Home | History | Annotate | Line # | Download | only in zlib
trees.c revision 1.3.76.1
      1  1.3.76.1  pgoyette /*	$NetBSD: trees.c,v 1.3.76.1 2017/03/20 06:51:33 pgoyette Exp $	*/
      2       1.1  christos 
      3       1.1  christos /* trees.c -- output deflated data using Huffman coding
      4  1.3.76.1  pgoyette  * Copyright (C) 1995-2016 Jean-loup Gailly
      5  1.3.76.1  pgoyette  * detect_data_type() function provided freely by Cosmin Truta, 2006
      6       1.1  christos  * For conditions of distribution and use, see copyright notice in zlib.h
      7       1.1  christos  */
      8       1.1  christos 
      9       1.1  christos /*
     10       1.1  christos  *  ALGORITHM
     11       1.1  christos  *
     12       1.1  christos  *      The "deflation" process uses several Huffman trees. The more
     13       1.1  christos  *      common source values are represented by shorter bit sequences.
     14       1.1  christos  *
     15       1.1  christos  *      Each code tree is stored in a compressed form which is itself
     16       1.1  christos  * a Huffman encoding of the lengths of all the code strings (in
     17       1.1  christos  * ascending order by source values).  The actual code strings are
     18       1.1  christos  * reconstructed from the lengths in the inflate process, as described
     19       1.1  christos  * in the deflate specification.
     20       1.1  christos  *
     21       1.1  christos  *  REFERENCES
     22       1.1  christos  *
     23       1.1  christos  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
     24       1.1  christos  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
     25       1.1  christos  *
     26       1.1  christos  *      Storer, James A.
     27       1.1  christos  *          Data Compression:  Methods and Theory, pp. 49-50.
     28       1.1  christos  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
     29       1.1  christos  *
     30       1.1  christos  *      Sedgewick, R.
     31       1.1  christos  *          Algorithms, p290.
     32       1.1  christos  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
     33       1.1  christos  */
     34       1.1  christos 
     35  1.3.76.1  pgoyette /* @(#) $Id: trees.c,v 1.3.76.1 2017/03/20 06:51:33 pgoyette Exp $ */
     36       1.1  christos 
     37       1.1  christos /* #define GEN_TREES_H */
     38       1.1  christos 
     39       1.1  christos #include "deflate.h"
     40       1.1  christos 
     41       1.2  christos #ifdef ZLIB_DEBUG
     42       1.1  christos #  include <ctype.h>
     43       1.1  christos #endif
     44       1.1  christos 
     45       1.1  christos /* ===========================================================================
     46       1.1  christos  * Constants
     47       1.1  christos  */
     48       1.1  christos 
     49       1.1  christos #define MAX_BL_BITS 7
     50       1.1  christos /* Bit length codes must not exceed MAX_BL_BITS bits */
     51       1.1  christos 
     52       1.1  christos #define END_BLOCK 256
     53       1.1  christos /* end of block literal code */
     54       1.1  christos 
     55       1.1  christos #define REP_3_6      16
     56       1.1  christos /* repeat previous bit length 3-6 times (2 bits of repeat count) */
     57       1.1  christos 
     58       1.1  christos #define REPZ_3_10    17
     59       1.1  christos /* repeat a zero length 3-10 times  (3 bits of repeat count) */
     60       1.1  christos 
     61       1.1  christos #define REPZ_11_138  18
     62       1.1  christos /* repeat a zero length 11-138 times  (7 bits of repeat count) */
     63       1.1  christos 
     64       1.1  christos local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
     65       1.1  christos    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
     66       1.1  christos 
     67       1.1  christos local const int extra_dbits[D_CODES] /* extra bits for each distance code */
     68       1.1  christos    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
     69       1.1  christos 
     70       1.1  christos local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
     71       1.1  christos    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
     72       1.1  christos 
     73       1.1  christos local const uch bl_order[BL_CODES]
     74       1.1  christos    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
     75       1.1  christos /* The lengths of the bit length codes are sent in order of decreasing
     76       1.1  christos  * probability, to avoid transmitting the lengths for unused bit length codes.
     77       1.1  christos  */
     78       1.1  christos 
     79       1.1  christos /* ===========================================================================
     80       1.1  christos  * Local data. These are initialized only once.
     81       1.1  christos  */
     82       1.1  christos 
     83       1.1  christos #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
     84       1.1  christos 
     85       1.1  christos #if defined(GEN_TREES_H) || !defined(STDC)
     86       1.1  christos /* non ANSI compilers may not accept trees.h */
     87       1.1  christos 
     88       1.1  christos local ct_data static_ltree[L_CODES+2];
     89       1.1  christos /* The static literal tree. Since the bit lengths are imposed, there is no
     90       1.1  christos  * need for the L_CODES extra codes used during heap construction. However
     91       1.1  christos  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
     92       1.1  christos  * below).
     93       1.1  christos  */
     94       1.1  christos 
     95       1.1  christos local ct_data static_dtree[D_CODES];
     96       1.1  christos /* The static distance tree. (Actually a trivial tree since all codes use
     97       1.1  christos  * 5 bits.)
     98       1.1  christos  */
     99       1.1  christos 
    100       1.1  christos uch _dist_code[DIST_CODE_LEN];
    101       1.1  christos /* Distance codes. The first 256 values correspond to the distances
    102       1.1  christos  * 3 .. 258, the last 256 values correspond to the top 8 bits of
    103       1.1  christos  * the 15 bit distances.
    104       1.1  christos  */
    105       1.1  christos 
    106       1.1  christos uch _length_code[MAX_MATCH-MIN_MATCH+1];
    107       1.1  christos /* length code for each normalized match length (0 == MIN_MATCH) */
    108       1.1  christos 
    109       1.1  christos local int base_length[LENGTH_CODES];
    110       1.1  christos /* First normalized length for each code (0 = MIN_MATCH) */
    111       1.1  christos 
    112       1.1  christos local int base_dist[D_CODES];
    113       1.1  christos /* First normalized distance for each code (0 = distance of 1) */
    114       1.1  christos 
    115       1.1  christos #else
    116       1.1  christos #  include "trees.h"
    117       1.1  christos #endif /* GEN_TREES_H */
    118       1.1  christos 
    119       1.1  christos struct static_tree_desc_s {
    120       1.1  christos     const ct_data *static_tree;  /* static tree or NULL */
    121       1.1  christos     const intf *extra_bits;      /* extra bits for each code or NULL */
    122       1.1  christos     int     extra_base;          /* base index for extra_bits */
    123       1.1  christos     int     elems;               /* max number of elements in the tree */
    124       1.1  christos     int     max_length;          /* max bit length for the codes */
    125       1.1  christos };
    126       1.1  christos 
    127  1.3.76.1  pgoyette local const static_tree_desc  static_l_desc =
    128       1.1  christos {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
    129       1.1  christos 
    130  1.3.76.1  pgoyette local const static_tree_desc  static_d_desc =
    131       1.1  christos {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
    132       1.1  christos 
    133  1.3.76.1  pgoyette local const static_tree_desc  static_bl_desc =
    134       1.1  christos {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
    135       1.1  christos 
    136       1.1  christos /* ===========================================================================
    137       1.1  christos  * Local (static) routines in this file.
    138       1.1  christos  */
    139       1.1  christos 
    140       1.1  christos local void tr_static_init OF((void));
    141       1.1  christos local void init_block     OF((deflate_state *s));
    142       1.1  christos local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
    143       1.1  christos local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
    144       1.1  christos local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
    145       1.1  christos local void build_tree     OF((deflate_state *s, tree_desc *desc));
    146       1.1  christos local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
    147       1.1  christos local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
    148       1.1  christos local int  build_bl_tree  OF((deflate_state *s));
    149       1.1  christos local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
    150       1.1  christos                               int blcodes));
    151  1.3.76.1  pgoyette local void compress_block OF((deflate_state *s, const ct_data *ltree,
    152  1.3.76.1  pgoyette                               const ct_data *dtree));
    153  1.3.76.1  pgoyette local int  detect_data_type OF((deflate_state *s));
    154       1.1  christos local unsigned bi_reverse OF((unsigned value, int length));
    155       1.1  christos local void bi_windup      OF((deflate_state *s));
    156       1.1  christos local void bi_flush       OF((deflate_state *s));
    157       1.1  christos 
    158       1.1  christos #ifdef GEN_TREES_H
    159       1.1  christos local void gen_trees_header OF((void));
    160       1.1  christos #endif
    161       1.1  christos 
    162       1.2  christos #ifndef ZLIB_DEBUG
    163       1.1  christos #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
    164       1.1  christos    /* Send a code of the given tree. c and tree must not have side effects */
    165       1.1  christos 
    166  1.3.76.1  pgoyette #else /* !ZLIB_DEBUG */
    167       1.1  christos #  define send_code(s, c, tree) \
    168       1.1  christos      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
    169       1.1  christos        send_bits(s, tree[c].Code, tree[c].Len); }
    170       1.1  christos #endif
    171       1.1  christos 
    172       1.1  christos /* ===========================================================================
    173       1.1  christos  * Output a short LSB first on the stream.
    174       1.1  christos  * IN assertion: there is enough room in pendingBuf.
    175       1.1  christos  */
    176       1.1  christos #define put_short(s, w) { \
    177       1.1  christos     put_byte(s, (uch)((w) & 0xff)); \
    178       1.1  christos     put_byte(s, (uch)((ush)(w) >> 8)); \
    179       1.1  christos }
    180       1.1  christos 
    181       1.1  christos /* ===========================================================================
    182       1.1  christos  * Send a value on a given number of bits.
    183       1.1  christos  * IN assertion: length <= 16 and value fits in length bits.
    184       1.1  christos  */
    185       1.2  christos #ifdef ZLIB_DEBUG
    186       1.1  christos local void send_bits      OF((deflate_state *s, int value, int length));
    187       1.1  christos 
    188       1.1  christos local void send_bits(s, value, length)
    189       1.1  christos     deflate_state *s;
    190       1.1  christos     int value;  /* value to send */
    191       1.1  christos     int length; /* number of bits */
    192       1.1  christos {
    193       1.1  christos     Tracevv((stderr," l %2d v %4x ", length, value));
    194       1.1  christos     Assert(length > 0 && length <= 15, "invalid length");
    195       1.1  christos     s->bits_sent += (ulg)length;
    196       1.1  christos 
    197       1.1  christos     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
    198       1.1  christos      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
    199       1.1  christos      * unused bits in value.
    200       1.1  christos      */
    201       1.1  christos     if (s->bi_valid > (int)Buf_size - length) {
    202  1.3.76.1  pgoyette         s->bi_buf |= (ush)value << s->bi_valid;
    203       1.1  christos         put_short(s, s->bi_buf);
    204       1.1  christos         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
    205       1.1  christos         s->bi_valid += length - Buf_size;
    206       1.1  christos     } else {
    207  1.3.76.1  pgoyette         s->bi_buf |= (ush)value << s->bi_valid;
    208       1.1  christos         s->bi_valid += length;
    209       1.1  christos     }
    210       1.1  christos }
    211       1.2  christos #else /* !ZLIB_DEBUG */
    212       1.1  christos 
    213       1.1  christos #define send_bits(s, value, length) \
    214       1.1  christos { int len = length;\
    215       1.1  christos   if (s->bi_valid > (int)Buf_size - len) {\
    216  1.3.76.1  pgoyette     int val = (int)value;\
    217  1.3.76.1  pgoyette     s->bi_buf |= (ush)val << s->bi_valid;\
    218       1.1  christos     put_short(s, s->bi_buf);\
    219       1.1  christos     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
    220       1.1  christos     s->bi_valid += len - Buf_size;\
    221       1.1  christos   } else {\
    222  1.3.76.1  pgoyette     s->bi_buf |= (ush)(value) << s->bi_valid;\
    223       1.1  christos     s->bi_valid += len;\
    224       1.1  christos   }\
    225       1.1  christos }
    226       1.2  christos #endif /* ZLIB_DEBUG */
    227       1.1  christos 
    228       1.1  christos 
    229       1.1  christos /* the arguments must not have side effects */
    230       1.1  christos 
    231       1.1  christos /* ===========================================================================
    232       1.1  christos  * Initialize the various 'constant' tables.
    233       1.1  christos  */
    234       1.1  christos local void tr_static_init()
    235       1.1  christos {
    236       1.1  christos #if defined(GEN_TREES_H) || !defined(STDC)
    237       1.1  christos     static int static_init_done = 0;
    238       1.1  christos     int n;        /* iterates over tree elements */
    239       1.1  christos     int bits;     /* bit counter */
    240       1.1  christos     int length;   /* length value */
    241       1.1  christos     int code;     /* code value */
    242       1.1  christos     int dist;     /* distance index */
    243       1.1  christos     ush bl_count[MAX_BITS+1];
    244       1.1  christos     /* number of codes at each bit length for an optimal tree */
    245       1.1  christos 
    246       1.1  christos     if (static_init_done) return;
    247       1.1  christos 
    248       1.1  christos     /* For some embedded targets, global variables are not initialized: */
    249  1.3.76.1  pgoyette #ifdef NO_INIT_GLOBAL_POINTERS
    250       1.1  christos     static_l_desc.static_tree = static_ltree;
    251       1.1  christos     static_l_desc.extra_bits = extra_lbits;
    252       1.1  christos     static_d_desc.static_tree = static_dtree;
    253       1.1  christos     static_d_desc.extra_bits = extra_dbits;
    254       1.1  christos     static_bl_desc.extra_bits = extra_blbits;
    255  1.3.76.1  pgoyette #endif
    256       1.1  christos 
    257       1.1  christos     /* Initialize the mapping length (0..255) -> length code (0..28) */
    258       1.1  christos     length = 0;
    259       1.1  christos     for (code = 0; code < LENGTH_CODES-1; code++) {
    260       1.1  christos         base_length[code] = length;
    261       1.1  christos         for (n = 0; n < (1<<extra_lbits[code]); n++) {
    262       1.1  christos             _length_code[length++] = (uch)code;
    263       1.1  christos         }
    264       1.1  christos     }
    265       1.1  christos     Assert (length == 256, "tr_static_init: length != 256");
    266       1.1  christos     /* Note that the length 255 (match length 258) can be represented
    267       1.1  christos      * in two different ways: code 284 + 5 bits or code 285, so we
    268       1.1  christos      * overwrite length_code[255] to use the best encoding:
    269       1.1  christos      */
    270       1.1  christos     _length_code[length-1] = (uch)code;
    271       1.1  christos 
    272       1.1  christos     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    273       1.1  christos     dist = 0;
    274       1.1  christos     for (code = 0 ; code < 16; code++) {
    275       1.1  christos         base_dist[code] = dist;
    276       1.1  christos         for (n = 0; n < (1<<extra_dbits[code]); n++) {
    277       1.1  christos             _dist_code[dist++] = (uch)code;
    278       1.1  christos         }
    279       1.1  christos     }
    280       1.1  christos     Assert (dist == 256, "tr_static_init: dist != 256");
    281       1.1  christos     dist >>= 7; /* from now on, all distances are divided by 128 */
    282       1.1  christos     for ( ; code < D_CODES; code++) {
    283       1.1  christos         base_dist[code] = dist << 7;
    284       1.1  christos         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
    285       1.1  christos             _dist_code[256 + dist++] = (uch)code;
    286       1.1  christos         }
    287       1.1  christos     }
    288       1.1  christos     Assert (dist == 256, "tr_static_init: 256+dist != 512");
    289       1.1  christos 
    290       1.1  christos     /* Construct the codes of the static literal tree */
    291       1.1  christos     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    292       1.1  christos     n = 0;
    293       1.1  christos     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    294       1.1  christos     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    295       1.1  christos     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    296       1.1  christos     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    297       1.1  christos     /* Codes 286 and 287 do not exist, but we must include them in the
    298       1.1  christos      * tree construction to get a canonical Huffman tree (longest code
    299       1.1  christos      * all ones)
    300       1.1  christos      */
    301       1.1  christos     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
    302       1.1  christos 
    303       1.1  christos     /* The static distance tree is trivial: */
    304       1.1  christos     for (n = 0; n < D_CODES; n++) {
    305       1.1  christos         static_dtree[n].Len = 5;
    306       1.1  christos         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
    307       1.1  christos     }
    308       1.1  christos     static_init_done = 1;
    309       1.1  christos 
    310       1.1  christos #  ifdef GEN_TREES_H
    311       1.1  christos     gen_trees_header();
    312       1.1  christos #  endif
    313       1.1  christos #endif /* defined(GEN_TREES_H) || !defined(STDC) */
    314       1.1  christos }
    315       1.1  christos 
    316       1.1  christos /* ===========================================================================
    317       1.1  christos  * Genererate the file trees.h describing the static trees.
    318       1.1  christos  */
    319       1.1  christos #ifdef GEN_TREES_H
    320       1.2  christos #  ifndef ZLIB_DEBUG
    321       1.1  christos #    include <stdio.h>
    322       1.1  christos #  endif
    323       1.1  christos 
    324       1.1  christos #  define SEPARATOR(i, last, width) \
    325       1.1  christos       ((i) == (last)? "\n};\n\n" :    \
    326       1.1  christos        ((i) % (width) == (width)-1 ? ",\n" : ", "))
    327       1.1  christos 
    328       1.1  christos void gen_trees_header()
    329       1.1  christos {
    330       1.1  christos     FILE *header = fopen("trees.h", "w");
    331       1.1  christos     int i;
    332       1.1  christos 
    333       1.1  christos     Assert (header != NULL, "Can't open trees.h");
    334       1.1  christos     fprintf(header,
    335       1.1  christos             "/* header created automatically with -DGEN_TREES_H */\n\n");
    336       1.1  christos 
    337       1.1  christos     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
    338       1.1  christos     for (i = 0; i < L_CODES+2; i++) {
    339       1.1  christos         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
    340       1.1  christos                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
    341       1.1  christos     }
    342       1.1  christos 
    343       1.1  christos     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
    344       1.1  christos     for (i = 0; i < D_CODES; i++) {
    345       1.1  christos         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
    346       1.1  christos                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
    347       1.1  christos     }
    348       1.1  christos 
    349  1.3.76.1  pgoyette     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
    350       1.1  christos     for (i = 0; i < DIST_CODE_LEN; i++) {
    351       1.1  christos         fprintf(header, "%2u%s", _dist_code[i],
    352       1.1  christos                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
    353       1.1  christos     }
    354       1.1  christos 
    355  1.3.76.1  pgoyette     fprintf(header,
    356  1.3.76.1  pgoyette         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
    357       1.1  christos     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
    358       1.1  christos         fprintf(header, "%2u%s", _length_code[i],
    359       1.1  christos                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
    360       1.1  christos     }
    361       1.1  christos 
    362       1.1  christos     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
    363       1.1  christos     for (i = 0; i < LENGTH_CODES; i++) {
    364       1.1  christos         fprintf(header, "%1u%s", base_length[i],
    365       1.1  christos                 SEPARATOR(i, LENGTH_CODES-1, 20));
    366       1.1  christos     }
    367       1.1  christos 
    368       1.1  christos     fprintf(header, "local const int base_dist[D_CODES] = {\n");
    369       1.1  christos     for (i = 0; i < D_CODES; i++) {
    370       1.1  christos         fprintf(header, "%5u%s", base_dist[i],
    371       1.1  christos                 SEPARATOR(i, D_CODES-1, 10));
    372       1.1  christos     }
    373       1.1  christos 
    374       1.1  christos     fclose(header);
    375       1.1  christos }
    376       1.1  christos #endif /* GEN_TREES_H */
    377       1.1  christos 
    378       1.1  christos /* ===========================================================================
    379       1.1  christos  * Initialize the tree data structures for a new zlib stream.
    380       1.1  christos  */
    381  1.3.76.1  pgoyette void ZLIB_INTERNAL _tr_init(s)
    382       1.1  christos     deflate_state *s;
    383       1.1  christos {
    384       1.1  christos     tr_static_init();
    385       1.1  christos 
    386       1.1  christos     s->l_desc.dyn_tree = s->dyn_ltree;
    387       1.1  christos     s->l_desc.stat_desc = &static_l_desc;
    388       1.1  christos 
    389       1.1  christos     s->d_desc.dyn_tree = s->dyn_dtree;
    390       1.1  christos     s->d_desc.stat_desc = &static_d_desc;
    391       1.1  christos 
    392       1.1  christos     s->bl_desc.dyn_tree = s->bl_tree;
    393       1.1  christos     s->bl_desc.stat_desc = &static_bl_desc;
    394       1.1  christos 
    395       1.1  christos     s->bi_buf = 0;
    396       1.1  christos     s->bi_valid = 0;
    397       1.2  christos #ifdef ZLIB_DEBUG
    398       1.1  christos     s->compressed_len = 0L;
    399       1.1  christos     s->bits_sent = 0L;
    400       1.1  christos #endif
    401       1.1  christos 
    402       1.1  christos     /* Initialize the first block of the first file: */
    403       1.1  christos     init_block(s);
    404       1.1  christos }
    405       1.1  christos 
    406       1.1  christos /* ===========================================================================
    407       1.1  christos  * Initialize a new block.
    408       1.1  christos  */
    409       1.1  christos local void init_block(s)
    410       1.1  christos     deflate_state *s;
    411       1.1  christos {
    412       1.1  christos     int n; /* iterates over tree elements */
    413       1.1  christos 
    414       1.1  christos     /* Initialize the trees. */
    415       1.1  christos     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
    416       1.1  christos     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
    417       1.1  christos     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
    418       1.1  christos 
    419       1.1  christos     s->dyn_ltree[END_BLOCK].Freq = 1;
    420       1.1  christos     s->opt_len = s->static_len = 0L;
    421       1.1  christos     s->last_lit = s->matches = 0;
    422       1.1  christos }
    423       1.1  christos 
    424       1.1  christos #define SMALLEST 1
    425       1.1  christos /* Index within the heap array of least frequent node in the Huffman tree */
    426       1.1  christos 
    427       1.1  christos 
    428       1.1  christos /* ===========================================================================
    429       1.1  christos  * Remove the smallest element from the heap and recreate the heap with
    430       1.1  christos  * one less element. Updates heap and heap_len.
    431       1.1  christos  */
    432       1.1  christos #define pqremove(s, tree, top) \
    433       1.1  christos {\
    434       1.1  christos     top = s->heap[SMALLEST]; \
    435       1.1  christos     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
    436       1.1  christos     pqdownheap(s, tree, SMALLEST); \
    437       1.1  christos }
    438       1.1  christos 
    439       1.1  christos /* ===========================================================================
    440       1.1  christos  * Compares to subtrees, using the tree depth as tie breaker when
    441       1.1  christos  * the subtrees have equal frequency. This minimizes the worst case length.
    442       1.1  christos  */
    443       1.1  christos #define smaller(tree, n, m, depth) \
    444       1.1  christos    (tree[n].Freq < tree[m].Freq || \
    445       1.1  christos    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
    446       1.1  christos 
    447       1.1  christos /* ===========================================================================
    448       1.1  christos  * Restore the heap property by moving down the tree starting at node k,
    449       1.1  christos  * exchanging a node with the smallest of its two sons if necessary, stopping
    450       1.1  christos  * when the heap property is re-established (each father smaller than its
    451       1.1  christos  * two sons).
    452       1.1  christos  */
    453       1.1  christos local void pqdownheap(s, tree, k)
    454       1.1  christos     deflate_state *s;
    455       1.1  christos     ct_data *tree;  /* the tree to restore */
    456       1.1  christos     int k;               /* node to move down */
    457       1.1  christos {
    458       1.1  christos     int v = s->heap[k];
    459       1.1  christos     int j = k << 1;  /* left son of k */
    460       1.1  christos     while (j <= s->heap_len) {
    461       1.1  christos         /* Set j to the smallest of the two sons: */
    462       1.1  christos         if (j < s->heap_len &&
    463       1.1  christos             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
    464       1.1  christos             j++;
    465       1.1  christos         }
    466       1.1  christos         /* Exit if v is smaller than both sons */
    467       1.1  christos         if (smaller(tree, v, s->heap[j], s->depth)) break;
    468       1.1  christos 
    469       1.1  christos         /* Exchange v with the smallest son */
    470       1.1  christos         s->heap[k] = s->heap[j];  k = j;
    471       1.1  christos 
    472       1.1  christos         /* And continue down the tree, setting j to the left son of k */
    473       1.1  christos         j <<= 1;
    474       1.1  christos     }
    475       1.1  christos     s->heap[k] = v;
    476       1.1  christos }
    477       1.1  christos 
    478       1.1  christos /* ===========================================================================
    479       1.1  christos  * Compute the optimal bit lengths for a tree and update the total bit length
    480       1.1  christos  * for the current block.
    481       1.1  christos  * IN assertion: the fields freq and dad are set, heap[heap_max] and
    482       1.1  christos  *    above are the tree nodes sorted by increasing frequency.
    483       1.1  christos  * OUT assertions: the field len is set to the optimal bit length, the
    484       1.1  christos  *     array bl_count contains the frequencies for each bit length.
    485       1.1  christos  *     The length opt_len is updated; static_len is also updated if stree is
    486       1.1  christos  *     not null.
    487       1.1  christos  */
    488       1.1  christos local void gen_bitlen(s, desc)
    489       1.1  christos     deflate_state *s;
    490       1.1  christos     tree_desc *desc;    /* the tree descriptor */
    491       1.1  christos {
    492       1.1  christos     ct_data *tree        = desc->dyn_tree;
    493       1.1  christos     int max_code         = desc->max_code;
    494       1.1  christos     const ct_data *stree = desc->stat_desc->static_tree;
    495       1.1  christos     const intf *extra    = desc->stat_desc->extra_bits;
    496       1.1  christos     int base             = desc->stat_desc->extra_base;
    497       1.1  christos     int max_length       = desc->stat_desc->max_length;
    498       1.1  christos     int h;              /* heap index */
    499       1.1  christos     int n, m;           /* iterate over the tree elements */
    500       1.1  christos     int bits;           /* bit length */
    501       1.1  christos     int xbits;          /* extra bits */
    502       1.1  christos     ush f;              /* frequency */
    503       1.1  christos     int overflow = 0;   /* number of elements with bit length too large */
    504       1.1  christos 
    505       1.1  christos     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
    506       1.1  christos 
    507       1.1  christos     /* In a first pass, compute the optimal bit lengths (which may
    508       1.1  christos      * overflow in the case of the bit length tree).
    509       1.1  christos      */
    510       1.1  christos     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
    511       1.1  christos 
    512       1.1  christos     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
    513       1.1  christos         n = s->heap[h];
    514       1.1  christos         bits = tree[tree[n].Dad].Len + 1;
    515       1.1  christos         if (bits > max_length) bits = max_length, overflow++;
    516       1.1  christos         tree[n].Len = (ush)bits;
    517       1.1  christos         /* We overwrite tree[n].Dad which is no longer needed */
    518       1.1  christos 
    519       1.1  christos         if (n > max_code) continue; /* not a leaf node */
    520       1.1  christos 
    521       1.1  christos         s->bl_count[bits]++;
    522       1.1  christos         xbits = 0;
    523       1.1  christos         if (n >= base) xbits = extra[n-base];
    524       1.1  christos         f = tree[n].Freq;
    525  1.3.76.1  pgoyette         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
    526  1.3.76.1  pgoyette         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
    527       1.1  christos     }
    528       1.1  christos     if (overflow == 0) return;
    529       1.1  christos 
    530  1.3.76.1  pgoyette     Tracev((stderr,"\nbit length overflow\n"));
    531       1.1  christos     /* This happens for example on obj2 and pic of the Calgary corpus */
    532       1.1  christos 
    533       1.1  christos     /* Find the first bit length which could increase: */
    534       1.1  christos     do {
    535       1.1  christos         bits = max_length-1;
    536       1.1  christos         while (s->bl_count[bits] == 0) bits--;
    537       1.1  christos         s->bl_count[bits]--;      /* move one leaf down the tree */
    538       1.1  christos         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
    539       1.1  christos         s->bl_count[max_length]--;
    540       1.1  christos         /* The brother of the overflow item also moves one step up,
    541       1.1  christos          * but this does not affect bl_count[max_length]
    542       1.1  christos          */
    543       1.1  christos         overflow -= 2;
    544       1.1  christos     } while (overflow > 0);
    545       1.1  christos 
    546       1.1  christos     /* Now recompute all bit lengths, scanning in increasing frequency.
    547       1.1  christos      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
    548       1.1  christos      * lengths instead of fixing only the wrong ones. This idea is taken
    549       1.1  christos      * from 'ar' written by Haruhiko Okumura.)
    550       1.1  christos      */
    551       1.1  christos     for (bits = max_length; bits != 0; bits--) {
    552       1.1  christos         n = s->bl_count[bits];
    553       1.1  christos         while (n != 0) {
    554       1.1  christos             m = s->heap[--h];
    555       1.1  christos             if (m > max_code) continue;
    556       1.1  christos             if ((unsigned) tree[m].Len != (unsigned) bits) {
    557  1.3.76.1  pgoyette                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
    558  1.3.76.1  pgoyette                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
    559       1.1  christos                 tree[m].Len = (ush)bits;
    560       1.1  christos             }
    561       1.1  christos             n--;
    562       1.1  christos         }
    563       1.1  christos     }
    564       1.1  christos }
    565       1.1  christos 
    566       1.1  christos /* ===========================================================================
    567       1.1  christos  * Generate the codes for a given tree and bit counts (which need not be
    568       1.1  christos  * optimal).
    569       1.1  christos  * IN assertion: the array bl_count contains the bit length statistics for
    570       1.1  christos  * the given tree and the field len is set for all tree elements.
    571       1.1  christos  * OUT assertion: the field code is set for all tree elements of non
    572       1.1  christos  *     zero code length.
    573       1.1  christos  */
    574       1.1  christos local void gen_codes (tree, max_code, bl_count)
    575       1.1  christos     ct_data *tree;             /* the tree to decorate */
    576       1.1  christos     int max_code;              /* largest code with non zero frequency */
    577       1.1  christos     ushf *bl_count;            /* number of codes at each bit length */
    578       1.1  christos {
    579       1.1  christos     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    580  1.3.76.1  pgoyette     unsigned code = 0;         /* running code value */
    581       1.1  christos     int bits;                  /* bit index */
    582       1.1  christos     int n;                     /* code index */
    583       1.1  christos 
    584       1.1  christos     /* The distribution counts are first used to generate the code values
    585       1.1  christos      * without bit reversal.
    586       1.1  christos      */
    587       1.1  christos     for (bits = 1; bits <= MAX_BITS; bits++) {
    588  1.3.76.1  pgoyette         code = (code + bl_count[bits-1]) << 1;
    589  1.3.76.1  pgoyette         next_code[bits] = (ush)code;
    590       1.1  christos     }
    591       1.1  christos     /* Check that the bit counts in bl_count are consistent. The last code
    592       1.1  christos      * must be all ones.
    593       1.1  christos      */
    594       1.1  christos     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
    595       1.1  christos             "inconsistent bit counts");
    596       1.1  christos     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
    597       1.1  christos 
    598       1.1  christos     for (n = 0;  n <= max_code; n++) {
    599       1.1  christos         int len = tree[n].Len;
    600       1.1  christos         if (len == 0) continue;
    601       1.1  christos         /* Now reverse the bits */
    602  1.3.76.1  pgoyette         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
    603       1.1  christos 
    604       1.1  christos         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
    605       1.1  christos              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    606       1.1  christos     }
    607       1.1  christos }
    608       1.1  christos 
    609       1.1  christos /* ===========================================================================
    610       1.1  christos  * Construct one Huffman tree and assigns the code bit strings and lengths.
    611       1.1  christos  * Update the total bit length for the current block.
    612       1.1  christos  * IN assertion: the field freq is set for all tree elements.
    613       1.1  christos  * OUT assertions: the fields len and code are set to the optimal bit length
    614       1.1  christos  *     and corresponding code. The length opt_len is updated; static_len is
    615       1.1  christos  *     also updated if stree is not null. The field max_code is set.
    616       1.1  christos  */
    617       1.1  christos local void build_tree(s, desc)
    618       1.1  christos     deflate_state *s;
    619       1.1  christos     tree_desc *desc; /* the tree descriptor */
    620       1.1  christos {
    621       1.1  christos     ct_data *tree         = desc->dyn_tree;
    622       1.1  christos     const ct_data *stree  = desc->stat_desc->static_tree;
    623       1.1  christos     int elems             = desc->stat_desc->elems;
    624       1.1  christos     int n, m;          /* iterate over heap elements */
    625       1.1  christos     int max_code = -1; /* largest code with non zero frequency */
    626       1.1  christos     int node;          /* new node being created */
    627       1.1  christos 
    628       1.1  christos     /* Construct the initial heap, with least frequent element in
    629       1.1  christos      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
    630       1.1  christos      * heap[0] is not used.
    631       1.1  christos      */
    632       1.1  christos     s->heap_len = 0, s->heap_max = HEAP_SIZE;
    633       1.1  christos 
    634       1.1  christos     for (n = 0; n < elems; n++) {
    635       1.1  christos         if (tree[n].Freq != 0) {
    636       1.1  christos             s->heap[++(s->heap_len)] = max_code = n;
    637       1.1  christos             s->depth[n] = 0;
    638       1.1  christos         } else {
    639       1.1  christos             tree[n].Len = 0;
    640       1.1  christos         }
    641       1.1  christos     }
    642       1.1  christos 
    643       1.1  christos     /* The pkzip format requires that at least one distance code exists,
    644       1.1  christos      * and that at least one bit should be sent even if there is only one
    645       1.1  christos      * possible code. So to avoid special checks later on we force at least
    646       1.1  christos      * two codes of non zero frequency.
    647       1.1  christos      */
    648       1.1  christos     while (s->heap_len < 2) {
    649       1.1  christos         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
    650       1.1  christos         tree[node].Freq = 1;
    651       1.1  christos         s->depth[node] = 0;
    652       1.1  christos         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
    653       1.1  christos         /* node is 0 or 1 so it does not have extra bits */
    654       1.1  christos     }
    655       1.1  christos     desc->max_code = max_code;
    656       1.1  christos 
    657       1.1  christos     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
    658       1.1  christos      * establish sub-heaps of increasing lengths:
    659       1.1  christos      */
    660       1.1  christos     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
    661       1.1  christos 
    662       1.1  christos     /* Construct the Huffman tree by repeatedly combining the least two
    663       1.1  christos      * frequent nodes.
    664       1.1  christos      */
    665       1.1  christos     node = elems;              /* next internal node of the tree */
    666       1.1  christos     do {
    667       1.1  christos         pqremove(s, tree, n);  /* n = node of least frequency */
    668       1.1  christos         m = s->heap[SMALLEST]; /* m = node of next least frequency */
    669       1.1  christos 
    670       1.1  christos         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
    671       1.1  christos         s->heap[--(s->heap_max)] = m;
    672       1.1  christos 
    673       1.1  christos         /* Create a new node father of n and m */
    674       1.1  christos         tree[node].Freq = tree[n].Freq + tree[m].Freq;
    675       1.1  christos         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
    676       1.1  christos                                 s->depth[n] : s->depth[m]) + 1);
    677       1.1  christos         tree[n].Dad = tree[m].Dad = (ush)node;
    678       1.1  christos #ifdef DUMP_BL_TREE
    679       1.1  christos         if (tree == s->bl_tree) {
    680       1.1  christos             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
    681       1.1  christos                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
    682       1.1  christos         }
    683       1.1  christos #endif
    684       1.1  christos         /* and insert the new node in the heap */
    685       1.1  christos         s->heap[SMALLEST] = node++;
    686       1.1  christos         pqdownheap(s, tree, SMALLEST);
    687       1.1  christos 
    688       1.1  christos     } while (s->heap_len >= 2);
    689       1.1  christos 
    690       1.1  christos     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
    691       1.1  christos 
    692       1.1  christos     /* At this point, the fields freq and dad are set. We can now
    693       1.1  christos      * generate the bit lengths.
    694       1.1  christos      */
    695       1.1  christos     gen_bitlen(s, (tree_desc *)desc);
    696       1.1  christos 
    697       1.1  christos     /* The field len is now set, we can generate the bit codes */
    698       1.1  christos     gen_codes ((ct_data *)tree, max_code, s->bl_count);
    699       1.1  christos }
    700       1.1  christos 
    701       1.1  christos /* ===========================================================================
    702       1.1  christos  * Scan a literal or distance tree to determine the frequencies of the codes
    703       1.1  christos  * in the bit length tree.
    704       1.1  christos  */
    705       1.1  christos local void scan_tree (s, tree, max_code)
    706       1.1  christos     deflate_state *s;
    707       1.1  christos     ct_data *tree;   /* the tree to be scanned */
    708       1.1  christos     int max_code;    /* and its largest code of non zero frequency */
    709       1.1  christos {
    710       1.1  christos     int n;                     /* iterates over all tree elements */
    711       1.1  christos     int prevlen = -1;          /* last emitted length */
    712       1.1  christos     int curlen;                /* length of current code */
    713       1.1  christos     int nextlen = tree[0].Len; /* length of next code */
    714       1.1  christos     int count = 0;             /* repeat count of the current code */
    715       1.1  christos     int max_count = 7;         /* max repeat count */
    716       1.1  christos     int min_count = 4;         /* min repeat count */
    717       1.1  christos 
    718       1.1  christos     if (nextlen == 0) max_count = 138, min_count = 3;
    719       1.1  christos     tree[max_code+1].Len = (ush)0xffff; /* guard */
    720       1.1  christos 
    721       1.1  christos     for (n = 0; n <= max_code; n++) {
    722       1.1  christos         curlen = nextlen; nextlen = tree[n+1].Len;
    723       1.1  christos         if (++count < max_count && curlen == nextlen) {
    724       1.1  christos             continue;
    725       1.1  christos         } else if (count < min_count) {
    726       1.1  christos             s->bl_tree[curlen].Freq += count;
    727       1.1  christos         } else if (curlen != 0) {
    728       1.1  christos             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
    729       1.1  christos             s->bl_tree[REP_3_6].Freq++;
    730       1.1  christos         } else if (count <= 10) {
    731       1.1  christos             s->bl_tree[REPZ_3_10].Freq++;
    732       1.1  christos         } else {
    733       1.1  christos             s->bl_tree[REPZ_11_138].Freq++;
    734       1.1  christos         }
    735       1.1  christos         count = 0; prevlen = curlen;
    736       1.1  christos         if (nextlen == 0) {
    737       1.1  christos             max_count = 138, min_count = 3;
    738       1.1  christos         } else if (curlen == nextlen) {
    739       1.1  christos             max_count = 6, min_count = 3;
    740       1.1  christos         } else {
    741       1.1  christos             max_count = 7, min_count = 4;
    742       1.1  christos         }
    743       1.1  christos     }
    744       1.1  christos }
    745       1.1  christos 
    746       1.1  christos /* ===========================================================================
    747       1.1  christos  * Send a literal or distance tree in compressed form, using the codes in
    748       1.1  christos  * bl_tree.
    749       1.1  christos  */
    750       1.1  christos local void send_tree (s, tree, max_code)
    751       1.1  christos     deflate_state *s;
    752       1.1  christos     ct_data *tree; /* the tree to be scanned */
    753       1.1  christos     int max_code;       /* and its largest code of non zero frequency */
    754       1.1  christos {
    755       1.1  christos     int n;                     /* iterates over all tree elements */
    756       1.1  christos     int prevlen = -1;          /* last emitted length */
    757       1.1  christos     int curlen;                /* length of current code */
    758       1.1  christos     int nextlen = tree[0].Len; /* length of next code */
    759       1.1  christos     int count = 0;             /* repeat count of the current code */
    760       1.1  christos     int max_count = 7;         /* max repeat count */
    761       1.1  christos     int min_count = 4;         /* min repeat count */
    762       1.1  christos 
    763       1.1  christos     /* tree[max_code+1].Len = -1; */  /* guard already set */
    764       1.1  christos     if (nextlen == 0) max_count = 138, min_count = 3;
    765       1.1  christos 
    766       1.1  christos     for (n = 0; n <= max_code; n++) {
    767       1.1  christos         curlen = nextlen; nextlen = tree[n+1].Len;
    768       1.1  christos         if (++count < max_count && curlen == nextlen) {
    769       1.1  christos             continue;
    770       1.1  christos         } else if (count < min_count) {
    771       1.1  christos             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
    772       1.1  christos 
    773       1.1  christos         } else if (curlen != 0) {
    774       1.1  christos             if (curlen != prevlen) {
    775       1.1  christos                 send_code(s, curlen, s->bl_tree); count--;
    776       1.1  christos             }
    777       1.1  christos             Assert(count >= 3 && count <= 6, " 3_6?");
    778       1.1  christos             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
    779       1.1  christos 
    780       1.1  christos         } else if (count <= 10) {
    781       1.1  christos             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
    782       1.1  christos 
    783       1.1  christos         } else {
    784       1.1  christos             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
    785       1.1  christos         }
    786       1.1  christos         count = 0; prevlen = curlen;
    787       1.1  christos         if (nextlen == 0) {
    788       1.1  christos             max_count = 138, min_count = 3;
    789       1.1  christos         } else if (curlen == nextlen) {
    790       1.1  christos             max_count = 6, min_count = 3;
    791       1.1  christos         } else {
    792       1.1  christos             max_count = 7, min_count = 4;
    793       1.1  christos         }
    794       1.1  christos     }
    795       1.1  christos }
    796       1.1  christos 
    797       1.1  christos /* ===========================================================================
    798       1.1  christos  * Construct the Huffman tree for the bit lengths and return the index in
    799       1.1  christos  * bl_order of the last bit length code to send.
    800       1.1  christos  */
    801       1.1  christos local int build_bl_tree(s)
    802       1.1  christos     deflate_state *s;
    803       1.1  christos {
    804       1.1  christos     int max_blindex;  /* index of last bit length code of non zero freq */
    805       1.1  christos 
    806       1.1  christos     /* Determine the bit length frequencies for literal and distance trees */
    807       1.1  christos     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
    808       1.1  christos     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
    809       1.1  christos 
    810       1.1  christos     /* Build the bit length tree: */
    811       1.1  christos     build_tree(s, (tree_desc *)(&(s->bl_desc)));
    812       1.1  christos     /* opt_len now includes the length of the tree representations, except
    813       1.1  christos      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
    814       1.1  christos      */
    815       1.1  christos 
    816       1.1  christos     /* Determine the number of bit length codes to send. The pkzip format
    817       1.1  christos      * requires that at least 4 bit length codes be sent. (appnote.txt says
    818       1.1  christos      * 3 but the actual value used is 4.)
    819       1.1  christos      */
    820       1.1  christos     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
    821       1.1  christos         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
    822       1.1  christos     }
    823       1.1  christos     /* Update opt_len to include the bit length tree and counts */
    824  1.3.76.1  pgoyette     s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
    825       1.1  christos     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
    826       1.1  christos             s->opt_len, s->static_len));
    827       1.1  christos 
    828       1.1  christos     return max_blindex;
    829       1.1  christos }
    830       1.1  christos 
    831       1.1  christos /* ===========================================================================
    832       1.1  christos  * Send the header for a block using dynamic Huffman trees: the counts, the
    833       1.1  christos  * lengths of the bit length codes, the literal tree and the distance tree.
    834       1.1  christos  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
    835       1.1  christos  */
    836       1.1  christos local void send_all_trees(s, lcodes, dcodes, blcodes)
    837       1.1  christos     deflate_state *s;
    838       1.1  christos     int lcodes, dcodes, blcodes; /* number of codes for each tree */
    839       1.1  christos {
    840       1.1  christos     int rank;                    /* index in bl_order */
    841       1.1  christos 
    842       1.1  christos     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    843       1.1  christos     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
    844       1.1  christos             "too many codes");
    845       1.1  christos     Tracev((stderr, "\nbl counts: "));
    846       1.1  christos     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
    847       1.1  christos     send_bits(s, dcodes-1,   5);
    848       1.1  christos     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
    849       1.1  christos     for (rank = 0; rank < blcodes; rank++) {
    850       1.1  christos         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
    851       1.1  christos         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
    852       1.1  christos     }
    853       1.1  christos     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
    854       1.1  christos 
    855       1.1  christos     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
    856       1.1  christos     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
    857       1.1  christos 
    858       1.1  christos     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
    859       1.1  christos     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
    860       1.1  christos }
    861       1.1  christos 
    862       1.1  christos /* ===========================================================================
    863       1.1  christos  * Send a stored block
    864       1.1  christos  */
    865  1.3.76.1  pgoyette void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
    866       1.1  christos     deflate_state *s;
    867       1.1  christos     charf *buf;       /* input block */
    868       1.1  christos     ulg stored_len;   /* length of input block */
    869  1.3.76.1  pgoyette     int last;         /* one if this is the last block for a file */
    870       1.1  christos {
    871  1.3.76.1  pgoyette     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
    872  1.3.76.1  pgoyette     bi_windup(s);        /* align on byte boundary */
    873  1.3.76.1  pgoyette     put_short(s, (ush)stored_len);
    874  1.3.76.1  pgoyette     put_short(s, (ush)~stored_len);
    875  1.3.76.1  pgoyette     zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
    876  1.3.76.1  pgoyette     s->pending += stored_len;
    877       1.2  christos #ifdef ZLIB_DEBUG
    878       1.1  christos     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
    879       1.1  christos     s->compressed_len += (stored_len + 4) << 3;
    880  1.3.76.1  pgoyette     s->bits_sent += 2*16;
    881  1.3.76.1  pgoyette     s->bits_sent += stored_len<<3;
    882       1.1  christos #endif
    883  1.3.76.1  pgoyette }
    884  1.3.76.1  pgoyette 
    885  1.3.76.1  pgoyette /* ===========================================================================
    886  1.3.76.1  pgoyette  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
    887  1.3.76.1  pgoyette  */
    888  1.3.76.1  pgoyette void ZLIB_INTERNAL _tr_flush_bits(s)
    889  1.3.76.1  pgoyette     deflate_state *s;
    890  1.3.76.1  pgoyette {
    891  1.3.76.1  pgoyette     bi_flush(s);
    892       1.1  christos }
    893       1.1  christos 
    894       1.1  christos /* ===========================================================================
    895       1.1  christos  * Send one empty static block to give enough lookahead for inflate.
    896       1.1  christos  * This takes 10 bits, of which 7 may remain in the bit buffer.
    897       1.1  christos  */
    898  1.3.76.1  pgoyette void ZLIB_INTERNAL _tr_align(s)
    899       1.1  christos     deflate_state *s;
    900       1.1  christos {
    901       1.1  christos     send_bits(s, STATIC_TREES<<1, 3);
    902       1.1  christos     send_code(s, END_BLOCK, static_ltree);
    903       1.2  christos #ifdef ZLIB_DEBUG
    904       1.1  christos     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
    905       1.1  christos #endif
    906       1.1  christos     bi_flush(s);
    907       1.1  christos }
    908       1.1  christos 
    909       1.1  christos /* ===========================================================================
    910       1.1  christos  * Determine the best encoding for the current block: dynamic trees, static
    911       1.1  christos  * trees or store, and output the encoded block to the zip file.
    912       1.1  christos  */
    913  1.3.76.1  pgoyette void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
    914       1.1  christos     deflate_state *s;
    915       1.1  christos     charf *buf;       /* input block, or NULL if too old */
    916       1.1  christos     ulg stored_len;   /* length of input block */
    917  1.3.76.1  pgoyette     int last;         /* one if this is the last block for a file */
    918       1.1  christos {
    919       1.1  christos     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    920       1.1  christos     int max_blindex = 0;  /* index of last bit length code of non zero freq */
    921       1.1  christos 
    922       1.1  christos     /* Build the Huffman trees unless a stored block is forced */
    923       1.1  christos     if (s->level > 0) {
    924       1.1  christos 
    925       1.1  christos         /* Check if the file is binary or text */
    926  1.3.76.1  pgoyette         if (s->strm->data_type == Z_UNKNOWN)
    927  1.3.76.1  pgoyette             s->strm->data_type = detect_data_type(s);
    928       1.1  christos 
    929       1.1  christos         /* Construct the literal and distance trees */
    930       1.1  christos         build_tree(s, (tree_desc *)(&(s->l_desc)));
    931       1.1  christos         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
    932       1.1  christos                 s->static_len));
    933       1.1  christos 
    934       1.1  christos         build_tree(s, (tree_desc *)(&(s->d_desc)));
    935       1.1  christos         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
    936       1.1  christos                 s->static_len));
    937       1.1  christos         /* At this point, opt_len and static_len are the total bit lengths of
    938       1.1  christos          * the compressed block data, excluding the tree representations.
    939       1.1  christos          */
    940       1.1  christos 
    941       1.1  christos         /* Build the bit length tree for the above two trees, and get the index
    942       1.1  christos          * in bl_order of the last bit length code to send.
    943       1.1  christos          */
    944       1.1  christos         max_blindex = build_bl_tree(s);
    945       1.1  christos 
    946       1.1  christos         /* Determine the best encoding. Compute the block lengths in bytes. */
    947       1.1  christos         opt_lenb = (s->opt_len+3+7)>>3;
    948       1.1  christos         static_lenb = (s->static_len+3+7)>>3;
    949       1.1  christos 
    950       1.1  christos         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
    951       1.1  christos                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
    952       1.1  christos                 s->last_lit));
    953       1.1  christos 
    954       1.1  christos         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
    955       1.1  christos 
    956       1.1  christos     } else {
    957       1.1  christos         Assert(buf != (char*)0, "lost buf");
    958       1.1  christos         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
    959       1.1  christos     }
    960       1.1  christos 
    961       1.1  christos #ifdef FORCE_STORED
    962       1.1  christos     if (buf != (char*)0) { /* force stored block */
    963       1.1  christos #else
    964       1.1  christos     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
    965       1.1  christos                        /* 4: two words for the lengths */
    966       1.1  christos #endif
    967       1.1  christos         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
    968       1.1  christos          * Otherwise we can't have processed more than WSIZE input bytes since
    969       1.1  christos          * the last block flush, because compression would have been
    970       1.1  christos          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
    971       1.1  christos          * transform a block into a stored block.
    972       1.1  christos          */
    973  1.3.76.1  pgoyette         _tr_stored_block(s, buf, stored_len, last);
    974       1.1  christos 
    975       1.1  christos #ifdef FORCE_STATIC
    976       1.1  christos     } else if (static_lenb >= 0) { /* force static trees */
    977       1.1  christos #else
    978       1.1  christos     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
    979       1.1  christos #endif
    980  1.3.76.1  pgoyette         send_bits(s, (STATIC_TREES<<1)+last, 3);
    981  1.3.76.1  pgoyette         compress_block(s, (const ct_data *)static_ltree,
    982  1.3.76.1  pgoyette                        (const ct_data *)static_dtree);
    983       1.2  christos #ifdef ZLIB_DEBUG
    984       1.1  christos         s->compressed_len += 3 + s->static_len;
    985       1.1  christos #endif
    986       1.1  christos     } else {
    987  1.3.76.1  pgoyette         send_bits(s, (DYN_TREES<<1)+last, 3);
    988       1.1  christos         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
    989       1.1  christos                        max_blindex+1);
    990  1.3.76.1  pgoyette         compress_block(s, (const ct_data *)s->dyn_ltree,
    991  1.3.76.1  pgoyette                        (const ct_data *)s->dyn_dtree);
    992       1.2  christos #ifdef ZLIB_DEBUG
    993       1.1  christos         s->compressed_len += 3 + s->opt_len;
    994       1.1  christos #endif
    995       1.1  christos     }
    996       1.1  christos     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
    997       1.1  christos     /* The above check is made mod 2^32, for files larger than 512 MB
    998       1.1  christos      * and uLong implemented on 32 bits.
    999       1.1  christos      */
   1000       1.1  christos     init_block(s);
   1001       1.1  christos 
   1002  1.3.76.1  pgoyette     if (last) {
   1003       1.1  christos         bi_windup(s);
   1004       1.2  christos #ifdef ZLIB_DEBUG
   1005       1.1  christos         s->compressed_len += 7;  /* align on byte boundary */
   1006       1.1  christos #endif
   1007       1.1  christos     }
   1008       1.1  christos     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   1009  1.3.76.1  pgoyette            s->compressed_len-7*last));
   1010       1.1  christos }
   1011       1.1  christos 
   1012       1.1  christos /* ===========================================================================
   1013       1.1  christos  * Save the match info and tally the frequency counts. Return true if
   1014       1.1  christos  * the current block must be flushed.
   1015       1.1  christos  */
   1016  1.3.76.1  pgoyette int ZLIB_INTERNAL _tr_tally (s, dist, lc)
   1017       1.1  christos     deflate_state *s;
   1018       1.1  christos     unsigned dist;  /* distance of matched string */
   1019       1.1  christos     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
   1020       1.1  christos {
   1021       1.1  christos     s->d_buf[s->last_lit] = (ush)dist;
   1022       1.1  christos     s->l_buf[s->last_lit++] = (uch)lc;
   1023       1.1  christos     if (dist == 0) {
   1024       1.1  christos         /* lc is the unmatched char */
   1025       1.1  christos         s->dyn_ltree[lc].Freq++;
   1026       1.1  christos     } else {
   1027       1.1  christos         s->matches++;
   1028       1.1  christos         /* Here, lc is the match length - MIN_MATCH */
   1029       1.1  christos         dist--;             /* dist = match distance - 1 */
   1030       1.1  christos         Assert((ush)dist < (ush)MAX_DIST(s) &&
   1031       1.1  christos                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   1032       1.1  christos                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   1033       1.1  christos 
   1034       1.1  christos         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   1035       1.1  christos         s->dyn_dtree[d_code(dist)].Freq++;
   1036       1.1  christos     }
   1037       1.1  christos 
   1038       1.1  christos #ifdef TRUNCATE_BLOCK
   1039       1.1  christos     /* Try to guess if it is profitable to stop the current block here */
   1040       1.1  christos     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   1041       1.1  christos         /* Compute an upper bound for the compressed length */
   1042       1.1  christos         ulg out_length = (ulg)s->last_lit*8L;
   1043       1.1  christos         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   1044       1.1  christos         int dcode;
   1045       1.1  christos         for (dcode = 0; dcode < D_CODES; dcode++) {
   1046       1.1  christos             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   1047       1.1  christos                 (5L+extra_dbits[dcode]);
   1048       1.1  christos         }
   1049       1.1  christos         out_length >>= 3;
   1050       1.1  christos         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   1051       1.1  christos                s->last_lit, in_length, out_length,
   1052       1.1  christos                100L - out_length*100L/in_length));
   1053       1.1  christos         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   1054       1.1  christos     }
   1055       1.1  christos #endif
   1056       1.1  christos     return (s->last_lit == s->lit_bufsize-1);
   1057       1.1  christos     /* We avoid equality with lit_bufsize because of wraparound at 64K
   1058       1.1  christos      * on 16 bit machines and because stored blocks are restricted to
   1059       1.1  christos      * 64K-1 bytes.
   1060       1.1  christos      */
   1061       1.1  christos }
   1062       1.1  christos 
   1063       1.1  christos /* ===========================================================================
   1064       1.1  christos  * Send the block data compressed using the given Huffman trees
   1065       1.1  christos  */
   1066       1.1  christos local void compress_block(s, ltree, dtree)
   1067       1.1  christos     deflate_state *s;
   1068  1.3.76.1  pgoyette     const ct_data *ltree; /* literal tree */
   1069  1.3.76.1  pgoyette     const ct_data *dtree; /* distance tree */
   1070       1.1  christos {
   1071       1.1  christos     unsigned dist;      /* distance of matched string */
   1072       1.1  christos     int lc;             /* match length or unmatched char (if dist == 0) */
   1073       1.1  christos     unsigned lx = 0;    /* running index in l_buf */
   1074       1.1  christos     unsigned code;      /* the code to send */
   1075       1.1  christos     int extra;          /* number of extra bits to send */
   1076       1.1  christos 
   1077       1.1  christos     if (s->last_lit != 0) do {
   1078       1.1  christos         dist = s->d_buf[lx];
   1079       1.1  christos         lc = s->l_buf[lx++];
   1080       1.1  christos         if (dist == 0) {
   1081       1.1  christos             send_code(s, lc, ltree); /* send a literal byte */
   1082       1.1  christos             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   1083       1.1  christos         } else {
   1084       1.1  christos             /* Here, lc is the match length - MIN_MATCH */
   1085       1.1  christos             code = _length_code[lc];
   1086       1.1  christos             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   1087       1.1  christos             extra = extra_lbits[code];
   1088       1.1  christos             if (extra != 0) {
   1089       1.1  christos                 lc -= base_length[code];
   1090       1.1  christos                 send_bits(s, lc, extra);       /* send the extra length bits */
   1091       1.1  christos             }
   1092       1.1  christos             dist--; /* dist is now the match distance - 1 */
   1093       1.1  christos             code = d_code(dist);
   1094       1.1  christos             Assert (code < D_CODES, "bad d_code");
   1095       1.1  christos 
   1096       1.1  christos             send_code(s, code, dtree);       /* send the distance code */
   1097       1.1  christos             extra = extra_dbits[code];
   1098       1.1  christos             if (extra != 0) {
   1099  1.3.76.1  pgoyette                 dist -= (unsigned)base_dist[code];
   1100       1.1  christos                 send_bits(s, dist, extra);   /* send the extra distance bits */
   1101       1.1  christos             }
   1102       1.1  christos         } /* literal or match pair ? */
   1103       1.1  christos 
   1104       1.1  christos         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   1105       1.1  christos         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
   1106       1.1  christos                "pendingBuf overflow");
   1107       1.1  christos 
   1108       1.1  christos     } while (lx < s->last_lit);
   1109       1.1  christos 
   1110       1.1  christos     send_code(s, END_BLOCK, ltree);
   1111       1.1  christos }
   1112       1.1  christos 
   1113       1.1  christos /* ===========================================================================
   1114  1.3.76.1  pgoyette  * Check if the data type is TEXT or BINARY, using the following algorithm:
   1115  1.3.76.1  pgoyette  * - TEXT if the two conditions below are satisfied:
   1116  1.3.76.1  pgoyette  *    a) There are no non-portable control characters belonging to the
   1117  1.3.76.1  pgoyette  *       "black list" (0..6, 14..25, 28..31).
   1118  1.3.76.1  pgoyette  *    b) There is at least one printable character belonging to the
   1119  1.3.76.1  pgoyette  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
   1120  1.3.76.1  pgoyette  * - BINARY otherwise.
   1121  1.3.76.1  pgoyette  * - The following partially-portable control characters form a
   1122  1.3.76.1  pgoyette  *   "gray list" that is ignored in this detection algorithm:
   1123  1.3.76.1  pgoyette  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
   1124       1.1  christos  * IN assertion: the fields Freq of dyn_ltree are set.
   1125       1.1  christos  */
   1126  1.3.76.1  pgoyette local int detect_data_type(s)
   1127       1.1  christos     deflate_state *s;
   1128       1.1  christos {
   1129  1.3.76.1  pgoyette     /* black_mask is the bit mask of black-listed bytes
   1130  1.3.76.1  pgoyette      * set bits 0..6, 14..25, and 28..31
   1131  1.3.76.1  pgoyette      * 0xf3ffc07f = binary 11110011111111111100000001111111
   1132  1.3.76.1  pgoyette      */
   1133  1.3.76.1  pgoyette     unsigned long black_mask = 0xf3ffc07fUL;
   1134       1.1  christos     int n;
   1135       1.1  christos 
   1136  1.3.76.1  pgoyette     /* Check for non-textual ("black-listed") bytes. */
   1137  1.3.76.1  pgoyette     for (n = 0; n <= 31; n++, black_mask >>= 1)
   1138  1.3.76.1  pgoyette         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
   1139  1.3.76.1  pgoyette             return Z_BINARY;
   1140  1.3.76.1  pgoyette 
   1141  1.3.76.1  pgoyette     /* Check for textual ("white-listed") bytes. */
   1142  1.3.76.1  pgoyette     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
   1143  1.3.76.1  pgoyette             || s->dyn_ltree[13].Freq != 0)
   1144  1.3.76.1  pgoyette         return Z_TEXT;
   1145  1.3.76.1  pgoyette     for (n = 32; n < LITERALS; n++)
   1146       1.1  christos         if (s->dyn_ltree[n].Freq != 0)
   1147  1.3.76.1  pgoyette             return Z_TEXT;
   1148  1.3.76.1  pgoyette 
   1149  1.3.76.1  pgoyette     /* There are no "black-listed" or "white-listed" bytes:
   1150  1.3.76.1  pgoyette      * this stream either is empty or has tolerated ("gray-listed") bytes only.
   1151  1.3.76.1  pgoyette      */
   1152  1.3.76.1  pgoyette     return Z_BINARY;
   1153       1.1  christos }
   1154       1.1  christos 
   1155       1.1  christos /* ===========================================================================
   1156       1.1  christos  * Reverse the first len bits of a code, using straightforward code (a faster
   1157       1.1  christos  * method would use a table)
   1158       1.1  christos  * IN assertion: 1 <= len <= 15
   1159       1.1  christos  */
   1160       1.1  christos local unsigned bi_reverse(code, len)
   1161       1.1  christos     unsigned code; /* the value to invert */
   1162       1.1  christos     int len;       /* its bit length */
   1163       1.1  christos {
   1164       1.1  christos     register unsigned res = 0;
   1165       1.1  christos     do {
   1166       1.1  christos         res |= code & 1;
   1167       1.1  christos         code >>= 1, res <<= 1;
   1168       1.1  christos     } while (--len > 0);
   1169       1.1  christos     return res >> 1;
   1170       1.1  christos }
   1171       1.1  christos 
   1172       1.1  christos /* ===========================================================================
   1173       1.1  christos  * Flush the bit buffer, keeping at most 7 bits in it.
   1174       1.1  christos  */
   1175       1.1  christos local void bi_flush(s)
   1176       1.1  christos     deflate_state *s;
   1177       1.1  christos {
   1178       1.1  christos     if (s->bi_valid == 16) {
   1179       1.1  christos         put_short(s, s->bi_buf);
   1180       1.1  christos         s->bi_buf = 0;
   1181       1.1  christos         s->bi_valid = 0;
   1182       1.1  christos     } else if (s->bi_valid >= 8) {
   1183       1.1  christos         put_byte(s, (Byte)s->bi_buf);
   1184       1.1  christos         s->bi_buf >>= 8;
   1185       1.1  christos         s->bi_valid -= 8;
   1186       1.1  christos     }
   1187       1.1  christos }
   1188       1.1  christos 
   1189       1.1  christos /* ===========================================================================
   1190       1.1  christos  * Flush the bit buffer and align the output on a byte boundary
   1191       1.1  christos  */
   1192       1.1  christos local void bi_windup(s)
   1193       1.1  christos     deflate_state *s;
   1194       1.1  christos {
   1195       1.1  christos     if (s->bi_valid > 8) {
   1196       1.1  christos         put_short(s, s->bi_buf);
   1197       1.1  christos     } else if (s->bi_valid > 0) {
   1198       1.1  christos         put_byte(s, (Byte)s->bi_buf);
   1199       1.1  christos     }
   1200       1.1  christos     s->bi_buf = 0;
   1201       1.1  christos     s->bi_valid = 0;
   1202       1.2  christos #ifdef ZLIB_DEBUG
   1203       1.1  christos     s->bits_sent = (s->bits_sent+7) & ~7;
   1204       1.1  christos #endif
   1205       1.1  christos }
   1206