trees.c revision 1.2 1 1.2 christos /* $NetBSD: trees.c,v 1.2 2006/01/16 17:02:29 christos Exp $ */
2 1.1 christos
3 1.1 christos /* trees.c -- output deflated data using Huffman coding
4 1.1 christos * Copyright (C) 1995-2005 Jean-loup Gailly
5 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
6 1.1 christos */
7 1.1 christos
8 1.1 christos /*
9 1.1 christos * ALGORITHM
10 1.1 christos *
11 1.1 christos * The "deflation" process uses several Huffman trees. The more
12 1.1 christos * common source values are represented by shorter bit sequences.
13 1.1 christos *
14 1.1 christos * Each code tree is stored in a compressed form which is itself
15 1.1 christos * a Huffman encoding of the lengths of all the code strings (in
16 1.1 christos * ascending order by source values). The actual code strings are
17 1.1 christos * reconstructed from the lengths in the inflate process, as described
18 1.1 christos * in the deflate specification.
19 1.1 christos *
20 1.1 christos * REFERENCES
21 1.1 christos *
22 1.1 christos * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
23 1.1 christos * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
24 1.1 christos *
25 1.1 christos * Storer, James A.
26 1.1 christos * Data Compression: Methods and Theory, pp. 49-50.
27 1.1 christos * Computer Science Press, 1988. ISBN 0-7167-8156-5.
28 1.1 christos *
29 1.1 christos * Sedgewick, R.
30 1.1 christos * Algorithms, p290.
31 1.1 christos * Addison-Wesley, 1983. ISBN 0-201-06672-6.
32 1.1 christos */
33 1.1 christos
34 1.1 christos /* @(#) Id */
35 1.1 christos
36 1.1 christos /* #define GEN_TREES_H */
37 1.1 christos
38 1.1 christos #include "deflate.h"
39 1.1 christos
40 1.2 christos #ifdef ZLIB_DEBUG
41 1.1 christos # include <ctype.h>
42 1.1 christos #endif
43 1.1 christos
44 1.1 christos /* ===========================================================================
45 1.1 christos * Constants
46 1.1 christos */
47 1.1 christos
48 1.1 christos #define MAX_BL_BITS 7
49 1.1 christos /* Bit length codes must not exceed MAX_BL_BITS bits */
50 1.1 christos
51 1.1 christos #define END_BLOCK 256
52 1.1 christos /* end of block literal code */
53 1.1 christos
54 1.1 christos #define REP_3_6 16
55 1.1 christos /* repeat previous bit length 3-6 times (2 bits of repeat count) */
56 1.1 christos
57 1.1 christos #define REPZ_3_10 17
58 1.1 christos /* repeat a zero length 3-10 times (3 bits of repeat count) */
59 1.1 christos
60 1.1 christos #define REPZ_11_138 18
61 1.1 christos /* repeat a zero length 11-138 times (7 bits of repeat count) */
62 1.1 christos
63 1.1 christos local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
64 1.1 christos = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65 1.1 christos
66 1.1 christos local const int extra_dbits[D_CODES] /* extra bits for each distance code */
67 1.1 christos = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68 1.1 christos
69 1.1 christos local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
70 1.1 christos = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71 1.1 christos
72 1.1 christos local const uch bl_order[BL_CODES]
73 1.1 christos = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
74 1.1 christos /* The lengths of the bit length codes are sent in order of decreasing
75 1.1 christos * probability, to avoid transmitting the lengths for unused bit length codes.
76 1.1 christos */
77 1.1 christos
78 1.1 christos #define Buf_size (8 * 2*sizeof(char))
79 1.1 christos /* Number of bits used within bi_buf. (bi_buf might be implemented on
80 1.1 christos * more than 16 bits on some systems.)
81 1.1 christos */
82 1.1 christos
83 1.1 christos /* ===========================================================================
84 1.1 christos * Local data. These are initialized only once.
85 1.1 christos */
86 1.1 christos
87 1.1 christos #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
88 1.1 christos
89 1.1 christos #if defined(GEN_TREES_H) || !defined(STDC)
90 1.1 christos /* non ANSI compilers may not accept trees.h */
91 1.1 christos
92 1.1 christos local ct_data static_ltree[L_CODES+2];
93 1.1 christos /* The static literal tree. Since the bit lengths are imposed, there is no
94 1.1 christos * need for the L_CODES extra codes used during heap construction. However
95 1.1 christos * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
96 1.1 christos * below).
97 1.1 christos */
98 1.1 christos
99 1.1 christos local ct_data static_dtree[D_CODES];
100 1.1 christos /* The static distance tree. (Actually a trivial tree since all codes use
101 1.1 christos * 5 bits.)
102 1.1 christos */
103 1.1 christos
104 1.1 christos uch _dist_code[DIST_CODE_LEN];
105 1.1 christos /* Distance codes. The first 256 values correspond to the distances
106 1.1 christos * 3 .. 258, the last 256 values correspond to the top 8 bits of
107 1.1 christos * the 15 bit distances.
108 1.1 christos */
109 1.1 christos
110 1.1 christos uch _length_code[MAX_MATCH-MIN_MATCH+1];
111 1.1 christos /* length code for each normalized match length (0 == MIN_MATCH) */
112 1.1 christos
113 1.1 christos local int base_length[LENGTH_CODES];
114 1.1 christos /* First normalized length for each code (0 = MIN_MATCH) */
115 1.1 christos
116 1.1 christos local int base_dist[D_CODES];
117 1.1 christos /* First normalized distance for each code (0 = distance of 1) */
118 1.1 christos
119 1.1 christos #else
120 1.1 christos # include "trees.h"
121 1.1 christos #endif /* GEN_TREES_H */
122 1.1 christos
123 1.1 christos struct static_tree_desc_s {
124 1.1 christos const ct_data *static_tree; /* static tree or NULL */
125 1.1 christos const intf *extra_bits; /* extra bits for each code or NULL */
126 1.1 christos int extra_base; /* base index for extra_bits */
127 1.1 christos int elems; /* max number of elements in the tree */
128 1.1 christos int max_length; /* max bit length for the codes */
129 1.1 christos };
130 1.1 christos
131 1.1 christos local static_tree_desc static_l_desc =
132 1.1 christos {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133 1.1 christos
134 1.1 christos local static_tree_desc static_d_desc =
135 1.1 christos {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
136 1.1 christos
137 1.1 christos local static_tree_desc static_bl_desc =
138 1.1 christos {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
139 1.1 christos
140 1.1 christos /* ===========================================================================
141 1.1 christos * Local (static) routines in this file.
142 1.1 christos */
143 1.1 christos
144 1.1 christos local void tr_static_init OF((void));
145 1.1 christos local void init_block OF((deflate_state *s));
146 1.1 christos local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
147 1.1 christos local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
148 1.1 christos local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
149 1.1 christos local void build_tree OF((deflate_state *s, tree_desc *desc));
150 1.1 christos local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
151 1.1 christos local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
152 1.1 christos local int build_bl_tree OF((deflate_state *s));
153 1.1 christos local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
154 1.1 christos int blcodes));
155 1.1 christos local void compress_block OF((deflate_state *s, ct_data *ltree,
156 1.1 christos ct_data *dtree));
157 1.1 christos local void set_data_type OF((deflate_state *s));
158 1.1 christos local unsigned bi_reverse OF((unsigned value, int length));
159 1.1 christos local void bi_windup OF((deflate_state *s));
160 1.1 christos local void bi_flush OF((deflate_state *s));
161 1.1 christos local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
162 1.1 christos int header));
163 1.1 christos
164 1.1 christos #ifdef GEN_TREES_H
165 1.1 christos local void gen_trees_header OF((void));
166 1.1 christos #endif
167 1.1 christos
168 1.2 christos #ifndef ZLIB_DEBUG
169 1.1 christos # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
170 1.1 christos /* Send a code of the given tree. c and tree must not have side effects */
171 1.1 christos
172 1.2 christos #else /* ZLIB_DEBUG */
173 1.1 christos # define send_code(s, c, tree) \
174 1.1 christos { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
175 1.1 christos send_bits(s, tree[c].Code, tree[c].Len); }
176 1.1 christos #endif
177 1.1 christos
178 1.1 christos /* ===========================================================================
179 1.1 christos * Output a short LSB first on the stream.
180 1.1 christos * IN assertion: there is enough room in pendingBuf.
181 1.1 christos */
182 1.1 christos #define put_short(s, w) { \
183 1.1 christos put_byte(s, (uch)((w) & 0xff)); \
184 1.1 christos put_byte(s, (uch)((ush)(w) >> 8)); \
185 1.1 christos }
186 1.1 christos
187 1.1 christos /* ===========================================================================
188 1.1 christos * Send a value on a given number of bits.
189 1.1 christos * IN assertion: length <= 16 and value fits in length bits.
190 1.1 christos */
191 1.2 christos #ifdef ZLIB_DEBUG
192 1.1 christos local void send_bits OF((deflate_state *s, int value, int length));
193 1.1 christos
194 1.1 christos local void send_bits(s, value, length)
195 1.1 christos deflate_state *s;
196 1.1 christos int value; /* value to send */
197 1.1 christos int length; /* number of bits */
198 1.1 christos {
199 1.1 christos Tracevv((stderr," l %2d v %4x ", length, value));
200 1.1 christos Assert(length > 0 && length <= 15, "invalid length");
201 1.1 christos s->bits_sent += (ulg)length;
202 1.1 christos
203 1.1 christos /* If not enough room in bi_buf, use (valid) bits from bi_buf and
204 1.1 christos * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
205 1.1 christos * unused bits in value.
206 1.1 christos */
207 1.1 christos if (s->bi_valid > (int)Buf_size - length) {
208 1.1 christos s->bi_buf |= (value << s->bi_valid);
209 1.1 christos put_short(s, s->bi_buf);
210 1.1 christos s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
211 1.1 christos s->bi_valid += length - Buf_size;
212 1.1 christos } else {
213 1.1 christos s->bi_buf |= value << s->bi_valid;
214 1.1 christos s->bi_valid += length;
215 1.1 christos }
216 1.1 christos }
217 1.2 christos #else /* !ZLIB_DEBUG */
218 1.1 christos
219 1.1 christos #define send_bits(s, value, length) \
220 1.1 christos { int len = length;\
221 1.1 christos if (s->bi_valid > (int)Buf_size - len) {\
222 1.1 christos int val = value;\
223 1.1 christos s->bi_buf |= (val << s->bi_valid);\
224 1.1 christos put_short(s, s->bi_buf);\
225 1.1 christos s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
226 1.1 christos s->bi_valid += len - Buf_size;\
227 1.1 christos } else {\
228 1.1 christos s->bi_buf |= (value) << s->bi_valid;\
229 1.1 christos s->bi_valid += len;\
230 1.1 christos }\
231 1.1 christos }
232 1.2 christos #endif /* ZLIB_DEBUG */
233 1.1 christos
234 1.1 christos
235 1.1 christos /* the arguments must not have side effects */
236 1.1 christos
237 1.1 christos /* ===========================================================================
238 1.1 christos * Initialize the various 'constant' tables.
239 1.1 christos */
240 1.1 christos local void tr_static_init()
241 1.1 christos {
242 1.1 christos #if defined(GEN_TREES_H) || !defined(STDC)
243 1.1 christos static int static_init_done = 0;
244 1.1 christos int n; /* iterates over tree elements */
245 1.1 christos int bits; /* bit counter */
246 1.1 christos int length; /* length value */
247 1.1 christos int code; /* code value */
248 1.1 christos int dist; /* distance index */
249 1.1 christos ush bl_count[MAX_BITS+1];
250 1.1 christos /* number of codes at each bit length for an optimal tree */
251 1.1 christos
252 1.1 christos if (static_init_done) return;
253 1.1 christos
254 1.1 christos /* For some embedded targets, global variables are not initialized: */
255 1.1 christos static_l_desc.static_tree = static_ltree;
256 1.1 christos static_l_desc.extra_bits = extra_lbits;
257 1.1 christos static_d_desc.static_tree = static_dtree;
258 1.1 christos static_d_desc.extra_bits = extra_dbits;
259 1.1 christos static_bl_desc.extra_bits = extra_blbits;
260 1.1 christos
261 1.1 christos /* Initialize the mapping length (0..255) -> length code (0..28) */
262 1.1 christos length = 0;
263 1.1 christos for (code = 0; code < LENGTH_CODES-1; code++) {
264 1.1 christos base_length[code] = length;
265 1.1 christos for (n = 0; n < (1<<extra_lbits[code]); n++) {
266 1.1 christos _length_code[length++] = (uch)code;
267 1.1 christos }
268 1.1 christos }
269 1.1 christos Assert (length == 256, "tr_static_init: length != 256");
270 1.1 christos /* Note that the length 255 (match length 258) can be represented
271 1.1 christos * in two different ways: code 284 + 5 bits or code 285, so we
272 1.1 christos * overwrite length_code[255] to use the best encoding:
273 1.1 christos */
274 1.1 christos _length_code[length-1] = (uch)code;
275 1.1 christos
276 1.1 christos /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
277 1.1 christos dist = 0;
278 1.1 christos for (code = 0 ; code < 16; code++) {
279 1.1 christos base_dist[code] = dist;
280 1.1 christos for (n = 0; n < (1<<extra_dbits[code]); n++) {
281 1.1 christos _dist_code[dist++] = (uch)code;
282 1.1 christos }
283 1.1 christos }
284 1.1 christos Assert (dist == 256, "tr_static_init: dist != 256");
285 1.1 christos dist >>= 7; /* from now on, all distances are divided by 128 */
286 1.1 christos for ( ; code < D_CODES; code++) {
287 1.1 christos base_dist[code] = dist << 7;
288 1.1 christos for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
289 1.1 christos _dist_code[256 + dist++] = (uch)code;
290 1.1 christos }
291 1.1 christos }
292 1.1 christos Assert (dist == 256, "tr_static_init: 256+dist != 512");
293 1.1 christos
294 1.1 christos /* Construct the codes of the static literal tree */
295 1.1 christos for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
296 1.1 christos n = 0;
297 1.1 christos while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
298 1.1 christos while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
299 1.1 christos while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
300 1.1 christos while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
301 1.1 christos /* Codes 286 and 287 do not exist, but we must include them in the
302 1.1 christos * tree construction to get a canonical Huffman tree (longest code
303 1.1 christos * all ones)
304 1.1 christos */
305 1.1 christos gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
306 1.1 christos
307 1.1 christos /* The static distance tree is trivial: */
308 1.1 christos for (n = 0; n < D_CODES; n++) {
309 1.1 christos static_dtree[n].Len = 5;
310 1.1 christos static_dtree[n].Code = bi_reverse((unsigned)n, 5);
311 1.1 christos }
312 1.1 christos static_init_done = 1;
313 1.1 christos
314 1.1 christos # ifdef GEN_TREES_H
315 1.1 christos gen_trees_header();
316 1.1 christos # endif
317 1.1 christos #endif /* defined(GEN_TREES_H) || !defined(STDC) */
318 1.1 christos }
319 1.1 christos
320 1.1 christos /* ===========================================================================
321 1.1 christos * Genererate the file trees.h describing the static trees.
322 1.1 christos */
323 1.1 christos #ifdef GEN_TREES_H
324 1.2 christos # ifndef ZLIB_DEBUG
325 1.1 christos # include <stdio.h>
326 1.1 christos # endif
327 1.1 christos
328 1.1 christos # define SEPARATOR(i, last, width) \
329 1.1 christos ((i) == (last)? "\n};\n\n" : \
330 1.1 christos ((i) % (width) == (width)-1 ? ",\n" : ", "))
331 1.1 christos
332 1.1 christos void gen_trees_header()
333 1.1 christos {
334 1.1 christos FILE *header = fopen("trees.h", "w");
335 1.1 christos int i;
336 1.1 christos
337 1.1 christos Assert (header != NULL, "Can't open trees.h");
338 1.1 christos fprintf(header,
339 1.1 christos "/* header created automatically with -DGEN_TREES_H */\n\n");
340 1.1 christos
341 1.1 christos fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
342 1.1 christos for (i = 0; i < L_CODES+2; i++) {
343 1.1 christos fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
344 1.1 christos static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
345 1.1 christos }
346 1.1 christos
347 1.1 christos fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
348 1.1 christos for (i = 0; i < D_CODES; i++) {
349 1.1 christos fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
350 1.1 christos static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
351 1.1 christos }
352 1.1 christos
353 1.1 christos fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
354 1.1 christos for (i = 0; i < DIST_CODE_LEN; i++) {
355 1.1 christos fprintf(header, "%2u%s", _dist_code[i],
356 1.1 christos SEPARATOR(i, DIST_CODE_LEN-1, 20));
357 1.1 christos }
358 1.1 christos
359 1.1 christos fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
360 1.1 christos for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
361 1.1 christos fprintf(header, "%2u%s", _length_code[i],
362 1.1 christos SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
363 1.1 christos }
364 1.1 christos
365 1.1 christos fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
366 1.1 christos for (i = 0; i < LENGTH_CODES; i++) {
367 1.1 christos fprintf(header, "%1u%s", base_length[i],
368 1.1 christos SEPARATOR(i, LENGTH_CODES-1, 20));
369 1.1 christos }
370 1.1 christos
371 1.1 christos fprintf(header, "local const int base_dist[D_CODES] = {\n");
372 1.1 christos for (i = 0; i < D_CODES; i++) {
373 1.1 christos fprintf(header, "%5u%s", base_dist[i],
374 1.1 christos SEPARATOR(i, D_CODES-1, 10));
375 1.1 christos }
376 1.1 christos
377 1.1 christos fclose(header);
378 1.1 christos }
379 1.1 christos #endif /* GEN_TREES_H */
380 1.1 christos
381 1.1 christos /* ===========================================================================
382 1.1 christos * Initialize the tree data structures for a new zlib stream.
383 1.1 christos */
384 1.1 christos void _tr_init(s)
385 1.1 christos deflate_state *s;
386 1.1 christos {
387 1.1 christos tr_static_init();
388 1.1 christos
389 1.1 christos s->l_desc.dyn_tree = s->dyn_ltree;
390 1.1 christos s->l_desc.stat_desc = &static_l_desc;
391 1.1 christos
392 1.1 christos s->d_desc.dyn_tree = s->dyn_dtree;
393 1.1 christos s->d_desc.stat_desc = &static_d_desc;
394 1.1 christos
395 1.1 christos s->bl_desc.dyn_tree = s->bl_tree;
396 1.1 christos s->bl_desc.stat_desc = &static_bl_desc;
397 1.1 christos
398 1.1 christos s->bi_buf = 0;
399 1.1 christos s->bi_valid = 0;
400 1.1 christos s->last_eob_len = 8; /* enough lookahead for inflate */
401 1.2 christos #ifdef ZLIB_DEBUG
402 1.1 christos s->compressed_len = 0L;
403 1.1 christos s->bits_sent = 0L;
404 1.1 christos #endif
405 1.1 christos
406 1.1 christos /* Initialize the first block of the first file: */
407 1.1 christos init_block(s);
408 1.1 christos }
409 1.1 christos
410 1.1 christos /* ===========================================================================
411 1.1 christos * Initialize a new block.
412 1.1 christos */
413 1.1 christos local void init_block(s)
414 1.1 christos deflate_state *s;
415 1.1 christos {
416 1.1 christos int n; /* iterates over tree elements */
417 1.1 christos
418 1.1 christos /* Initialize the trees. */
419 1.1 christos for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
420 1.1 christos for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
421 1.1 christos for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
422 1.1 christos
423 1.1 christos s->dyn_ltree[END_BLOCK].Freq = 1;
424 1.1 christos s->opt_len = s->static_len = 0L;
425 1.1 christos s->last_lit = s->matches = 0;
426 1.1 christos }
427 1.1 christos
428 1.1 christos #define SMALLEST 1
429 1.1 christos /* Index within the heap array of least frequent node in the Huffman tree */
430 1.1 christos
431 1.1 christos
432 1.1 christos /* ===========================================================================
433 1.1 christos * Remove the smallest element from the heap and recreate the heap with
434 1.1 christos * one less element. Updates heap and heap_len.
435 1.1 christos */
436 1.1 christos #define pqremove(s, tree, top) \
437 1.1 christos {\
438 1.1 christos top = s->heap[SMALLEST]; \
439 1.1 christos s->heap[SMALLEST] = s->heap[s->heap_len--]; \
440 1.1 christos pqdownheap(s, tree, SMALLEST); \
441 1.1 christos }
442 1.1 christos
443 1.1 christos /* ===========================================================================
444 1.1 christos * Compares to subtrees, using the tree depth as tie breaker when
445 1.1 christos * the subtrees have equal frequency. This minimizes the worst case length.
446 1.1 christos */
447 1.1 christos #define smaller(tree, n, m, depth) \
448 1.1 christos (tree[n].Freq < tree[m].Freq || \
449 1.1 christos (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
450 1.1 christos
451 1.1 christos /* ===========================================================================
452 1.1 christos * Restore the heap property by moving down the tree starting at node k,
453 1.1 christos * exchanging a node with the smallest of its two sons if necessary, stopping
454 1.1 christos * when the heap property is re-established (each father smaller than its
455 1.1 christos * two sons).
456 1.1 christos */
457 1.1 christos local void pqdownheap(s, tree, k)
458 1.1 christos deflate_state *s;
459 1.1 christos ct_data *tree; /* the tree to restore */
460 1.1 christos int k; /* node to move down */
461 1.1 christos {
462 1.1 christos int v = s->heap[k];
463 1.1 christos int j = k << 1; /* left son of k */
464 1.1 christos while (j <= s->heap_len) {
465 1.1 christos /* Set j to the smallest of the two sons: */
466 1.1 christos if (j < s->heap_len &&
467 1.1 christos smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
468 1.1 christos j++;
469 1.1 christos }
470 1.1 christos /* Exit if v is smaller than both sons */
471 1.1 christos if (smaller(tree, v, s->heap[j], s->depth)) break;
472 1.1 christos
473 1.1 christos /* Exchange v with the smallest son */
474 1.1 christos s->heap[k] = s->heap[j]; k = j;
475 1.1 christos
476 1.1 christos /* And continue down the tree, setting j to the left son of k */
477 1.1 christos j <<= 1;
478 1.1 christos }
479 1.1 christos s->heap[k] = v;
480 1.1 christos }
481 1.1 christos
482 1.1 christos /* ===========================================================================
483 1.1 christos * Compute the optimal bit lengths for a tree and update the total bit length
484 1.1 christos * for the current block.
485 1.1 christos * IN assertion: the fields freq and dad are set, heap[heap_max] and
486 1.1 christos * above are the tree nodes sorted by increasing frequency.
487 1.1 christos * OUT assertions: the field len is set to the optimal bit length, the
488 1.1 christos * array bl_count contains the frequencies for each bit length.
489 1.1 christos * The length opt_len is updated; static_len is also updated if stree is
490 1.1 christos * not null.
491 1.1 christos */
492 1.1 christos local void gen_bitlen(s, desc)
493 1.1 christos deflate_state *s;
494 1.1 christos tree_desc *desc; /* the tree descriptor */
495 1.1 christos {
496 1.1 christos ct_data *tree = desc->dyn_tree;
497 1.1 christos int max_code = desc->max_code;
498 1.1 christos const ct_data *stree = desc->stat_desc->static_tree;
499 1.1 christos const intf *extra = desc->stat_desc->extra_bits;
500 1.1 christos int base = desc->stat_desc->extra_base;
501 1.1 christos int max_length = desc->stat_desc->max_length;
502 1.1 christos int h; /* heap index */
503 1.1 christos int n, m; /* iterate over the tree elements */
504 1.1 christos int bits; /* bit length */
505 1.1 christos int xbits; /* extra bits */
506 1.1 christos ush f; /* frequency */
507 1.1 christos int overflow = 0; /* number of elements with bit length too large */
508 1.1 christos
509 1.1 christos for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
510 1.1 christos
511 1.1 christos /* In a first pass, compute the optimal bit lengths (which may
512 1.1 christos * overflow in the case of the bit length tree).
513 1.1 christos */
514 1.1 christos tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
515 1.1 christos
516 1.1 christos for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
517 1.1 christos n = s->heap[h];
518 1.1 christos bits = tree[tree[n].Dad].Len + 1;
519 1.1 christos if (bits > max_length) bits = max_length, overflow++;
520 1.1 christos tree[n].Len = (ush)bits;
521 1.1 christos /* We overwrite tree[n].Dad which is no longer needed */
522 1.1 christos
523 1.1 christos if (n > max_code) continue; /* not a leaf node */
524 1.1 christos
525 1.1 christos s->bl_count[bits]++;
526 1.1 christos xbits = 0;
527 1.1 christos if (n >= base) xbits = extra[n-base];
528 1.1 christos f = tree[n].Freq;
529 1.1 christos s->opt_len += (ulg)f * (bits + xbits);
530 1.1 christos if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
531 1.1 christos }
532 1.1 christos if (overflow == 0) return;
533 1.1 christos
534 1.1 christos Trace((stderr,"\nbit length overflow\n"));
535 1.1 christos /* This happens for example on obj2 and pic of the Calgary corpus */
536 1.1 christos
537 1.1 christos /* Find the first bit length which could increase: */
538 1.1 christos do {
539 1.1 christos bits = max_length-1;
540 1.1 christos while (s->bl_count[bits] == 0) bits--;
541 1.1 christos s->bl_count[bits]--; /* move one leaf down the tree */
542 1.1 christos s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
543 1.1 christos s->bl_count[max_length]--;
544 1.1 christos /* The brother of the overflow item also moves one step up,
545 1.1 christos * but this does not affect bl_count[max_length]
546 1.1 christos */
547 1.1 christos overflow -= 2;
548 1.1 christos } while (overflow > 0);
549 1.1 christos
550 1.1 christos /* Now recompute all bit lengths, scanning in increasing frequency.
551 1.1 christos * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
552 1.1 christos * lengths instead of fixing only the wrong ones. This idea is taken
553 1.1 christos * from 'ar' written by Haruhiko Okumura.)
554 1.1 christos */
555 1.1 christos for (bits = max_length; bits != 0; bits--) {
556 1.1 christos n = s->bl_count[bits];
557 1.1 christos while (n != 0) {
558 1.1 christos m = s->heap[--h];
559 1.1 christos if (m > max_code) continue;
560 1.1 christos if ((unsigned) tree[m].Len != (unsigned) bits) {
561 1.1 christos Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
562 1.1 christos s->opt_len += ((long)bits - (long)tree[m].Len)
563 1.1 christos *(long)tree[m].Freq;
564 1.1 christos tree[m].Len = (ush)bits;
565 1.1 christos }
566 1.1 christos n--;
567 1.1 christos }
568 1.1 christos }
569 1.1 christos }
570 1.1 christos
571 1.1 christos /* ===========================================================================
572 1.1 christos * Generate the codes for a given tree and bit counts (which need not be
573 1.1 christos * optimal).
574 1.1 christos * IN assertion: the array bl_count contains the bit length statistics for
575 1.1 christos * the given tree and the field len is set for all tree elements.
576 1.1 christos * OUT assertion: the field code is set for all tree elements of non
577 1.1 christos * zero code length.
578 1.1 christos */
579 1.1 christos local void gen_codes (tree, max_code, bl_count)
580 1.1 christos ct_data *tree; /* the tree to decorate */
581 1.1 christos int max_code; /* largest code with non zero frequency */
582 1.1 christos ushf *bl_count; /* number of codes at each bit length */
583 1.1 christos {
584 1.1 christos ush next_code[MAX_BITS+1]; /* next code value for each bit length */
585 1.1 christos ush code = 0; /* running code value */
586 1.1 christos int bits; /* bit index */
587 1.1 christos int n; /* code index */
588 1.1 christos
589 1.1 christos /* The distribution counts are first used to generate the code values
590 1.1 christos * without bit reversal.
591 1.1 christos */
592 1.1 christos for (bits = 1; bits <= MAX_BITS; bits++) {
593 1.1 christos next_code[bits] = code = (code + bl_count[bits-1]) << 1;
594 1.1 christos }
595 1.1 christos /* Check that the bit counts in bl_count are consistent. The last code
596 1.1 christos * must be all ones.
597 1.1 christos */
598 1.1 christos Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
599 1.1 christos "inconsistent bit counts");
600 1.1 christos Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
601 1.1 christos
602 1.1 christos for (n = 0; n <= max_code; n++) {
603 1.1 christos int len = tree[n].Len;
604 1.1 christos if (len == 0) continue;
605 1.1 christos /* Now reverse the bits */
606 1.1 christos tree[n].Code = bi_reverse(next_code[len]++, len);
607 1.1 christos
608 1.1 christos Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
609 1.1 christos n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
610 1.1 christos }
611 1.1 christos }
612 1.1 christos
613 1.1 christos /* ===========================================================================
614 1.1 christos * Construct one Huffman tree and assigns the code bit strings and lengths.
615 1.1 christos * Update the total bit length for the current block.
616 1.1 christos * IN assertion: the field freq is set for all tree elements.
617 1.1 christos * OUT assertions: the fields len and code are set to the optimal bit length
618 1.1 christos * and corresponding code. The length opt_len is updated; static_len is
619 1.1 christos * also updated if stree is not null. The field max_code is set.
620 1.1 christos */
621 1.1 christos local void build_tree(s, desc)
622 1.1 christos deflate_state *s;
623 1.1 christos tree_desc *desc; /* the tree descriptor */
624 1.1 christos {
625 1.1 christos ct_data *tree = desc->dyn_tree;
626 1.1 christos const ct_data *stree = desc->stat_desc->static_tree;
627 1.1 christos int elems = desc->stat_desc->elems;
628 1.1 christos int n, m; /* iterate over heap elements */
629 1.1 christos int max_code = -1; /* largest code with non zero frequency */
630 1.1 christos int node; /* new node being created */
631 1.1 christos
632 1.1 christos /* Construct the initial heap, with least frequent element in
633 1.1 christos * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
634 1.1 christos * heap[0] is not used.
635 1.1 christos */
636 1.1 christos s->heap_len = 0, s->heap_max = HEAP_SIZE;
637 1.1 christos
638 1.1 christos for (n = 0; n < elems; n++) {
639 1.1 christos if (tree[n].Freq != 0) {
640 1.1 christos s->heap[++(s->heap_len)] = max_code = n;
641 1.1 christos s->depth[n] = 0;
642 1.1 christos } else {
643 1.1 christos tree[n].Len = 0;
644 1.1 christos }
645 1.1 christos }
646 1.1 christos
647 1.1 christos /* The pkzip format requires that at least one distance code exists,
648 1.1 christos * and that at least one bit should be sent even if there is only one
649 1.1 christos * possible code. So to avoid special checks later on we force at least
650 1.1 christos * two codes of non zero frequency.
651 1.1 christos */
652 1.1 christos while (s->heap_len < 2) {
653 1.1 christos node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
654 1.1 christos tree[node].Freq = 1;
655 1.1 christos s->depth[node] = 0;
656 1.1 christos s->opt_len--; if (stree) s->static_len -= stree[node].Len;
657 1.1 christos /* node is 0 or 1 so it does not have extra bits */
658 1.1 christos }
659 1.1 christos desc->max_code = max_code;
660 1.1 christos
661 1.1 christos /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
662 1.1 christos * establish sub-heaps of increasing lengths:
663 1.1 christos */
664 1.1 christos for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
665 1.1 christos
666 1.1 christos /* Construct the Huffman tree by repeatedly combining the least two
667 1.1 christos * frequent nodes.
668 1.1 christos */
669 1.1 christos node = elems; /* next internal node of the tree */
670 1.1 christos do {
671 1.1 christos pqremove(s, tree, n); /* n = node of least frequency */
672 1.1 christos m = s->heap[SMALLEST]; /* m = node of next least frequency */
673 1.1 christos
674 1.1 christos s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
675 1.1 christos s->heap[--(s->heap_max)] = m;
676 1.1 christos
677 1.1 christos /* Create a new node father of n and m */
678 1.1 christos tree[node].Freq = tree[n].Freq + tree[m].Freq;
679 1.1 christos s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
680 1.1 christos s->depth[n] : s->depth[m]) + 1);
681 1.1 christos tree[n].Dad = tree[m].Dad = (ush)node;
682 1.1 christos #ifdef DUMP_BL_TREE
683 1.1 christos if (tree == s->bl_tree) {
684 1.1 christos fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
685 1.1 christos node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
686 1.1 christos }
687 1.1 christos #endif
688 1.1 christos /* and insert the new node in the heap */
689 1.1 christos s->heap[SMALLEST] = node++;
690 1.1 christos pqdownheap(s, tree, SMALLEST);
691 1.1 christos
692 1.1 christos } while (s->heap_len >= 2);
693 1.1 christos
694 1.1 christos s->heap[--(s->heap_max)] = s->heap[SMALLEST];
695 1.1 christos
696 1.1 christos /* At this point, the fields freq and dad are set. We can now
697 1.1 christos * generate the bit lengths.
698 1.1 christos */
699 1.1 christos gen_bitlen(s, (tree_desc *)desc);
700 1.1 christos
701 1.1 christos /* The field len is now set, we can generate the bit codes */
702 1.1 christos gen_codes ((ct_data *)tree, max_code, s->bl_count);
703 1.1 christos }
704 1.1 christos
705 1.1 christos /* ===========================================================================
706 1.1 christos * Scan a literal or distance tree to determine the frequencies of the codes
707 1.1 christos * in the bit length tree.
708 1.1 christos */
709 1.1 christos local void scan_tree (s, tree, max_code)
710 1.1 christos deflate_state *s;
711 1.1 christos ct_data *tree; /* the tree to be scanned */
712 1.1 christos int max_code; /* and its largest code of non zero frequency */
713 1.1 christos {
714 1.1 christos int n; /* iterates over all tree elements */
715 1.1 christos int prevlen = -1; /* last emitted length */
716 1.1 christos int curlen; /* length of current code */
717 1.1 christos int nextlen = tree[0].Len; /* length of next code */
718 1.1 christos int count = 0; /* repeat count of the current code */
719 1.1 christos int max_count = 7; /* max repeat count */
720 1.1 christos int min_count = 4; /* min repeat count */
721 1.1 christos
722 1.1 christos if (nextlen == 0) max_count = 138, min_count = 3;
723 1.1 christos tree[max_code+1].Len = (ush)0xffff; /* guard */
724 1.1 christos
725 1.1 christos for (n = 0; n <= max_code; n++) {
726 1.1 christos curlen = nextlen; nextlen = tree[n+1].Len;
727 1.1 christos if (++count < max_count && curlen == nextlen) {
728 1.1 christos continue;
729 1.1 christos } else if (count < min_count) {
730 1.1 christos s->bl_tree[curlen].Freq += count;
731 1.1 christos } else if (curlen != 0) {
732 1.1 christos if (curlen != prevlen) s->bl_tree[curlen].Freq++;
733 1.1 christos s->bl_tree[REP_3_6].Freq++;
734 1.1 christos } else if (count <= 10) {
735 1.1 christos s->bl_tree[REPZ_3_10].Freq++;
736 1.1 christos } else {
737 1.1 christos s->bl_tree[REPZ_11_138].Freq++;
738 1.1 christos }
739 1.1 christos count = 0; prevlen = curlen;
740 1.1 christos if (nextlen == 0) {
741 1.1 christos max_count = 138, min_count = 3;
742 1.1 christos } else if (curlen == nextlen) {
743 1.1 christos max_count = 6, min_count = 3;
744 1.1 christos } else {
745 1.1 christos max_count = 7, min_count = 4;
746 1.1 christos }
747 1.1 christos }
748 1.1 christos }
749 1.1 christos
750 1.1 christos /* ===========================================================================
751 1.1 christos * Send a literal or distance tree in compressed form, using the codes in
752 1.1 christos * bl_tree.
753 1.1 christos */
754 1.1 christos local void send_tree (s, tree, max_code)
755 1.1 christos deflate_state *s;
756 1.1 christos ct_data *tree; /* the tree to be scanned */
757 1.1 christos int max_code; /* and its largest code of non zero frequency */
758 1.1 christos {
759 1.1 christos int n; /* iterates over all tree elements */
760 1.1 christos int prevlen = -1; /* last emitted length */
761 1.1 christos int curlen; /* length of current code */
762 1.1 christos int nextlen = tree[0].Len; /* length of next code */
763 1.1 christos int count = 0; /* repeat count of the current code */
764 1.1 christos int max_count = 7; /* max repeat count */
765 1.1 christos int min_count = 4; /* min repeat count */
766 1.1 christos
767 1.1 christos /* tree[max_code+1].Len = -1; */ /* guard already set */
768 1.1 christos if (nextlen == 0) max_count = 138, min_count = 3;
769 1.1 christos
770 1.1 christos for (n = 0; n <= max_code; n++) {
771 1.1 christos curlen = nextlen; nextlen = tree[n+1].Len;
772 1.1 christos if (++count < max_count && curlen == nextlen) {
773 1.1 christos continue;
774 1.1 christos } else if (count < min_count) {
775 1.1 christos do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
776 1.1 christos
777 1.1 christos } else if (curlen != 0) {
778 1.1 christos if (curlen != prevlen) {
779 1.1 christos send_code(s, curlen, s->bl_tree); count--;
780 1.1 christos }
781 1.1 christos Assert(count >= 3 && count <= 6, " 3_6?");
782 1.1 christos send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
783 1.1 christos
784 1.1 christos } else if (count <= 10) {
785 1.1 christos send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
786 1.1 christos
787 1.1 christos } else {
788 1.1 christos send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
789 1.1 christos }
790 1.1 christos count = 0; prevlen = curlen;
791 1.1 christos if (nextlen == 0) {
792 1.1 christos max_count = 138, min_count = 3;
793 1.1 christos } else if (curlen == nextlen) {
794 1.1 christos max_count = 6, min_count = 3;
795 1.1 christos } else {
796 1.1 christos max_count = 7, min_count = 4;
797 1.1 christos }
798 1.1 christos }
799 1.1 christos }
800 1.1 christos
801 1.1 christos /* ===========================================================================
802 1.1 christos * Construct the Huffman tree for the bit lengths and return the index in
803 1.1 christos * bl_order of the last bit length code to send.
804 1.1 christos */
805 1.1 christos local int build_bl_tree(s)
806 1.1 christos deflate_state *s;
807 1.1 christos {
808 1.1 christos int max_blindex; /* index of last bit length code of non zero freq */
809 1.1 christos
810 1.1 christos /* Determine the bit length frequencies for literal and distance trees */
811 1.1 christos scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
812 1.1 christos scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
813 1.1 christos
814 1.1 christos /* Build the bit length tree: */
815 1.1 christos build_tree(s, (tree_desc *)(&(s->bl_desc)));
816 1.1 christos /* opt_len now includes the length of the tree representations, except
817 1.1 christos * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
818 1.1 christos */
819 1.1 christos
820 1.1 christos /* Determine the number of bit length codes to send. The pkzip format
821 1.1 christos * requires that at least 4 bit length codes be sent. (appnote.txt says
822 1.1 christos * 3 but the actual value used is 4.)
823 1.1 christos */
824 1.1 christos for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
825 1.1 christos if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
826 1.1 christos }
827 1.1 christos /* Update opt_len to include the bit length tree and counts */
828 1.1 christos s->opt_len += 3*(max_blindex+1) + 5+5+4;
829 1.1 christos Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
830 1.1 christos s->opt_len, s->static_len));
831 1.1 christos
832 1.1 christos return max_blindex;
833 1.1 christos }
834 1.1 christos
835 1.1 christos /* ===========================================================================
836 1.1 christos * Send the header for a block using dynamic Huffman trees: the counts, the
837 1.1 christos * lengths of the bit length codes, the literal tree and the distance tree.
838 1.1 christos * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
839 1.1 christos */
840 1.1 christos local void send_all_trees(s, lcodes, dcodes, blcodes)
841 1.1 christos deflate_state *s;
842 1.1 christos int lcodes, dcodes, blcodes; /* number of codes for each tree */
843 1.1 christos {
844 1.1 christos int rank; /* index in bl_order */
845 1.1 christos
846 1.1 christos Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
847 1.1 christos Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
848 1.1 christos "too many codes");
849 1.1 christos Tracev((stderr, "\nbl counts: "));
850 1.1 christos send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
851 1.1 christos send_bits(s, dcodes-1, 5);
852 1.1 christos send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
853 1.1 christos for (rank = 0; rank < blcodes; rank++) {
854 1.1 christos Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
855 1.1 christos send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
856 1.1 christos }
857 1.1 christos Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
858 1.1 christos
859 1.1 christos send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
860 1.1 christos Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
861 1.1 christos
862 1.1 christos send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
863 1.1 christos Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
864 1.1 christos }
865 1.1 christos
866 1.1 christos /* ===========================================================================
867 1.1 christos * Send a stored block
868 1.1 christos */
869 1.1 christos void _tr_stored_block(s, buf, stored_len, eof)
870 1.1 christos deflate_state *s;
871 1.1 christos charf *buf; /* input block */
872 1.1 christos ulg stored_len; /* length of input block */
873 1.1 christos int eof; /* true if this is the last block for a file */
874 1.1 christos {
875 1.1 christos send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
876 1.2 christos #ifdef ZLIB_DEBUG
877 1.1 christos s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
878 1.1 christos s->compressed_len += (stored_len + 4) << 3;
879 1.1 christos #endif
880 1.1 christos copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
881 1.1 christos }
882 1.1 christos
883 1.1 christos /* ===========================================================================
884 1.1 christos * Send one empty static block to give enough lookahead for inflate.
885 1.1 christos * This takes 10 bits, of which 7 may remain in the bit buffer.
886 1.1 christos * The current inflate code requires 9 bits of lookahead. If the
887 1.1 christos * last two codes for the previous block (real code plus EOB) were coded
888 1.1 christos * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
889 1.1 christos * the last real code. In this case we send two empty static blocks instead
890 1.1 christos * of one. (There are no problems if the previous block is stored or fixed.)
891 1.1 christos * To simplify the code, we assume the worst case of last real code encoded
892 1.1 christos * on one bit only.
893 1.1 christos */
894 1.1 christos void _tr_align(s)
895 1.1 christos deflate_state *s;
896 1.1 christos {
897 1.1 christos send_bits(s, STATIC_TREES<<1, 3);
898 1.1 christos send_code(s, END_BLOCK, static_ltree);
899 1.2 christos #ifdef ZLIB_DEBUG
900 1.1 christos s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
901 1.1 christos #endif
902 1.1 christos bi_flush(s);
903 1.1 christos /* Of the 10 bits for the empty block, we have already sent
904 1.1 christos * (10 - bi_valid) bits. The lookahead for the last real code (before
905 1.1 christos * the EOB of the previous block) was thus at least one plus the length
906 1.1 christos * of the EOB plus what we have just sent of the empty static block.
907 1.1 christos */
908 1.1 christos if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
909 1.1 christos send_bits(s, STATIC_TREES<<1, 3);
910 1.1 christos send_code(s, END_BLOCK, static_ltree);
911 1.2 christos #ifdef ZLIB_DEBUG
912 1.1 christos s->compressed_len += 10L;
913 1.1 christos #endif
914 1.1 christos bi_flush(s);
915 1.1 christos }
916 1.1 christos s->last_eob_len = 7;
917 1.1 christos }
918 1.1 christos
919 1.1 christos /* ===========================================================================
920 1.1 christos * Determine the best encoding for the current block: dynamic trees, static
921 1.1 christos * trees or store, and output the encoded block to the zip file.
922 1.1 christos */
923 1.1 christos void _tr_flush_block(s, buf, stored_len, eof)
924 1.1 christos deflate_state *s;
925 1.1 christos charf *buf; /* input block, or NULL if too old */
926 1.1 christos ulg stored_len; /* length of input block */
927 1.1 christos int eof; /* true if this is the last block for a file */
928 1.1 christos {
929 1.1 christos ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
930 1.1 christos int max_blindex = 0; /* index of last bit length code of non zero freq */
931 1.1 christos
932 1.1 christos /* Build the Huffman trees unless a stored block is forced */
933 1.1 christos if (s->level > 0) {
934 1.1 christos
935 1.1 christos /* Check if the file is binary or text */
936 1.1 christos if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
937 1.1 christos set_data_type(s);
938 1.1 christos
939 1.1 christos /* Construct the literal and distance trees */
940 1.1 christos build_tree(s, (tree_desc *)(&(s->l_desc)));
941 1.1 christos Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
942 1.1 christos s->static_len));
943 1.1 christos
944 1.1 christos build_tree(s, (tree_desc *)(&(s->d_desc)));
945 1.1 christos Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
946 1.1 christos s->static_len));
947 1.1 christos /* At this point, opt_len and static_len are the total bit lengths of
948 1.1 christos * the compressed block data, excluding the tree representations.
949 1.1 christos */
950 1.1 christos
951 1.1 christos /* Build the bit length tree for the above two trees, and get the index
952 1.1 christos * in bl_order of the last bit length code to send.
953 1.1 christos */
954 1.1 christos max_blindex = build_bl_tree(s);
955 1.1 christos
956 1.1 christos /* Determine the best encoding. Compute the block lengths in bytes. */
957 1.1 christos opt_lenb = (s->opt_len+3+7)>>3;
958 1.1 christos static_lenb = (s->static_len+3+7)>>3;
959 1.1 christos
960 1.1 christos Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
961 1.1 christos opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
962 1.1 christos s->last_lit));
963 1.1 christos
964 1.1 christos if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
965 1.1 christos
966 1.1 christos } else {
967 1.1 christos Assert(buf != (char*)0, "lost buf");
968 1.1 christos opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
969 1.1 christos }
970 1.1 christos
971 1.1 christos #ifdef FORCE_STORED
972 1.1 christos if (buf != (char*)0) { /* force stored block */
973 1.1 christos #else
974 1.1 christos if (stored_len+4 <= opt_lenb && buf != (char*)0) {
975 1.1 christos /* 4: two words for the lengths */
976 1.1 christos #endif
977 1.1 christos /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
978 1.1 christos * Otherwise we can't have processed more than WSIZE input bytes since
979 1.1 christos * the last block flush, because compression would have been
980 1.1 christos * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
981 1.1 christos * transform a block into a stored block.
982 1.1 christos */
983 1.1 christos _tr_stored_block(s, buf, stored_len, eof);
984 1.1 christos
985 1.1 christos #ifdef FORCE_STATIC
986 1.1 christos } else if (static_lenb >= 0) { /* force static trees */
987 1.1 christos #else
988 1.1 christos } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
989 1.1 christos #endif
990 1.1 christos send_bits(s, (STATIC_TREES<<1)+eof, 3);
991 1.1 christos compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
992 1.2 christos #ifdef ZLIB_DEBUG
993 1.1 christos s->compressed_len += 3 + s->static_len;
994 1.1 christos #endif
995 1.1 christos } else {
996 1.1 christos send_bits(s, (DYN_TREES<<1)+eof, 3);
997 1.1 christos send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
998 1.1 christos max_blindex+1);
999 1.1 christos compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1000 1.2 christos #ifdef ZLIB_DEBUG
1001 1.1 christos s->compressed_len += 3 + s->opt_len;
1002 1.1 christos #endif
1003 1.1 christos }
1004 1.1 christos Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1005 1.1 christos /* The above check is made mod 2^32, for files larger than 512 MB
1006 1.1 christos * and uLong implemented on 32 bits.
1007 1.1 christos */
1008 1.1 christos init_block(s);
1009 1.1 christos
1010 1.1 christos if (eof) {
1011 1.1 christos bi_windup(s);
1012 1.2 christos #ifdef ZLIB_DEBUG
1013 1.1 christos s->compressed_len += 7; /* align on byte boundary */
1014 1.1 christos #endif
1015 1.1 christos }
1016 1.1 christos Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1017 1.1 christos s->compressed_len-7*eof));
1018 1.1 christos }
1019 1.1 christos
1020 1.1 christos /* ===========================================================================
1021 1.1 christos * Save the match info and tally the frequency counts. Return true if
1022 1.1 christos * the current block must be flushed.
1023 1.1 christos */
1024 1.1 christos int _tr_tally (s, dist, lc)
1025 1.1 christos deflate_state *s;
1026 1.1 christos unsigned dist; /* distance of matched string */
1027 1.1 christos unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1028 1.1 christos {
1029 1.1 christos s->d_buf[s->last_lit] = (ush)dist;
1030 1.1 christos s->l_buf[s->last_lit++] = (uch)lc;
1031 1.1 christos if (dist == 0) {
1032 1.1 christos /* lc is the unmatched char */
1033 1.1 christos s->dyn_ltree[lc].Freq++;
1034 1.1 christos } else {
1035 1.1 christos s->matches++;
1036 1.1 christos /* Here, lc is the match length - MIN_MATCH */
1037 1.1 christos dist--; /* dist = match distance - 1 */
1038 1.1 christos Assert((ush)dist < (ush)MAX_DIST(s) &&
1039 1.1 christos (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1040 1.1 christos (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1041 1.1 christos
1042 1.1 christos s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1043 1.1 christos s->dyn_dtree[d_code(dist)].Freq++;
1044 1.1 christos }
1045 1.1 christos
1046 1.1 christos #ifdef TRUNCATE_BLOCK
1047 1.1 christos /* Try to guess if it is profitable to stop the current block here */
1048 1.1 christos if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1049 1.1 christos /* Compute an upper bound for the compressed length */
1050 1.1 christos ulg out_length = (ulg)s->last_lit*8L;
1051 1.1 christos ulg in_length = (ulg)((long)s->strstart - s->block_start);
1052 1.1 christos int dcode;
1053 1.1 christos for (dcode = 0; dcode < D_CODES; dcode++) {
1054 1.1 christos out_length += (ulg)s->dyn_dtree[dcode].Freq *
1055 1.1 christos (5L+extra_dbits[dcode]);
1056 1.1 christos }
1057 1.1 christos out_length >>= 3;
1058 1.1 christos Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1059 1.1 christos s->last_lit, in_length, out_length,
1060 1.1 christos 100L - out_length*100L/in_length));
1061 1.1 christos if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1062 1.1 christos }
1063 1.1 christos #endif
1064 1.1 christos return (s->last_lit == s->lit_bufsize-1);
1065 1.1 christos /* We avoid equality with lit_bufsize because of wraparound at 64K
1066 1.1 christos * on 16 bit machines and because stored blocks are restricted to
1067 1.1 christos * 64K-1 bytes.
1068 1.1 christos */
1069 1.1 christos }
1070 1.1 christos
1071 1.1 christos /* ===========================================================================
1072 1.1 christos * Send the block data compressed using the given Huffman trees
1073 1.1 christos */
1074 1.1 christos local void compress_block(s, ltree, dtree)
1075 1.1 christos deflate_state *s;
1076 1.1 christos ct_data *ltree; /* literal tree */
1077 1.1 christos ct_data *dtree; /* distance tree */
1078 1.1 christos {
1079 1.1 christos unsigned dist; /* distance of matched string */
1080 1.1 christos int lc; /* match length or unmatched char (if dist == 0) */
1081 1.1 christos unsigned lx = 0; /* running index in l_buf */
1082 1.1 christos unsigned code; /* the code to send */
1083 1.1 christos int extra; /* number of extra bits to send */
1084 1.1 christos
1085 1.1 christos if (s->last_lit != 0) do {
1086 1.1 christos dist = s->d_buf[lx];
1087 1.1 christos lc = s->l_buf[lx++];
1088 1.1 christos if (dist == 0) {
1089 1.1 christos send_code(s, lc, ltree); /* send a literal byte */
1090 1.1 christos Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1091 1.1 christos } else {
1092 1.1 christos /* Here, lc is the match length - MIN_MATCH */
1093 1.1 christos code = _length_code[lc];
1094 1.1 christos send_code(s, code+LITERALS+1, ltree); /* send the length code */
1095 1.1 christos extra = extra_lbits[code];
1096 1.1 christos if (extra != 0) {
1097 1.1 christos lc -= base_length[code];
1098 1.1 christos send_bits(s, lc, extra); /* send the extra length bits */
1099 1.1 christos }
1100 1.1 christos dist--; /* dist is now the match distance - 1 */
1101 1.1 christos code = d_code(dist);
1102 1.1 christos Assert (code < D_CODES, "bad d_code");
1103 1.1 christos
1104 1.1 christos send_code(s, code, dtree); /* send the distance code */
1105 1.1 christos extra = extra_dbits[code];
1106 1.1 christos if (extra != 0) {
1107 1.1 christos dist -= base_dist[code];
1108 1.1 christos send_bits(s, dist, extra); /* send the extra distance bits */
1109 1.1 christos }
1110 1.1 christos } /* literal or match pair ? */
1111 1.1 christos
1112 1.1 christos /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1113 1.1 christos Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1114 1.1 christos "pendingBuf overflow");
1115 1.1 christos
1116 1.1 christos } while (lx < s->last_lit);
1117 1.1 christos
1118 1.1 christos send_code(s, END_BLOCK, ltree);
1119 1.1 christos s->last_eob_len = ltree[END_BLOCK].Len;
1120 1.1 christos }
1121 1.1 christos
1122 1.1 christos /* ===========================================================================
1123 1.1 christos * Set the data type to BINARY or TEXT, using a crude approximation:
1124 1.1 christos * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1125 1.1 christos * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1126 1.1 christos * IN assertion: the fields Freq of dyn_ltree are set.
1127 1.1 christos */
1128 1.1 christos local void set_data_type(s)
1129 1.1 christos deflate_state *s;
1130 1.1 christos {
1131 1.1 christos int n;
1132 1.1 christos
1133 1.1 christos for (n = 0; n < 9; n++)
1134 1.1 christos if (s->dyn_ltree[n].Freq != 0)
1135 1.1 christos break;
1136 1.1 christos if (n == 9)
1137 1.1 christos for (n = 14; n < 32; n++)
1138 1.1 christos if (s->dyn_ltree[n].Freq != 0)
1139 1.1 christos break;
1140 1.1 christos s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1141 1.1 christos }
1142 1.1 christos
1143 1.1 christos /* ===========================================================================
1144 1.1 christos * Reverse the first len bits of a code, using straightforward code (a faster
1145 1.1 christos * method would use a table)
1146 1.1 christos * IN assertion: 1 <= len <= 15
1147 1.1 christos */
1148 1.1 christos local unsigned bi_reverse(code, len)
1149 1.1 christos unsigned code; /* the value to invert */
1150 1.1 christos int len; /* its bit length */
1151 1.1 christos {
1152 1.1 christos register unsigned res = 0;
1153 1.1 christos do {
1154 1.1 christos res |= code & 1;
1155 1.1 christos code >>= 1, res <<= 1;
1156 1.1 christos } while (--len > 0);
1157 1.1 christos return res >> 1;
1158 1.1 christos }
1159 1.1 christos
1160 1.1 christos /* ===========================================================================
1161 1.1 christos * Flush the bit buffer, keeping at most 7 bits in it.
1162 1.1 christos */
1163 1.1 christos local void bi_flush(s)
1164 1.1 christos deflate_state *s;
1165 1.1 christos {
1166 1.1 christos if (s->bi_valid == 16) {
1167 1.1 christos put_short(s, s->bi_buf);
1168 1.1 christos s->bi_buf = 0;
1169 1.1 christos s->bi_valid = 0;
1170 1.1 christos } else if (s->bi_valid >= 8) {
1171 1.1 christos put_byte(s, (Byte)s->bi_buf);
1172 1.1 christos s->bi_buf >>= 8;
1173 1.1 christos s->bi_valid -= 8;
1174 1.1 christos }
1175 1.1 christos }
1176 1.1 christos
1177 1.1 christos /* ===========================================================================
1178 1.1 christos * Flush the bit buffer and align the output on a byte boundary
1179 1.1 christos */
1180 1.1 christos local void bi_windup(s)
1181 1.1 christos deflate_state *s;
1182 1.1 christos {
1183 1.1 christos if (s->bi_valid > 8) {
1184 1.1 christos put_short(s, s->bi_buf);
1185 1.1 christos } else if (s->bi_valid > 0) {
1186 1.1 christos put_byte(s, (Byte)s->bi_buf);
1187 1.1 christos }
1188 1.1 christos s->bi_buf = 0;
1189 1.1 christos s->bi_valid = 0;
1190 1.2 christos #ifdef ZLIB_DEBUG
1191 1.1 christos s->bits_sent = (s->bits_sent+7) & ~7;
1192 1.1 christos #endif
1193 1.1 christos }
1194 1.1 christos
1195 1.1 christos /* ===========================================================================
1196 1.1 christos * Copy a stored block, storing first the length and its
1197 1.1 christos * one's complement if requested.
1198 1.1 christos */
1199 1.1 christos local void copy_block(s, buf, len, header)
1200 1.1 christos deflate_state *s;
1201 1.1 christos charf *buf; /* the input data */
1202 1.1 christos unsigned len; /* its length */
1203 1.1 christos int header; /* true if block header must be written */
1204 1.1 christos {
1205 1.1 christos bi_windup(s); /* align on byte boundary */
1206 1.1 christos s->last_eob_len = 8; /* enough lookahead for inflate */
1207 1.1 christos
1208 1.1 christos if (header) {
1209 1.1 christos put_short(s, (ush)len);
1210 1.1 christos put_short(s, (ush)~len);
1211 1.2 christos #ifdef ZLIB_DEBUG
1212 1.1 christos s->bits_sent += 2*16;
1213 1.1 christos #endif
1214 1.1 christos }
1215 1.2 christos #ifdef ZLIB_DEBUG
1216 1.1 christos s->bits_sent += (ulg)len<<3;
1217 1.1 christos #endif
1218 1.1 christos while (len--) {
1219 1.1 christos put_byte(s, *buf++);
1220 1.1 christos }
1221 1.1 christos }
1222