
1571 fprintf(stderr, " start %u, match %d, length %d\n",
1572 start, (int)match, length);
1573 do {
1574 fprintf(stderr, "(%02x %02x)", *back++, *here++);
1575 } while (--len != 0);
1576 z_error("invalid match");
1577 }
1578 if (z_verbose > 1) {
1579 fprintf(stderr,"\\[%d,%d]", start - match, length);
1580 do { putc(s->window[start++], stderr); } while (--length != 0);
1581 }
1582 }
1583 #else
1584 # define check_match(s, start, match, length)
1585 #endif /* ZLIB_DEBUG */
1586
1587 /* ===========================================================================
1588 * Flush the current block, with given end-of-file flag.
1589 * IN assertion: strstart is set to the end of the current match.
1590 */
1591 #define FLUSH_BLOCK_ONLY(s, last) { \
1592 _tr_flush_block(s, (s->block_start >= 0L ? \
1593 (charf *)&s->window[(unsigned)s->block_start] : \
1594 (charf *)Z_NULL), \
1595 (ulg)((long)s->strstart - s->block_start), \
1596 (last)); \
1597 s->block_start = s->strstart; \
1598 flush_pending(s->strm); \
1599 Tracev((stderr,"[FLUSH]")); \
1600 }
1601
1602 /* Same but force premature exit if necessary. */
1603 #define FLUSH_BLOCK(s, last) { \
1604 FLUSH_BLOCK_ONLY(s, last); \
1605 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1606 }
1607
1608 /* Maximum stored block length in deflate format (not including header). */
1609 #define MAX_STORED 65535
1610
1611 /* Minimum of a and b. */
1612 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1613
1614 /* ===========================================================================
1615 * Copy without compression as much as possible from the input stream, return
1616 * the current block state.
1617 *
1618 * In case deflateParams() is used to later switch to a non-zero compression
1619 * level, s->matches (otherwise unused when storing) keeps track of the number
1620 * of hash table slides to perform. If s->matches is 1, then one hash table
1621 * slide will be done when switching. If s->matches is 2, the maximum value
1622 * allowed here, then the hash table will be cleared, since two or more slides
1623 * is the same as a clear.
1624 *
1625 * deflate_stored() is written to minimize the number of times an input byte is
1626 * copied. It is most efficient with large input and output buffers, which
1627 * maximizes the opportunities to have a single copy from next_in to next_out.
1628 */
1629 local block_state deflate_stored(deflate_state *s, int flush) {
1630 /* Smallest worthy block size when not flushing or finishing. By default
1631 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1632 * large input and output buffers, the stored block size will be larger.
1633 */
1634 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1635
1636 /* Copy as many min_block or larger stored blocks directly to next_out as
1637 * possible. If flushing, copy the remaining available input to next_out as
1638 * stored blocks, if there is enough space.
1639 */
1640 unsigned len, left, have, last = 0;
1641 unsigned used = s->strm->avail_in;
1642 do {
1643 /* Set len to the maximum size block that we can copy directly with the
1644 * available input data and output space. Set left to how much of that
1645 * would be copied from what's left in the window.
1646 */
1647 len = MAX_STORED; /* maximum deflate stored block length */
1648 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1649 if (s->strm->avail_out < have) /* need room for header */
1650 break;
1651 /* maximum stored block length that will fit in avail_out: */
1652 have = s->strm->avail_out - have;
1653 left = s->strstart - s->block_start; /* bytes left in window */
1654 if (len > (ulg)left + s->strm->avail_in)
1655 len = left + s->strm->avail_in; /* limit len to the input */
1656 if (len > have)
1657 len = have; /* limit len to the output */
1658
1659 /* If the stored block would be less than min_block in length, or if
1660 * unable to copy all of the available input when flushing, then try
1661 * copying to the window and the pending buffer instead. Also don't
1662 * write an empty block when flushing -- deflate() does that.
1663 */
1664 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1665 flush == Z_NO_FLUSH ||
1666 len != left + s->strm->avail_in))
1667 break;
1668
1669 /* Make a dummy stored block in pending to get the header bytes,
1670 * including any pending bits. This also updates the debugging counts.
1671 */
1672 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1673 _tr_stored_block(s, (char *)0, 0L, last);
1674
1675 /* Replace the lengths in the dummy stored block with len. */
1676 s->pending_buf[s->pending - 4] = len;
1677 s->pending_buf[s->pending - 3] = len >> 8;
1678 s->pending_buf[s->pending - 2] = ~len;
1679 s->pending_buf[s->pending - 1] = ~len >> 8;
1680
1681 /* Write the stored block header bytes. */
1682 flush_pending(s->strm);
1683
1684 #ifdef ZLIB_DEBUG
1685 /* Update debugging counts for the data about to be copied. */
1686 s->compressed_len += len << 3;
1687 s->bits_sent += len << 3;
1688 #endif
1689
1690 /* Copy uncompressed bytes from the window to next_out. */
1691 if (left) {
1692 if (left > len)
1693 left = len;
1694 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1695 s->strm->next_out += left;
1696 s->strm->avail_out -= left;
1697 s->strm->total_out += left;
1698 s->block_start += left;
1699 len -= left;
1700 }
1701
1702 /* Copy uncompressed bytes directly from next_in to next_out, updating
1703 * the check value.
1704 */
1705 if (len) {
1706 read_buf(s->strm, s->strm->next_out, len);
1707 s->strm->next_out += len;
1708 s->strm->avail_out -= len;
1709 s->strm->total_out += len;
1710 }
1711 } while (last == 0);
1712
1713 /* Update the sliding window with the last s->w_size bytes of the copied
1714 * data, or append all of the copied data to the existing window if less
1715 * than s->w_size bytes were copied. Also update the number of bytes to
1716 * insert in the hash tables, in the event that deflateParams() switches to
1717 * a non-zero compression level.
1718 */
1719 used -= s->strm->avail_in; /* number of input bytes directly copied */
1720 if (used) {
1721 /* If any input was used, then no unused input remains in the window,
1722 * therefore s->block_start == s->strstart.
1723 */
1724 if (used >= s->w_size) { /* supplant the previous history */
1725 s->matches = 2; /* clear hash */
1726 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1727 s->strstart = s->w_size;
1728 s->insert = s->strstart;
1729 }
1730 else {
1731 if (s->window_size - s->strstart <= used) {
1732 /* Slide the window down. */
1733 s->strstart -= s->w_size;
1734 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1735 if (s->matches < 2)
1736 s->matches++; /* add a pending slide_hash() */
1737 if (s->insert > s->strstart)
1738 s->insert = s->strstart;
1739 }
1740 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1741 s->strstart += used;
1742 s->insert += MIN(used, s->w_size - s->insert);
1743 }
1744 s->block_start = s->strstart;
1745 }
1746 if (s->high_water < s->strstart)
1747 s->high_water = s->strstart;
1748
1749 /* If the last block was written to next_out, then done. */
1750 if (last)
1751 return finish_done;
1752
1753 /* If flushing and all input has been consumed, then done. */
1754 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1755 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1756 return block_done;
1757
1758 /* Fill the window with any remaining input. */
1759 have = s->window_size - s->strstart;
1760 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1761 /* Slide the window down. */
1762 s->block_start -= s->w_size;
1763 s->strstart -= s->w_size;
1764 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1765 if (s->matches < 2)
1766 s->matches++; /* add a pending slide_hash() */
1767 have += s->w_size; /* more space now */
1768 if (s->insert > s->strstart)
1769 s->insert = s->strstart;
1770 }
1771 if (have > s->strm->avail_in)
1772 have = s->strm->avail_in;
1773 if (have) {
1774 read_buf(s->strm, s->window + s->strstart, have);
1775 s->strstart += have;
1776 s->insert += MIN(have, s->w_size - s->insert);
1777 }
1778 if (s->high_water < s->strstart)
1779 s->high_water = s->strstart;
1780
1781 /* There was not enough avail_out to write a complete worthy or flushed
1782 * stored block to next_out. Write a stored block to pending instead, if we
1783 * have enough input for a worthy block, or if flushing and there is enough
1784 * room for the remaining input as a stored block in the pending buffer.
1785 */
1786 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1787 /* maximum stored block length that will fit in pending: */
1788 have = MIN(s->pending_buf_size - have, MAX_STORED);
1789 min_block = MIN(have, s->w_size);
1790 left = s->strstart - s->block_start;
1791 if (left >= min_block ||
1792 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1793 s->strm->avail_in == 0 && left <= have)) {
1794 len = MIN(left, have);
1795 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1796 len == left ? 1 : 0;
1797 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1798 s->block_start += len;
1799 flush_pending(s->strm);
1800 }
1801
1802 /* We've done all we can with the available input and output. */
1803 return last ? finish_started : need_more;
1804 }
1805
1806 /* ===========================================================================
1807 * Compress as much as possible from the input stream, return the current
1808 * block state.
1809 * This function does not perform lazy evaluation of matches and inserts
1810 * new strings in the dictionary only for unmatched strings or for short
1811 * matches. It is used only for the fast compression options.
1812 */
1813 local block_state deflate_fast(deflate_state *s, int flush) {
1814 IPos hash_head; /* head of the hash chain */
1815 int bflush; /* set if current block must be flushed */
1816
1817 for (;;) {
1818 /* Make sure that we always have enough lookahead, except
1819 * at the end of the input file. We need MAX_MATCH bytes
1820 * for the next match, plus MIN_MATCH bytes to insert the
1821 * string following the next match.
1822 */
1823 if (s->lookahead < MIN_LOOKAHEAD) {
1824 fill_window(s);
1825 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1826 return need_more;
1827 }
1828 if (s->lookahead == 0) break; /* flush the current block */
1829 }
1830
1831 /* Insert the string window[strstart .. strstart + 2] in the
1832 * dictionary, and set hash_head to the head of the hash chain:
1833 */
1834 hash_head = NIL;
1835 if (s->lookahead >= MIN_MATCH) {
1836 INSERT_STRING(s, s->strstart, hash_head);
1837 }
1838
1839 /* Find the longest match, discarding those <= prev_length.
1840 * At this point we have always match_length < MIN_MATCH
1841 */
1842 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1843 /* To simplify the code, we prevent matches with the string
1844 * of window index 0 (in particular we have to avoid a match
1845 * of the string with itself at the start of the input file).
1846 */
1847 s->match_length = longest_match (s, hash_head);
1848 /* longest_match() sets match_start */
1849 }
1850 if (s->match_length >= MIN_MATCH) {
1851 check_match(s, s->strstart, s->match_start, s->match_length);
1852
1853 _tr_tally_dist(s, s->strstart - s->match_start,
1854 s->match_length - MIN_MATCH, bflush);
1855
1856 s->lookahead -= s->match_length;
1857
1858 /* Insert new strings in the hash table only if the match length
1859 * is not too large. This saves time but degrades compression.
1860 */
1861 #ifndef FASTEST
1862 if (s->match_length <= s->max_insert_length &&
1863 s->lookahead >= MIN_MATCH) {
1864 s->match_length--; /* string at strstart already in table */
1865 do {
1866 s->strstart++;
1867 INSERT_STRING(s, s->strstart, hash_head);
1868 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1869 * always MIN_MATCH bytes ahead.
1870 */
1871 } while (--s->match_length != 0);
1872 s->strstart++;
1873 } else
1874 #endif
1875 {
1876 s->strstart += s->match_length;
1877 s->match_length = 0;
1878 s->ins_h = s->window[s->strstart];
1879 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1880 #if MIN_MATCH != 3
1881 Call UPDATE_HASH() MIN_MATCH-3 more times
1882 #endif
1883 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1884 * matter since it will be recomputed at next deflate call.
1885 */
1886 }
1887 } else {
1888 /* No match, output a literal byte */
1889 Tracevv((stderr,"%c", s->window[s->strstart]));
1890 _tr_tally_lit(s, s->window[s->strstart], bflush);
1891 s->lookahead--;
1892 s->strstart++;
1893 }
1894 if (bflush) FLUSH_BLOCK(s, 0);
1895 }
1896 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1897 if (flush == Z_FINISH) {
1898 FLUSH_BLOCK(s, 1);
1899 return finish_done;
1900 }
1901 if (s->sym_next)
1902 FLUSH_BLOCK(s, 0);
1903 return block_done;
1904 }
1905
1906 #ifndef FASTEST
1907 /* ===========================================================================
1908 * Same as above, but achieves better compression. We use a lazy
1909 * evaluation for matches: a match is finally adopted only if there is
1910 * no better match at the next window position.
1911 */
1912 local block_state deflate_slow(deflate_state *s, int flush) {
1913 IPos hash_head; /* head of hash chain */
1914 int bflush; /* set if current block must be flushed */
1915
1916 /* Process the input block. */
1917 for (;;) {
1918 /* Make sure that we always have enough lookahead, except
1919 * at the end of the input file. We need MAX_MATCH bytes
1920 * for the next match, plus MIN_MATCH bytes to insert the
1921 * string following the next match.
1922 */
1923 if (s->lookahead < MIN_LOOKAHEAD) {
1924 fill_window(s);
1925 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1926 return need_more;
1927 }
1928 if (s->lookahead == 0) break; /* flush the current block */
1929 }
1930
1931 /* Insert the string window[strstart .. strstart + 2] in the
1932 * dictionary, and set hash_head to the head of the hash chain:
1933 */
1934 hash_head = NIL;
1935 if (s->lookahead >= MIN_MATCH) {
1936 INSERT_STRING(s, s->strstart, hash_head);
1937 }
1938
1939 /* Find the longest match, discarding those <= prev_length.
1940 */
1941 s->prev_length = s->match_length, s->prev_match = s->match_start;
1942 s->match_length = MIN_MATCH-1;
1943
1944 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1945 s->strstart - hash_head <= MAX_DIST(s)) {
1946 /* To simplify the code, we prevent matches with the string
1947 * of window index 0 (in particular we have to avoid a match
1948 * of the string with itself at the start of the input file).
1949 */
1950 s->match_length = longest_match (s, hash_head);
1951 /* longest_match() sets match_start */
1952
1953 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1954 #if TOO_FAR <= 32767
1955 || (s->match_length == MIN_MATCH &&
1956 s->strstart - s->match_start > TOO_FAR)
1957 #endif
1958 )) {
1959
1960 /* If prev_match is also MIN_MATCH, match_start is garbage
1961 * but we will ignore the current match anyway.
1962 */
1963 s->match_length = MIN_MATCH-1;
1964 }
1965 }
1966 /* If there was a match at the previous step and the current
1967 * match is not better, output the previous match:
1968 */
1969 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1970 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1971 /* Do not insert strings in hash table beyond this. */
1972
1973 check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1974
1975 _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1976 s->prev_length - MIN_MATCH, bflush);
1977
1978 /* Insert in hash table all strings up to the end of the match.
1979 * strstart - 1 and strstart are already inserted. If there is not
1980 * enough lookahead, the last two strings are not inserted in
1981 * the hash table.
1982 */
1983 s->lookahead -= s->prev_length - 1;
1984 s->prev_length -= 2;
1985 do {
1986 if (++s->strstart <= max_insert) {
1987 INSERT_STRING(s, s->strstart, hash_head);
1988 }
1989 } while (--s->prev_length != 0);
1990 s->match_available = 0;
1991 s->match_length = MIN_MATCH-1;
1992 s->strstart++;
1993
1994 if (bflush) FLUSH_BLOCK(s, 0);
1995
1996 } else if (s->match_available) {
1997 /* If there was no match at the previous position, output a
1998 * single literal. If there was a match but the current match
1999 * is longer, truncate the previous match to a single literal.
2000 */
2001 Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2002 _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2003 if (bflush) {
2004 FLUSH_BLOCK_ONLY(s, 0);
2005 }
2006 s->strstart++;
2007 s->lookahead--;
2008 if (s->strm->avail_out == 0) return need_more;
2009 } else {
2010 /* There is no previous match to compare with, wait for
2011 * the next step to decide.
2012 */
2013 s->match_available = 1;
2014 s->strstart++;
2015 s->lookahead--;
2016 }
2017 }
2018 Assert (flush != Z_NO_FLUSH, "no flush?");
2019 if (s->match_available) {
2020 Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2021 _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2022 s->match_available = 0;
2023 }
2024 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2025 if (flush == Z_FINISH) {
2026 FLUSH_BLOCK(s, 1);
2027 return finish_done;
2028 }
2029 if (s->sym_next)
2030 FLUSH_BLOCK(s, 0);
2031 return block_done;
2032 }
2033 #endif /* FASTEST */
2034
2035 /* ===========================================================================
2036 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2037 * one. Do not maintain a hash table. (It will be regenerated if this run of
2038 * deflate switches away from Z_RLE.)
2039 */
2040 local block_state deflate_rle(deflate_state *s, int flush) {
2041 int bflush; /* set if current block must be flushed */
2042 uInt prev; /* byte at distance one to match */
2043 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2044
2045 for (;;) {
2046 /* Make sure that we always have enough lookahead, except
2047 * at the end of the input file. We need MAX_MATCH bytes
2048 * for the longest run, plus one for the unrolled loop.
2049 */
2050 if (s->lookahead <= MAX_MATCH) {
2051 fill_window(s);
2052 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2053 return need_more;
2054 }
2055 if (s->lookahead == 0) break; /* flush the current block */
2056 }
2057
2058 /* See how many times the previous byte repeats */
2059 s->match_length = 0;
2060 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2061 scan = s->window + s->strstart - 1;
2062 prev = *scan;
2063 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2064 strend = s->window + s->strstart + MAX_MATCH;
2065 do {
2066 } while (prev == *++scan && prev == *++scan &&
2067 prev == *++scan && prev == *++scan &&
2068 prev == *++scan && prev == *++scan &&
2069 prev == *++scan && prev == *++scan &&
2070 scan < strend);
2071 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2072 if (s->match_length > s->lookahead)
2073 s->match_length = s->lookahead;
2074 }
2075 Assert(scan <= s->window + (uInt)(s->window_size - 1),
2076 "wild scan");
2077 }
2078
2079 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2080 if (s->match_length >= MIN_MATCH) {
2081 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2082
2083 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2084
2085 s->lookahead -= s->match_length;
2086 s->strstart += s->match_length;
2087 s->match_length = 0;
2088 } else {
2089 /* No match, output a literal byte */
2090 Tracevv((stderr,"%c", s->window[s->strstart]));
2091 _tr_tally_lit(s, s->window[s->strstart], bflush);
2092 s->lookahead--;
2093 s->strstart++;
2094 }
2095 if (bflush) FLUSH_BLOCK(s, 0);
2096 }
2097 s->insert = 0;
2098 if (flush == Z_FINISH) {
2099 FLUSH_BLOCK(s, 1);
2100 return finish_done;
2101 }
2102 if (s->sym_next)
2103 FLUSH_BLOCK(s, 0);
2104 return block_done;
2105 }
2106
2107 /* ===========================================================================
2108 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2109 * (It will be regenerated if this run of deflate switches away from Huffman.)
2110 */
2111 local block_state deflate_huff(deflate_state *s, int flush) {
2112 int bflush; /* set if current block must be flushed */
2113
2114 for (;;) {
2115 /* Make sure that we have a literal to write. */
2116 if (s->lookahead == 0) {
2117 fill_window(s);
2118 if (s->lookahead == 0) {
2119 if (flush == Z_NO_FLUSH)
2120 return need_more;
2121 break; /* flush the current block */
2122 }
2123 }
2124
2125 /* Output a literal byte */
2126 s->match_length = 0;
2127 Tracevv((stderr,"%c", s->window[s->strstart]));
2128 _tr_tally_lit(s, s->window[s->strstart], bflush);
2129 s->lookahead--;
2130 s->strstart++;
2131 if (bflush) FLUSH_BLOCK(s, 0);
2132 }
2133 s->insert = 0;
2134 if (flush == Z_FINISH) {
2135 FLUSH_BLOCK(s, 1);
2136 return finish_done;
2137 }
2138 if (s->sym_next)
2139 FLUSH_BLOCK(s, 0);
2140 return block_done;
2141 }
2142