trees.c revision 1.4 1 1.4 christos /* $NetBSD: trees.c,v 1.4 2017/01/10 01:27:41 christos Exp $ */
2 1.1 christos
3 1.1 christos /* trees.c -- output deflated data using Huffman coding
4 1.4 christos * Copyright (C) 1995-2016 Jean-loup Gailly
5 1.4 christos * detect_data_type() function provided freely by Cosmin Truta, 2006
6 1.1 christos * For conditions of distribution and use, see copyright notice in zlib.h
7 1.1 christos */
8 1.1 christos
9 1.1 christos /*
10 1.1 christos * ALGORITHM
11 1.1 christos *
12 1.1 christos * The "deflation" process uses several Huffman trees. The more
13 1.1 christos * common source values are represented by shorter bit sequences.
14 1.1 christos *
15 1.1 christos * Each code tree is stored in a compressed form which is itself
16 1.1 christos * a Huffman encoding of the lengths of all the code strings (in
17 1.1 christos * ascending order by source values). The actual code strings are
18 1.1 christos * reconstructed from the lengths in the inflate process, as described
19 1.1 christos * in the deflate specification.
20 1.1 christos *
21 1.1 christos * REFERENCES
22 1.1 christos *
23 1.1 christos * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
24 1.1 christos * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25 1.1 christos *
26 1.1 christos * Storer, James A.
27 1.1 christos * Data Compression: Methods and Theory, pp. 49-50.
28 1.1 christos * Computer Science Press, 1988. ISBN 0-7167-8156-5.
29 1.1 christos *
30 1.1 christos * Sedgewick, R.
31 1.1 christos * Algorithms, p290.
32 1.1 christos * Addison-Wesley, 1983. ISBN 0-201-06672-6.
33 1.1 christos */
34 1.1 christos
35 1.4 christos /* @(#) $Id: trees.c,v 1.4 2017/01/10 01:27:41 christos Exp $ */
36 1.1 christos
37 1.1 christos /* #define GEN_TREES_H */
38 1.1 christos
39 1.1 christos #include "deflate.h"
40 1.1 christos
41 1.2 christos #ifdef ZLIB_DEBUG
42 1.1 christos # include <ctype.h>
43 1.1 christos #endif
44 1.1 christos
45 1.1 christos /* ===========================================================================
46 1.1 christos * Constants
47 1.1 christos */
48 1.1 christos
49 1.1 christos #define MAX_BL_BITS 7
50 1.1 christos /* Bit length codes must not exceed MAX_BL_BITS bits */
51 1.1 christos
52 1.1 christos #define END_BLOCK 256
53 1.1 christos /* end of block literal code */
54 1.1 christos
55 1.1 christos #define REP_3_6 16
56 1.1 christos /* repeat previous bit length 3-6 times (2 bits of repeat count) */
57 1.1 christos
58 1.1 christos #define REPZ_3_10 17
59 1.1 christos /* repeat a zero length 3-10 times (3 bits of repeat count) */
60 1.1 christos
61 1.1 christos #define REPZ_11_138 18
62 1.1 christos /* repeat a zero length 11-138 times (7 bits of repeat count) */
63 1.1 christos
64 1.1 christos local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
65 1.1 christos = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
66 1.1 christos
67 1.1 christos local const int extra_dbits[D_CODES] /* extra bits for each distance code */
68 1.1 christos = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
69 1.1 christos
70 1.1 christos local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
71 1.1 christos = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
72 1.1 christos
73 1.1 christos local const uch bl_order[BL_CODES]
74 1.1 christos = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 1.1 christos /* The lengths of the bit length codes are sent in order of decreasing
76 1.1 christos * probability, to avoid transmitting the lengths for unused bit length codes.
77 1.1 christos */
78 1.1 christos
79 1.1 christos /* ===========================================================================
80 1.1 christos * Local data. These are initialized only once.
81 1.1 christos */
82 1.1 christos
83 1.1 christos #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
84 1.1 christos
85 1.1 christos #if defined(GEN_TREES_H) || !defined(STDC)
86 1.1 christos /* non ANSI compilers may not accept trees.h */
87 1.1 christos
88 1.1 christos local ct_data static_ltree[L_CODES+2];
89 1.1 christos /* The static literal tree. Since the bit lengths are imposed, there is no
90 1.1 christos * need for the L_CODES extra codes used during heap construction. However
91 1.1 christos * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
92 1.1 christos * below).
93 1.1 christos */
94 1.1 christos
95 1.1 christos local ct_data static_dtree[D_CODES];
96 1.1 christos /* The static distance tree. (Actually a trivial tree since all codes use
97 1.1 christos * 5 bits.)
98 1.1 christos */
99 1.1 christos
100 1.1 christos uch _dist_code[DIST_CODE_LEN];
101 1.1 christos /* Distance codes. The first 256 values correspond to the distances
102 1.1 christos * 3 .. 258, the last 256 values correspond to the top 8 bits of
103 1.1 christos * the 15 bit distances.
104 1.1 christos */
105 1.1 christos
106 1.1 christos uch _length_code[MAX_MATCH-MIN_MATCH+1];
107 1.1 christos /* length code for each normalized match length (0 == MIN_MATCH) */
108 1.1 christos
109 1.1 christos local int base_length[LENGTH_CODES];
110 1.1 christos /* First normalized length for each code (0 = MIN_MATCH) */
111 1.1 christos
112 1.1 christos local int base_dist[D_CODES];
113 1.1 christos /* First normalized distance for each code (0 = distance of 1) */
114 1.1 christos
115 1.1 christos #else
116 1.1 christos # include "trees.h"
117 1.1 christos #endif /* GEN_TREES_H */
118 1.1 christos
119 1.1 christos struct static_tree_desc_s {
120 1.1 christos const ct_data *static_tree; /* static tree or NULL */
121 1.1 christos const intf *extra_bits; /* extra bits for each code or NULL */
122 1.1 christos int extra_base; /* base index for extra_bits */
123 1.1 christos int elems; /* max number of elements in the tree */
124 1.1 christos int max_length; /* max bit length for the codes */
125 1.1 christos };
126 1.1 christos
127 1.4 christos local const static_tree_desc static_l_desc =
128 1.1 christos {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
129 1.1 christos
130 1.4 christos local const static_tree_desc static_d_desc =
131 1.1 christos {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
132 1.1 christos
133 1.4 christos local const static_tree_desc static_bl_desc =
134 1.1 christos {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
135 1.1 christos
136 1.1 christos /* ===========================================================================
137 1.1 christos * Local (static) routines in this file.
138 1.1 christos */
139 1.1 christos
140 1.1 christos local void tr_static_init OF((void));
141 1.1 christos local void init_block OF((deflate_state *s));
142 1.1 christos local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
143 1.1 christos local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
144 1.1 christos local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
145 1.1 christos local void build_tree OF((deflate_state *s, tree_desc *desc));
146 1.1 christos local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
147 1.1 christos local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
148 1.1 christos local int build_bl_tree OF((deflate_state *s));
149 1.1 christos local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
150 1.1 christos int blcodes));
151 1.4 christos local void compress_block OF((deflate_state *s, const ct_data *ltree,
152 1.4 christos const ct_data *dtree));
153 1.4 christos local int detect_data_type OF((deflate_state *s));
154 1.1 christos local unsigned bi_reverse OF((unsigned value, int length));
155 1.1 christos local void bi_windup OF((deflate_state *s));
156 1.1 christos local void bi_flush OF((deflate_state *s));
157 1.1 christos
158 1.1 christos #ifdef GEN_TREES_H
159 1.1 christos local void gen_trees_header OF((void));
160 1.1 christos #endif
161 1.1 christos
162 1.2 christos #ifndef ZLIB_DEBUG
163 1.1 christos # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164 1.1 christos /* Send a code of the given tree. c and tree must not have side effects */
165 1.1 christos
166 1.4 christos #else /* !ZLIB_DEBUG */
167 1.1 christos # define send_code(s, c, tree) \
168 1.1 christos { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169 1.1 christos send_bits(s, tree[c].Code, tree[c].Len); }
170 1.1 christos #endif
171 1.1 christos
172 1.1 christos /* ===========================================================================
173 1.1 christos * Output a short LSB first on the stream.
174 1.1 christos * IN assertion: there is enough room in pendingBuf.
175 1.1 christos */
176 1.1 christos #define put_short(s, w) { \
177 1.1 christos put_byte(s, (uch)((w) & 0xff)); \
178 1.1 christos put_byte(s, (uch)((ush)(w) >> 8)); \
179 1.1 christos }
180 1.1 christos
181 1.1 christos /* ===========================================================================
182 1.1 christos * Send a value on a given number of bits.
183 1.1 christos * IN assertion: length <= 16 and value fits in length bits.
184 1.1 christos */
185 1.2 christos #ifdef ZLIB_DEBUG
186 1.1 christos local void send_bits OF((deflate_state *s, int value, int length));
187 1.1 christos
188 1.1 christos local void send_bits(s, value, length)
189 1.1 christos deflate_state *s;
190 1.1 christos int value; /* value to send */
191 1.1 christos int length; /* number of bits */
192 1.1 christos {
193 1.1 christos Tracevv((stderr," l %2d v %4x ", length, value));
194 1.1 christos Assert(length > 0 && length <= 15, "invalid length");
195 1.1 christos s->bits_sent += (ulg)length;
196 1.1 christos
197 1.1 christos /* If not enough room in bi_buf, use (valid) bits from bi_buf and
198 1.1 christos * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
199 1.1 christos * unused bits in value.
200 1.1 christos */
201 1.1 christos if (s->bi_valid > (int)Buf_size - length) {
202 1.4 christos s->bi_buf |= (ush)value << s->bi_valid;
203 1.1 christos put_short(s, s->bi_buf);
204 1.1 christos s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
205 1.1 christos s->bi_valid += length - Buf_size;
206 1.1 christos } else {
207 1.4 christos s->bi_buf |= (ush)value << s->bi_valid;
208 1.1 christos s->bi_valid += length;
209 1.1 christos }
210 1.1 christos }
211 1.2 christos #else /* !ZLIB_DEBUG */
212 1.1 christos
213 1.1 christos #define send_bits(s, value, length) \
214 1.1 christos { int len = length;\
215 1.1 christos if (s->bi_valid > (int)Buf_size - len) {\
216 1.4 christos int val = (int)value;\
217 1.4 christos s->bi_buf |= (ush)val << s->bi_valid;\
218 1.1 christos put_short(s, s->bi_buf);\
219 1.1 christos s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
220 1.1 christos s->bi_valid += len - Buf_size;\
221 1.1 christos } else {\
222 1.4 christos s->bi_buf |= (ush)(value) << s->bi_valid;\
223 1.1 christos s->bi_valid += len;\
224 1.1 christos }\
225 1.1 christos }
226 1.2 christos #endif /* ZLIB_DEBUG */
227 1.1 christos
228 1.1 christos
229 1.1 christos /* the arguments must not have side effects */
230 1.1 christos
231 1.1 christos /* ===========================================================================
232 1.1 christos * Initialize the various 'constant' tables.
233 1.1 christos */
234 1.1 christos local void tr_static_init()
235 1.1 christos {
236 1.1 christos #if defined(GEN_TREES_H) || !defined(STDC)
237 1.1 christos static int static_init_done = 0;
238 1.1 christos int n; /* iterates over tree elements */
239 1.1 christos int bits; /* bit counter */
240 1.1 christos int length; /* length value */
241 1.1 christos int code; /* code value */
242 1.1 christos int dist; /* distance index */
243 1.1 christos ush bl_count[MAX_BITS+1];
244 1.1 christos /* number of codes at each bit length for an optimal tree */
245 1.1 christos
246 1.1 christos if (static_init_done) return;
247 1.1 christos
248 1.1 christos /* For some embedded targets, global variables are not initialized: */
249 1.4 christos #ifdef NO_INIT_GLOBAL_POINTERS
250 1.1 christos static_l_desc.static_tree = static_ltree;
251 1.1 christos static_l_desc.extra_bits = extra_lbits;
252 1.1 christos static_d_desc.static_tree = static_dtree;
253 1.1 christos static_d_desc.extra_bits = extra_dbits;
254 1.1 christos static_bl_desc.extra_bits = extra_blbits;
255 1.4 christos #endif
256 1.1 christos
257 1.1 christos /* Initialize the mapping length (0..255) -> length code (0..28) */
258 1.1 christos length = 0;
259 1.1 christos for (code = 0; code < LENGTH_CODES-1; code++) {
260 1.1 christos base_length[code] = length;
261 1.1 christos for (n = 0; n < (1<<extra_lbits[code]); n++) {
262 1.1 christos _length_code[length++] = (uch)code;
263 1.1 christos }
264 1.1 christos }
265 1.1 christos Assert (length == 256, "tr_static_init: length != 256");
266 1.1 christos /* Note that the length 255 (match length 258) can be represented
267 1.1 christos * in two different ways: code 284 + 5 bits or code 285, so we
268 1.1 christos * overwrite length_code[255] to use the best encoding:
269 1.1 christos */
270 1.1 christos _length_code[length-1] = (uch)code;
271 1.1 christos
272 1.1 christos /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
273 1.1 christos dist = 0;
274 1.1 christos for (code = 0 ; code < 16; code++) {
275 1.1 christos base_dist[code] = dist;
276 1.1 christos for (n = 0; n < (1<<extra_dbits[code]); n++) {
277 1.1 christos _dist_code[dist++] = (uch)code;
278 1.1 christos }
279 1.1 christos }
280 1.1 christos Assert (dist == 256, "tr_static_init: dist != 256");
281 1.1 christos dist >>= 7; /* from now on, all distances are divided by 128 */
282 1.1 christos for ( ; code < D_CODES; code++) {
283 1.1 christos base_dist[code] = dist << 7;
284 1.1 christos for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
285 1.1 christos _dist_code[256 + dist++] = (uch)code;
286 1.1 christos }
287 1.1 christos }
288 1.1 christos Assert (dist == 256, "tr_static_init: 256+dist != 512");
289 1.1 christos
290 1.1 christos /* Construct the codes of the static literal tree */
291 1.1 christos for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
292 1.1 christos n = 0;
293 1.1 christos while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
294 1.1 christos while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
295 1.1 christos while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
296 1.1 christos while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
297 1.1 christos /* Codes 286 and 287 do not exist, but we must include them in the
298 1.1 christos * tree construction to get a canonical Huffman tree (longest code
299 1.1 christos * all ones)
300 1.1 christos */
301 1.1 christos gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
302 1.1 christos
303 1.1 christos /* The static distance tree is trivial: */
304 1.1 christos for (n = 0; n < D_CODES; n++) {
305 1.1 christos static_dtree[n].Len = 5;
306 1.1 christos static_dtree[n].Code = bi_reverse((unsigned)n, 5);
307 1.1 christos }
308 1.1 christos static_init_done = 1;
309 1.1 christos
310 1.1 christos # ifdef GEN_TREES_H
311 1.1 christos gen_trees_header();
312 1.1 christos # endif
313 1.1 christos #endif /* defined(GEN_TREES_H) || !defined(STDC) */
314 1.1 christos }
315 1.1 christos
316 1.1 christos /* ===========================================================================
317 1.1 christos * Genererate the file trees.h describing the static trees.
318 1.1 christos */
319 1.1 christos #ifdef GEN_TREES_H
320 1.2 christos # ifndef ZLIB_DEBUG
321 1.1 christos # include <stdio.h>
322 1.1 christos # endif
323 1.1 christos
324 1.1 christos # define SEPARATOR(i, last, width) \
325 1.1 christos ((i) == (last)? "\n};\n\n" : \
326 1.1 christos ((i) % (width) == (width)-1 ? ",\n" : ", "))
327 1.1 christos
328 1.1 christos void gen_trees_header()
329 1.1 christos {
330 1.1 christos FILE *header = fopen("trees.h", "w");
331 1.1 christos int i;
332 1.1 christos
333 1.1 christos Assert (header != NULL, "Can't open trees.h");
334 1.1 christos fprintf(header,
335 1.1 christos "/* header created automatically with -DGEN_TREES_H */\n\n");
336 1.1 christos
337 1.1 christos fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
338 1.1 christos for (i = 0; i < L_CODES+2; i++) {
339 1.1 christos fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
340 1.1 christos static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
341 1.1 christos }
342 1.1 christos
343 1.1 christos fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
344 1.1 christos for (i = 0; i < D_CODES; i++) {
345 1.1 christos fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
346 1.1 christos static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
347 1.1 christos }
348 1.1 christos
349 1.4 christos fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
350 1.1 christos for (i = 0; i < DIST_CODE_LEN; i++) {
351 1.1 christos fprintf(header, "%2u%s", _dist_code[i],
352 1.1 christos SEPARATOR(i, DIST_CODE_LEN-1, 20));
353 1.1 christos }
354 1.1 christos
355 1.4 christos fprintf(header,
356 1.4 christos "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
357 1.1 christos for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
358 1.1 christos fprintf(header, "%2u%s", _length_code[i],
359 1.1 christos SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
360 1.1 christos }
361 1.1 christos
362 1.1 christos fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
363 1.1 christos for (i = 0; i < LENGTH_CODES; i++) {
364 1.1 christos fprintf(header, "%1u%s", base_length[i],
365 1.1 christos SEPARATOR(i, LENGTH_CODES-1, 20));
366 1.1 christos }
367 1.1 christos
368 1.1 christos fprintf(header, "local const int base_dist[D_CODES] = {\n");
369 1.1 christos for (i = 0; i < D_CODES; i++) {
370 1.1 christos fprintf(header, "%5u%s", base_dist[i],
371 1.1 christos SEPARATOR(i, D_CODES-1, 10));
372 1.1 christos }
373 1.1 christos
374 1.1 christos fclose(header);
375 1.1 christos }
376 1.1 christos #endif /* GEN_TREES_H */
377 1.1 christos
378 1.1 christos /* ===========================================================================
379 1.1 christos * Initialize the tree data structures for a new zlib stream.
380 1.1 christos */
381 1.4 christos void ZLIB_INTERNAL _tr_init(s)
382 1.1 christos deflate_state *s;
383 1.1 christos {
384 1.1 christos tr_static_init();
385 1.1 christos
386 1.1 christos s->l_desc.dyn_tree = s->dyn_ltree;
387 1.1 christos s->l_desc.stat_desc = &static_l_desc;
388 1.1 christos
389 1.1 christos s->d_desc.dyn_tree = s->dyn_dtree;
390 1.1 christos s->d_desc.stat_desc = &static_d_desc;
391 1.1 christos
392 1.1 christos s->bl_desc.dyn_tree = s->bl_tree;
393 1.1 christos s->bl_desc.stat_desc = &static_bl_desc;
394 1.1 christos
395 1.1 christos s->bi_buf = 0;
396 1.1 christos s->bi_valid = 0;
397 1.2 christos #ifdef ZLIB_DEBUG
398 1.1 christos s->compressed_len = 0L;
399 1.1 christos s->bits_sent = 0L;
400 1.1 christos #endif
401 1.1 christos
402 1.1 christos /* Initialize the first block of the first file: */
403 1.1 christos init_block(s);
404 1.1 christos }
405 1.1 christos
406 1.1 christos /* ===========================================================================
407 1.1 christos * Initialize a new block.
408 1.1 christos */
409 1.1 christos local void init_block(s)
410 1.1 christos deflate_state *s;
411 1.1 christos {
412 1.1 christos int n; /* iterates over tree elements */
413 1.1 christos
414 1.1 christos /* Initialize the trees. */
415 1.1 christos for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
416 1.1 christos for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
417 1.1 christos for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
418 1.1 christos
419 1.1 christos s->dyn_ltree[END_BLOCK].Freq = 1;
420 1.1 christos s->opt_len = s->static_len = 0L;
421 1.1 christos s->last_lit = s->matches = 0;
422 1.1 christos }
423 1.1 christos
424 1.1 christos #define SMALLEST 1
425 1.1 christos /* Index within the heap array of least frequent node in the Huffman tree */
426 1.1 christos
427 1.1 christos
428 1.1 christos /* ===========================================================================
429 1.1 christos * Remove the smallest element from the heap and recreate the heap with
430 1.1 christos * one less element. Updates heap and heap_len.
431 1.1 christos */
432 1.1 christos #define pqremove(s, tree, top) \
433 1.1 christos {\
434 1.1 christos top = s->heap[SMALLEST]; \
435 1.1 christos s->heap[SMALLEST] = s->heap[s->heap_len--]; \
436 1.1 christos pqdownheap(s, tree, SMALLEST); \
437 1.1 christos }
438 1.1 christos
439 1.1 christos /* ===========================================================================
440 1.1 christos * Compares to subtrees, using the tree depth as tie breaker when
441 1.1 christos * the subtrees have equal frequency. This minimizes the worst case length.
442 1.1 christos */
443 1.1 christos #define smaller(tree, n, m, depth) \
444 1.1 christos (tree[n].Freq < tree[m].Freq || \
445 1.1 christos (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
446 1.1 christos
447 1.1 christos /* ===========================================================================
448 1.1 christos * Restore the heap property by moving down the tree starting at node k,
449 1.1 christos * exchanging a node with the smallest of its two sons if necessary, stopping
450 1.1 christos * when the heap property is re-established (each father smaller than its
451 1.1 christos * two sons).
452 1.1 christos */
453 1.1 christos local void pqdownheap(s, tree, k)
454 1.1 christos deflate_state *s;
455 1.1 christos ct_data *tree; /* the tree to restore */
456 1.1 christos int k; /* node to move down */
457 1.1 christos {
458 1.1 christos int v = s->heap[k];
459 1.1 christos int j = k << 1; /* left son of k */
460 1.1 christos while (j <= s->heap_len) {
461 1.1 christos /* Set j to the smallest of the two sons: */
462 1.1 christos if (j < s->heap_len &&
463 1.1 christos smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
464 1.1 christos j++;
465 1.1 christos }
466 1.1 christos /* Exit if v is smaller than both sons */
467 1.1 christos if (smaller(tree, v, s->heap[j], s->depth)) break;
468 1.1 christos
469 1.1 christos /* Exchange v with the smallest son */
470 1.1 christos s->heap[k] = s->heap[j]; k = j;
471 1.1 christos
472 1.1 christos /* And continue down the tree, setting j to the left son of k */
473 1.1 christos j <<= 1;
474 1.1 christos }
475 1.1 christos s->heap[k] = v;
476 1.1 christos }
477 1.1 christos
478 1.1 christos /* ===========================================================================
479 1.1 christos * Compute the optimal bit lengths for a tree and update the total bit length
480 1.1 christos * for the current block.
481 1.1 christos * IN assertion: the fields freq and dad are set, heap[heap_max] and
482 1.1 christos * above are the tree nodes sorted by increasing frequency.
483 1.1 christos * OUT assertions: the field len is set to the optimal bit length, the
484 1.1 christos * array bl_count contains the frequencies for each bit length.
485 1.1 christos * The length opt_len is updated; static_len is also updated if stree is
486 1.1 christos * not null.
487 1.1 christos */
488 1.1 christos local void gen_bitlen(s, desc)
489 1.1 christos deflate_state *s;
490 1.1 christos tree_desc *desc; /* the tree descriptor */
491 1.1 christos {
492 1.1 christos ct_data *tree = desc->dyn_tree;
493 1.1 christos int max_code = desc->max_code;
494 1.1 christos const ct_data *stree = desc->stat_desc->static_tree;
495 1.1 christos const intf *extra = desc->stat_desc->extra_bits;
496 1.1 christos int base = desc->stat_desc->extra_base;
497 1.1 christos int max_length = desc->stat_desc->max_length;
498 1.1 christos int h; /* heap index */
499 1.1 christos int n, m; /* iterate over the tree elements */
500 1.1 christos int bits; /* bit length */
501 1.1 christos int xbits; /* extra bits */
502 1.1 christos ush f; /* frequency */
503 1.1 christos int overflow = 0; /* number of elements with bit length too large */
504 1.1 christos
505 1.1 christos for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
506 1.1 christos
507 1.1 christos /* In a first pass, compute the optimal bit lengths (which may
508 1.1 christos * overflow in the case of the bit length tree).
509 1.1 christos */
510 1.1 christos tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
511 1.1 christos
512 1.1 christos for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
513 1.1 christos n = s->heap[h];
514 1.1 christos bits = tree[tree[n].Dad].Len + 1;
515 1.1 christos if (bits > max_length) bits = max_length, overflow++;
516 1.1 christos tree[n].Len = (ush)bits;
517 1.1 christos /* We overwrite tree[n].Dad which is no longer needed */
518 1.1 christos
519 1.1 christos if (n > max_code) continue; /* not a leaf node */
520 1.1 christos
521 1.1 christos s->bl_count[bits]++;
522 1.1 christos xbits = 0;
523 1.1 christos if (n >= base) xbits = extra[n-base];
524 1.1 christos f = tree[n].Freq;
525 1.4 christos s->opt_len += (ulg)f * (unsigned)(bits + xbits);
526 1.4 christos if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
527 1.1 christos }
528 1.1 christos if (overflow == 0) return;
529 1.1 christos
530 1.4 christos Tracev((stderr,"\nbit length overflow\n"));
531 1.1 christos /* This happens for example on obj2 and pic of the Calgary corpus */
532 1.1 christos
533 1.1 christos /* Find the first bit length which could increase: */
534 1.1 christos do {
535 1.1 christos bits = max_length-1;
536 1.1 christos while (s->bl_count[bits] == 0) bits--;
537 1.1 christos s->bl_count[bits]--; /* move one leaf down the tree */
538 1.1 christos s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
539 1.1 christos s->bl_count[max_length]--;
540 1.1 christos /* The brother of the overflow item also moves one step up,
541 1.1 christos * but this does not affect bl_count[max_length]
542 1.1 christos */
543 1.1 christos overflow -= 2;
544 1.1 christos } while (overflow > 0);
545 1.1 christos
546 1.1 christos /* Now recompute all bit lengths, scanning in increasing frequency.
547 1.1 christos * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
548 1.1 christos * lengths instead of fixing only the wrong ones. This idea is taken
549 1.1 christos * from 'ar' written by Haruhiko Okumura.)
550 1.1 christos */
551 1.1 christos for (bits = max_length; bits != 0; bits--) {
552 1.1 christos n = s->bl_count[bits];
553 1.1 christos while (n != 0) {
554 1.1 christos m = s->heap[--h];
555 1.1 christos if (m > max_code) continue;
556 1.1 christos if ((unsigned) tree[m].Len != (unsigned) bits) {
557 1.4 christos Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
558 1.4 christos s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
559 1.1 christos tree[m].Len = (ush)bits;
560 1.1 christos }
561 1.1 christos n--;
562 1.1 christos }
563 1.1 christos }
564 1.1 christos }
565 1.1 christos
566 1.1 christos /* ===========================================================================
567 1.1 christos * Generate the codes for a given tree and bit counts (which need not be
568 1.1 christos * optimal).
569 1.1 christos * IN assertion: the array bl_count contains the bit length statistics for
570 1.1 christos * the given tree and the field len is set for all tree elements.
571 1.1 christos * OUT assertion: the field code is set for all tree elements of non
572 1.1 christos * zero code length.
573 1.1 christos */
574 1.1 christos local void gen_codes (tree, max_code, bl_count)
575 1.1 christos ct_data *tree; /* the tree to decorate */
576 1.1 christos int max_code; /* largest code with non zero frequency */
577 1.1 christos ushf *bl_count; /* number of codes at each bit length */
578 1.1 christos {
579 1.1 christos ush next_code[MAX_BITS+1]; /* next code value for each bit length */
580 1.4 christos unsigned code = 0; /* running code value */
581 1.1 christos int bits; /* bit index */
582 1.1 christos int n; /* code index */
583 1.1 christos
584 1.1 christos /* The distribution counts are first used to generate the code values
585 1.1 christos * without bit reversal.
586 1.1 christos */
587 1.1 christos for (bits = 1; bits <= MAX_BITS; bits++) {
588 1.4 christos code = (code + bl_count[bits-1]) << 1;
589 1.4 christos next_code[bits] = (ush)code;
590 1.1 christos }
591 1.1 christos /* Check that the bit counts in bl_count are consistent. The last code
592 1.1 christos * must be all ones.
593 1.1 christos */
594 1.1 christos Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
595 1.1 christos "inconsistent bit counts");
596 1.1 christos Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
597 1.1 christos
598 1.1 christos for (n = 0; n <= max_code; n++) {
599 1.1 christos int len = tree[n].Len;
600 1.1 christos if (len == 0) continue;
601 1.1 christos /* Now reverse the bits */
602 1.4 christos tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
603 1.1 christos
604 1.1 christos Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
605 1.1 christos n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
606 1.1 christos }
607 1.1 christos }
608 1.1 christos
609 1.1 christos /* ===========================================================================
610 1.1 christos * Construct one Huffman tree and assigns the code bit strings and lengths.
611 1.1 christos * Update the total bit length for the current block.
612 1.1 christos * IN assertion: the field freq is set for all tree elements.
613 1.1 christos * OUT assertions: the fields len and code are set to the optimal bit length
614 1.1 christos * and corresponding code. The length opt_len is updated; static_len is
615 1.1 christos * also updated if stree is not null. The field max_code is set.
616 1.1 christos */
617 1.1 christos local void build_tree(s, desc)
618 1.1 christos deflate_state *s;
619 1.1 christos tree_desc *desc; /* the tree descriptor */
620 1.1 christos {
621 1.1 christos ct_data *tree = desc->dyn_tree;
622 1.1 christos const ct_data *stree = desc->stat_desc->static_tree;
623 1.1 christos int elems = desc->stat_desc->elems;
624 1.1 christos int n, m; /* iterate over heap elements */
625 1.1 christos int max_code = -1; /* largest code with non zero frequency */
626 1.1 christos int node; /* new node being created */
627 1.1 christos
628 1.1 christos /* Construct the initial heap, with least frequent element in
629 1.1 christos * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
630 1.1 christos * heap[0] is not used.
631 1.1 christos */
632 1.1 christos s->heap_len = 0, s->heap_max = HEAP_SIZE;
633 1.1 christos
634 1.1 christos for (n = 0; n < elems; n++) {
635 1.1 christos if (tree[n].Freq != 0) {
636 1.1 christos s->heap[++(s->heap_len)] = max_code = n;
637 1.1 christos s->depth[n] = 0;
638 1.1 christos } else {
639 1.1 christos tree[n].Len = 0;
640 1.1 christos }
641 1.1 christos }
642 1.1 christos
643 1.1 christos /* The pkzip format requires that at least one distance code exists,
644 1.1 christos * and that at least one bit should be sent even if there is only one
645 1.1 christos * possible code. So to avoid special checks later on we force at least
646 1.1 christos * two codes of non zero frequency.
647 1.1 christos */
648 1.1 christos while (s->heap_len < 2) {
649 1.1 christos node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
650 1.1 christos tree[node].Freq = 1;
651 1.1 christos s->depth[node] = 0;
652 1.1 christos s->opt_len--; if (stree) s->static_len -= stree[node].Len;
653 1.1 christos /* node is 0 or 1 so it does not have extra bits */
654 1.1 christos }
655 1.1 christos desc->max_code = max_code;
656 1.1 christos
657 1.1 christos /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
658 1.1 christos * establish sub-heaps of increasing lengths:
659 1.1 christos */
660 1.1 christos for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
661 1.1 christos
662 1.1 christos /* Construct the Huffman tree by repeatedly combining the least two
663 1.1 christos * frequent nodes.
664 1.1 christos */
665 1.1 christos node = elems; /* next internal node of the tree */
666 1.1 christos do {
667 1.1 christos pqremove(s, tree, n); /* n = node of least frequency */
668 1.1 christos m = s->heap[SMALLEST]; /* m = node of next least frequency */
669 1.1 christos
670 1.1 christos s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
671 1.1 christos s->heap[--(s->heap_max)] = m;
672 1.1 christos
673 1.1 christos /* Create a new node father of n and m */
674 1.1 christos tree[node].Freq = tree[n].Freq + tree[m].Freq;
675 1.1 christos s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
676 1.1 christos s->depth[n] : s->depth[m]) + 1);
677 1.1 christos tree[n].Dad = tree[m].Dad = (ush)node;
678 1.1 christos #ifdef DUMP_BL_TREE
679 1.1 christos if (tree == s->bl_tree) {
680 1.1 christos fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
681 1.1 christos node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
682 1.1 christos }
683 1.1 christos #endif
684 1.1 christos /* and insert the new node in the heap */
685 1.1 christos s->heap[SMALLEST] = node++;
686 1.1 christos pqdownheap(s, tree, SMALLEST);
687 1.1 christos
688 1.1 christos } while (s->heap_len >= 2);
689 1.1 christos
690 1.1 christos s->heap[--(s->heap_max)] = s->heap[SMALLEST];
691 1.1 christos
692 1.1 christos /* At this point, the fields freq and dad are set. We can now
693 1.1 christos * generate the bit lengths.
694 1.1 christos */
695 1.1 christos gen_bitlen(s, (tree_desc *)desc);
696 1.1 christos
697 1.1 christos /* The field len is now set, we can generate the bit codes */
698 1.1 christos gen_codes ((ct_data *)tree, max_code, s->bl_count);
699 1.1 christos }
700 1.1 christos
701 1.1 christos /* ===========================================================================
702 1.1 christos * Scan a literal or distance tree to determine the frequencies of the codes
703 1.1 christos * in the bit length tree.
704 1.1 christos */
705 1.1 christos local void scan_tree (s, tree, max_code)
706 1.1 christos deflate_state *s;
707 1.1 christos ct_data *tree; /* the tree to be scanned */
708 1.1 christos int max_code; /* and its largest code of non zero frequency */
709 1.1 christos {
710 1.1 christos int n; /* iterates over all tree elements */
711 1.1 christos int prevlen = -1; /* last emitted length */
712 1.1 christos int curlen; /* length of current code */
713 1.1 christos int nextlen = tree[0].Len; /* length of next code */
714 1.1 christos int count = 0; /* repeat count of the current code */
715 1.1 christos int max_count = 7; /* max repeat count */
716 1.1 christos int min_count = 4; /* min repeat count */
717 1.1 christos
718 1.1 christos if (nextlen == 0) max_count = 138, min_count = 3;
719 1.1 christos tree[max_code+1].Len = (ush)0xffff; /* guard */
720 1.1 christos
721 1.1 christos for (n = 0; n <= max_code; n++) {
722 1.1 christos curlen = nextlen; nextlen = tree[n+1].Len;
723 1.1 christos if (++count < max_count && curlen == nextlen) {
724 1.1 christos continue;
725 1.1 christos } else if (count < min_count) {
726 1.1 christos s->bl_tree[curlen].Freq += count;
727 1.1 christos } else if (curlen != 0) {
728 1.1 christos if (curlen != prevlen) s->bl_tree[curlen].Freq++;
729 1.1 christos s->bl_tree[REP_3_6].Freq++;
730 1.1 christos } else if (count <= 10) {
731 1.1 christos s->bl_tree[REPZ_3_10].Freq++;
732 1.1 christos } else {
733 1.1 christos s->bl_tree[REPZ_11_138].Freq++;
734 1.1 christos }
735 1.1 christos count = 0; prevlen = curlen;
736 1.1 christos if (nextlen == 0) {
737 1.1 christos max_count = 138, min_count = 3;
738 1.1 christos } else if (curlen == nextlen) {
739 1.1 christos max_count = 6, min_count = 3;
740 1.1 christos } else {
741 1.1 christos max_count = 7, min_count = 4;
742 1.1 christos }
743 1.1 christos }
744 1.1 christos }
745 1.1 christos
746 1.1 christos /* ===========================================================================
747 1.1 christos * Send a literal or distance tree in compressed form, using the codes in
748 1.1 christos * bl_tree.
749 1.1 christos */
750 1.1 christos local void send_tree (s, tree, max_code)
751 1.1 christos deflate_state *s;
752 1.1 christos ct_data *tree; /* the tree to be scanned */
753 1.1 christos int max_code; /* and its largest code of non zero frequency */
754 1.1 christos {
755 1.1 christos int n; /* iterates over all tree elements */
756 1.1 christos int prevlen = -1; /* last emitted length */
757 1.1 christos int curlen; /* length of current code */
758 1.1 christos int nextlen = tree[0].Len; /* length of next code */
759 1.1 christos int count = 0; /* repeat count of the current code */
760 1.1 christos int max_count = 7; /* max repeat count */
761 1.1 christos int min_count = 4; /* min repeat count */
762 1.1 christos
763 1.1 christos /* tree[max_code+1].Len = -1; */ /* guard already set */
764 1.1 christos if (nextlen == 0) max_count = 138, min_count = 3;
765 1.1 christos
766 1.1 christos for (n = 0; n <= max_code; n++) {
767 1.1 christos curlen = nextlen; nextlen = tree[n+1].Len;
768 1.1 christos if (++count < max_count && curlen == nextlen) {
769 1.1 christos continue;
770 1.1 christos } else if (count < min_count) {
771 1.1 christos do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
772 1.1 christos
773 1.1 christos } else if (curlen != 0) {
774 1.1 christos if (curlen != prevlen) {
775 1.1 christos send_code(s, curlen, s->bl_tree); count--;
776 1.1 christos }
777 1.1 christos Assert(count >= 3 && count <= 6, " 3_6?");
778 1.1 christos send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
779 1.1 christos
780 1.1 christos } else if (count <= 10) {
781 1.1 christos send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
782 1.1 christos
783 1.1 christos } else {
784 1.1 christos send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
785 1.1 christos }
786 1.1 christos count = 0; prevlen = curlen;
787 1.1 christos if (nextlen == 0) {
788 1.1 christos max_count = 138, min_count = 3;
789 1.1 christos } else if (curlen == nextlen) {
790 1.1 christos max_count = 6, min_count = 3;
791 1.1 christos } else {
792 1.1 christos max_count = 7, min_count = 4;
793 1.1 christos }
794 1.1 christos }
795 1.1 christos }
796 1.1 christos
797 1.1 christos /* ===========================================================================
798 1.1 christos * Construct the Huffman tree for the bit lengths and return the index in
799 1.1 christos * bl_order of the last bit length code to send.
800 1.1 christos */
801 1.1 christos local int build_bl_tree(s)
802 1.1 christos deflate_state *s;
803 1.1 christos {
804 1.1 christos int max_blindex; /* index of last bit length code of non zero freq */
805 1.1 christos
806 1.1 christos /* Determine the bit length frequencies for literal and distance trees */
807 1.1 christos scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
808 1.1 christos scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
809 1.1 christos
810 1.1 christos /* Build the bit length tree: */
811 1.1 christos build_tree(s, (tree_desc *)(&(s->bl_desc)));
812 1.1 christos /* opt_len now includes the length of the tree representations, except
813 1.1 christos * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
814 1.1 christos */
815 1.1 christos
816 1.1 christos /* Determine the number of bit length codes to send. The pkzip format
817 1.1 christos * requires that at least 4 bit length codes be sent. (appnote.txt says
818 1.1 christos * 3 but the actual value used is 4.)
819 1.1 christos */
820 1.1 christos for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
821 1.1 christos if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
822 1.1 christos }
823 1.1 christos /* Update opt_len to include the bit length tree and counts */
824 1.4 christos s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
825 1.1 christos Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
826 1.1 christos s->opt_len, s->static_len));
827 1.1 christos
828 1.1 christos return max_blindex;
829 1.1 christos }
830 1.1 christos
831 1.1 christos /* ===========================================================================
832 1.1 christos * Send the header for a block using dynamic Huffman trees: the counts, the
833 1.1 christos * lengths of the bit length codes, the literal tree and the distance tree.
834 1.1 christos * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
835 1.1 christos */
836 1.1 christos local void send_all_trees(s, lcodes, dcodes, blcodes)
837 1.1 christos deflate_state *s;
838 1.1 christos int lcodes, dcodes, blcodes; /* number of codes for each tree */
839 1.1 christos {
840 1.1 christos int rank; /* index in bl_order */
841 1.1 christos
842 1.1 christos Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
843 1.1 christos Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
844 1.1 christos "too many codes");
845 1.1 christos Tracev((stderr, "\nbl counts: "));
846 1.1 christos send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
847 1.1 christos send_bits(s, dcodes-1, 5);
848 1.1 christos send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
849 1.1 christos for (rank = 0; rank < blcodes; rank++) {
850 1.1 christos Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
851 1.1 christos send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
852 1.1 christos }
853 1.1 christos Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
854 1.1 christos
855 1.1 christos send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
856 1.1 christos Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
857 1.1 christos
858 1.1 christos send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
859 1.1 christos Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
860 1.1 christos }
861 1.1 christos
862 1.1 christos /* ===========================================================================
863 1.1 christos * Send a stored block
864 1.1 christos */
865 1.4 christos void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
866 1.1 christos deflate_state *s;
867 1.1 christos charf *buf; /* input block */
868 1.1 christos ulg stored_len; /* length of input block */
869 1.4 christos int last; /* one if this is the last block for a file */
870 1.1 christos {
871 1.4 christos send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
872 1.4 christos bi_windup(s); /* align on byte boundary */
873 1.4 christos put_short(s, (ush)stored_len);
874 1.4 christos put_short(s, (ush)~stored_len);
875 1.4 christos zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
876 1.4 christos s->pending += stored_len;
877 1.2 christos #ifdef ZLIB_DEBUG
878 1.1 christos s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
879 1.1 christos s->compressed_len += (stored_len + 4) << 3;
880 1.4 christos s->bits_sent += 2*16;
881 1.4 christos s->bits_sent += stored_len<<3;
882 1.1 christos #endif
883 1.4 christos }
884 1.4 christos
885 1.4 christos /* ===========================================================================
886 1.4 christos * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
887 1.4 christos */
888 1.4 christos void ZLIB_INTERNAL _tr_flush_bits(s)
889 1.4 christos deflate_state *s;
890 1.4 christos {
891 1.4 christos bi_flush(s);
892 1.1 christos }
893 1.1 christos
894 1.1 christos /* ===========================================================================
895 1.1 christos * Send one empty static block to give enough lookahead for inflate.
896 1.1 christos * This takes 10 bits, of which 7 may remain in the bit buffer.
897 1.1 christos */
898 1.4 christos void ZLIB_INTERNAL _tr_align(s)
899 1.1 christos deflate_state *s;
900 1.1 christos {
901 1.1 christos send_bits(s, STATIC_TREES<<1, 3);
902 1.1 christos send_code(s, END_BLOCK, static_ltree);
903 1.2 christos #ifdef ZLIB_DEBUG
904 1.1 christos s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
905 1.1 christos #endif
906 1.1 christos bi_flush(s);
907 1.1 christos }
908 1.1 christos
909 1.1 christos /* ===========================================================================
910 1.1 christos * Determine the best encoding for the current block: dynamic trees, static
911 1.1 christos * trees or store, and output the encoded block to the zip file.
912 1.1 christos */
913 1.4 christos void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
914 1.1 christos deflate_state *s;
915 1.1 christos charf *buf; /* input block, or NULL if too old */
916 1.1 christos ulg stored_len; /* length of input block */
917 1.4 christos int last; /* one if this is the last block for a file */
918 1.1 christos {
919 1.1 christos ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
920 1.1 christos int max_blindex = 0; /* index of last bit length code of non zero freq */
921 1.1 christos
922 1.1 christos /* Build the Huffman trees unless a stored block is forced */
923 1.1 christos if (s->level > 0) {
924 1.1 christos
925 1.1 christos /* Check if the file is binary or text */
926 1.4 christos if (s->strm->data_type == Z_UNKNOWN)
927 1.4 christos s->strm->data_type = detect_data_type(s);
928 1.1 christos
929 1.1 christos /* Construct the literal and distance trees */
930 1.1 christos build_tree(s, (tree_desc *)(&(s->l_desc)));
931 1.1 christos Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
932 1.1 christos s->static_len));
933 1.1 christos
934 1.1 christos build_tree(s, (tree_desc *)(&(s->d_desc)));
935 1.1 christos Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
936 1.1 christos s->static_len));
937 1.1 christos /* At this point, opt_len and static_len are the total bit lengths of
938 1.1 christos * the compressed block data, excluding the tree representations.
939 1.1 christos */
940 1.1 christos
941 1.1 christos /* Build the bit length tree for the above two trees, and get the index
942 1.1 christos * in bl_order of the last bit length code to send.
943 1.1 christos */
944 1.1 christos max_blindex = build_bl_tree(s);
945 1.1 christos
946 1.1 christos /* Determine the best encoding. Compute the block lengths in bytes. */
947 1.1 christos opt_lenb = (s->opt_len+3+7)>>3;
948 1.1 christos static_lenb = (s->static_len+3+7)>>3;
949 1.1 christos
950 1.1 christos Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
951 1.1 christos opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
952 1.1 christos s->last_lit));
953 1.1 christos
954 1.1 christos if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
955 1.1 christos
956 1.1 christos } else {
957 1.1 christos Assert(buf != (char*)0, "lost buf");
958 1.1 christos opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
959 1.1 christos }
960 1.1 christos
961 1.1 christos #ifdef FORCE_STORED
962 1.1 christos if (buf != (char*)0) { /* force stored block */
963 1.1 christos #else
964 1.1 christos if (stored_len+4 <= opt_lenb && buf != (char*)0) {
965 1.1 christos /* 4: two words for the lengths */
966 1.1 christos #endif
967 1.1 christos /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
968 1.1 christos * Otherwise we can't have processed more than WSIZE input bytes since
969 1.1 christos * the last block flush, because compression would have been
970 1.1 christos * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
971 1.1 christos * transform a block into a stored block.
972 1.1 christos */
973 1.4 christos _tr_stored_block(s, buf, stored_len, last);
974 1.1 christos
975 1.1 christos #ifdef FORCE_STATIC
976 1.1 christos } else if (static_lenb >= 0) { /* force static trees */
977 1.1 christos #else
978 1.1 christos } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
979 1.1 christos #endif
980 1.4 christos send_bits(s, (STATIC_TREES<<1)+last, 3);
981 1.4 christos compress_block(s, (const ct_data *)static_ltree,
982 1.4 christos (const ct_data *)static_dtree);
983 1.2 christos #ifdef ZLIB_DEBUG
984 1.1 christos s->compressed_len += 3 + s->static_len;
985 1.1 christos #endif
986 1.1 christos } else {
987 1.4 christos send_bits(s, (DYN_TREES<<1)+last, 3);
988 1.1 christos send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
989 1.1 christos max_blindex+1);
990 1.4 christos compress_block(s, (const ct_data *)s->dyn_ltree,
991 1.4 christos (const ct_data *)s->dyn_dtree);
992 1.2 christos #ifdef ZLIB_DEBUG
993 1.1 christos s->compressed_len += 3 + s->opt_len;
994 1.1 christos #endif
995 1.1 christos }
996 1.1 christos Assert (s->compressed_len == s->bits_sent, "bad compressed size");
997 1.1 christos /* The above check is made mod 2^32, for files larger than 512 MB
998 1.1 christos * and uLong implemented on 32 bits.
999 1.1 christos */
1000 1.1 christos init_block(s);
1001 1.1 christos
1002 1.4 christos if (last) {
1003 1.1 christos bi_windup(s);
1004 1.2 christos #ifdef ZLIB_DEBUG
1005 1.1 christos s->compressed_len += 7; /* align on byte boundary */
1006 1.1 christos #endif
1007 1.1 christos }
1008 1.1 christos Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1009 1.4 christos s->compressed_len-7*last));
1010 1.1 christos }
1011 1.1 christos
1012 1.1 christos /* ===========================================================================
1013 1.1 christos * Save the match info and tally the frequency counts. Return true if
1014 1.1 christos * the current block must be flushed.
1015 1.1 christos */
1016 1.4 christos int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1017 1.1 christos deflate_state *s;
1018 1.1 christos unsigned dist; /* distance of matched string */
1019 1.1 christos unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1020 1.1 christos {
1021 1.1 christos s->d_buf[s->last_lit] = (ush)dist;
1022 1.1 christos s->l_buf[s->last_lit++] = (uch)lc;
1023 1.1 christos if (dist == 0) {
1024 1.1 christos /* lc is the unmatched char */
1025 1.1 christos s->dyn_ltree[lc].Freq++;
1026 1.1 christos } else {
1027 1.1 christos s->matches++;
1028 1.1 christos /* Here, lc is the match length - MIN_MATCH */
1029 1.1 christos dist--; /* dist = match distance - 1 */
1030 1.1 christos Assert((ush)dist < (ush)MAX_DIST(s) &&
1031 1.1 christos (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1032 1.1 christos (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1033 1.1 christos
1034 1.1 christos s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1035 1.1 christos s->dyn_dtree[d_code(dist)].Freq++;
1036 1.1 christos }
1037 1.1 christos
1038 1.1 christos #ifdef TRUNCATE_BLOCK
1039 1.1 christos /* Try to guess if it is profitable to stop the current block here */
1040 1.1 christos if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1041 1.1 christos /* Compute an upper bound for the compressed length */
1042 1.1 christos ulg out_length = (ulg)s->last_lit*8L;
1043 1.1 christos ulg in_length = (ulg)((long)s->strstart - s->block_start);
1044 1.1 christos int dcode;
1045 1.1 christos for (dcode = 0; dcode < D_CODES; dcode++) {
1046 1.1 christos out_length += (ulg)s->dyn_dtree[dcode].Freq *
1047 1.1 christos (5L+extra_dbits[dcode]);
1048 1.1 christos }
1049 1.1 christos out_length >>= 3;
1050 1.1 christos Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1051 1.1 christos s->last_lit, in_length, out_length,
1052 1.1 christos 100L - out_length*100L/in_length));
1053 1.1 christos if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1054 1.1 christos }
1055 1.1 christos #endif
1056 1.1 christos return (s->last_lit == s->lit_bufsize-1);
1057 1.1 christos /* We avoid equality with lit_bufsize because of wraparound at 64K
1058 1.1 christos * on 16 bit machines and because stored blocks are restricted to
1059 1.1 christos * 64K-1 bytes.
1060 1.1 christos */
1061 1.1 christos }
1062 1.1 christos
1063 1.1 christos /* ===========================================================================
1064 1.1 christos * Send the block data compressed using the given Huffman trees
1065 1.1 christos */
1066 1.1 christos local void compress_block(s, ltree, dtree)
1067 1.1 christos deflate_state *s;
1068 1.4 christos const ct_data *ltree; /* literal tree */
1069 1.4 christos const ct_data *dtree; /* distance tree */
1070 1.1 christos {
1071 1.1 christos unsigned dist; /* distance of matched string */
1072 1.1 christos int lc; /* match length or unmatched char (if dist == 0) */
1073 1.1 christos unsigned lx = 0; /* running index in l_buf */
1074 1.1 christos unsigned code; /* the code to send */
1075 1.1 christos int extra; /* number of extra bits to send */
1076 1.1 christos
1077 1.1 christos if (s->last_lit != 0) do {
1078 1.1 christos dist = s->d_buf[lx];
1079 1.1 christos lc = s->l_buf[lx++];
1080 1.1 christos if (dist == 0) {
1081 1.1 christos send_code(s, lc, ltree); /* send a literal byte */
1082 1.1 christos Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1083 1.1 christos } else {
1084 1.1 christos /* Here, lc is the match length - MIN_MATCH */
1085 1.1 christos code = _length_code[lc];
1086 1.1 christos send_code(s, code+LITERALS+1, ltree); /* send the length code */
1087 1.1 christos extra = extra_lbits[code];
1088 1.1 christos if (extra != 0) {
1089 1.1 christos lc -= base_length[code];
1090 1.1 christos send_bits(s, lc, extra); /* send the extra length bits */
1091 1.1 christos }
1092 1.1 christos dist--; /* dist is now the match distance - 1 */
1093 1.1 christos code = d_code(dist);
1094 1.1 christos Assert (code < D_CODES, "bad d_code");
1095 1.1 christos
1096 1.1 christos send_code(s, code, dtree); /* send the distance code */
1097 1.1 christos extra = extra_dbits[code];
1098 1.1 christos if (extra != 0) {
1099 1.4 christos dist -= (unsigned)base_dist[code];
1100 1.1 christos send_bits(s, dist, extra); /* send the extra distance bits */
1101 1.1 christos }
1102 1.1 christos } /* literal or match pair ? */
1103 1.1 christos
1104 1.1 christos /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1105 1.1 christos Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1106 1.1 christos "pendingBuf overflow");
1107 1.1 christos
1108 1.1 christos } while (lx < s->last_lit);
1109 1.1 christos
1110 1.1 christos send_code(s, END_BLOCK, ltree);
1111 1.1 christos }
1112 1.1 christos
1113 1.1 christos /* ===========================================================================
1114 1.4 christos * Check if the data type is TEXT or BINARY, using the following algorithm:
1115 1.4 christos * - TEXT if the two conditions below are satisfied:
1116 1.4 christos * a) There are no non-portable control characters belonging to the
1117 1.4 christos * "black list" (0..6, 14..25, 28..31).
1118 1.4 christos * b) There is at least one printable character belonging to the
1119 1.4 christos * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1120 1.4 christos * - BINARY otherwise.
1121 1.4 christos * - The following partially-portable control characters form a
1122 1.4 christos * "gray list" that is ignored in this detection algorithm:
1123 1.4 christos * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1124 1.1 christos * IN assertion: the fields Freq of dyn_ltree are set.
1125 1.1 christos */
1126 1.4 christos local int detect_data_type(s)
1127 1.1 christos deflate_state *s;
1128 1.1 christos {
1129 1.4 christos /* black_mask is the bit mask of black-listed bytes
1130 1.4 christos * set bits 0..6, 14..25, and 28..31
1131 1.4 christos * 0xf3ffc07f = binary 11110011111111111100000001111111
1132 1.4 christos */
1133 1.4 christos unsigned long black_mask = 0xf3ffc07fUL;
1134 1.1 christos int n;
1135 1.1 christos
1136 1.4 christos /* Check for non-textual ("black-listed") bytes. */
1137 1.4 christos for (n = 0; n <= 31; n++, black_mask >>= 1)
1138 1.4 christos if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1139 1.4 christos return Z_BINARY;
1140 1.4 christos
1141 1.4 christos /* Check for textual ("white-listed") bytes. */
1142 1.4 christos if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1143 1.4 christos || s->dyn_ltree[13].Freq != 0)
1144 1.4 christos return Z_TEXT;
1145 1.4 christos for (n = 32; n < LITERALS; n++)
1146 1.1 christos if (s->dyn_ltree[n].Freq != 0)
1147 1.4 christos return Z_TEXT;
1148 1.4 christos
1149 1.4 christos /* There are no "black-listed" or "white-listed" bytes:
1150 1.4 christos * this stream either is empty or has tolerated ("gray-listed") bytes only.
1151 1.4 christos */
1152 1.4 christos return Z_BINARY;
1153 1.1 christos }
1154 1.1 christos
1155 1.1 christos /* ===========================================================================
1156 1.1 christos * Reverse the first len bits of a code, using straightforward code (a faster
1157 1.1 christos * method would use a table)
1158 1.1 christos * IN assertion: 1 <= len <= 15
1159 1.1 christos */
1160 1.1 christos local unsigned bi_reverse(code, len)
1161 1.1 christos unsigned code; /* the value to invert */
1162 1.1 christos int len; /* its bit length */
1163 1.1 christos {
1164 1.1 christos register unsigned res = 0;
1165 1.1 christos do {
1166 1.1 christos res |= code & 1;
1167 1.1 christos code >>= 1, res <<= 1;
1168 1.1 christos } while (--len > 0);
1169 1.1 christos return res >> 1;
1170 1.1 christos }
1171 1.1 christos
1172 1.1 christos /* ===========================================================================
1173 1.1 christos * Flush the bit buffer, keeping at most 7 bits in it.
1174 1.1 christos */
1175 1.1 christos local void bi_flush(s)
1176 1.1 christos deflate_state *s;
1177 1.1 christos {
1178 1.1 christos if (s->bi_valid == 16) {
1179 1.1 christos put_short(s, s->bi_buf);
1180 1.1 christos s->bi_buf = 0;
1181 1.1 christos s->bi_valid = 0;
1182 1.1 christos } else if (s->bi_valid >= 8) {
1183 1.1 christos put_byte(s, (Byte)s->bi_buf);
1184 1.1 christos s->bi_buf >>= 8;
1185 1.1 christos s->bi_valid -= 8;
1186 1.1 christos }
1187 1.1 christos }
1188 1.1 christos
1189 1.1 christos /* ===========================================================================
1190 1.1 christos * Flush the bit buffer and align the output on a byte boundary
1191 1.1 christos */
1192 1.1 christos local void bi_windup(s)
1193 1.1 christos deflate_state *s;
1194 1.1 christos {
1195 1.1 christos if (s->bi_valid > 8) {
1196 1.1 christos put_short(s, s->bi_buf);
1197 1.1 christos } else if (s->bi_valid > 0) {
1198 1.1 christos put_byte(s, (Byte)s->bi_buf);
1199 1.1 christos }
1200 1.1 christos s->bi_buf = 0;
1201 1.1 christos s->bi_valid = 0;
1202 1.2 christos #ifdef ZLIB_DEBUG
1203 1.1 christos s->bits_sent = (s->bits_sent+7) & ~7;
1204 1.1 christos #endif
1205 1.1 christos }
1206