Home | History | Annotate | Line # | Download | only in zlib
trees.c revision 1.2
      1 /*	$NetBSD: trees.c,v 1.2 2006/01/16 17:02:29 christos Exp $	*/
      2 
      3 /* trees.c -- output deflated data using Huffman coding
      4  * Copyright (C) 1995-2005 Jean-loup Gailly
      5  * For conditions of distribution and use, see copyright notice in zlib.h
      6  */
      7 
      8 /*
      9  *  ALGORITHM
     10  *
     11  *      The "deflation" process uses several Huffman trees. The more
     12  *      common source values are represented by shorter bit sequences.
     13  *
     14  *      Each code tree is stored in a compressed form which is itself
     15  * a Huffman encoding of the lengths of all the code strings (in
     16  * ascending order by source values).  The actual code strings are
     17  * reconstructed from the lengths in the inflate process, as described
     18  * in the deflate specification.
     19  *
     20  *  REFERENCES
     21  *
     22  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
     23  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
     24  *
     25  *      Storer, James A.
     26  *          Data Compression:  Methods and Theory, pp. 49-50.
     27  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
     28  *
     29  *      Sedgewick, R.
     30  *          Algorithms, p290.
     31  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
     32  */
     33 
     34 /* @(#) Id */
     35 
     36 /* #define GEN_TREES_H */
     37 
     38 #include "deflate.h"
     39 
     40 #ifdef ZLIB_DEBUG
     41 #  include <ctype.h>
     42 #endif
     43 
     44 /* ===========================================================================
     45  * Constants
     46  */
     47 
     48 #define MAX_BL_BITS 7
     49 /* Bit length codes must not exceed MAX_BL_BITS bits */
     50 
     51 #define END_BLOCK 256
     52 /* end of block literal code */
     53 
     54 #define REP_3_6      16
     55 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
     56 
     57 #define REPZ_3_10    17
     58 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
     59 
     60 #define REPZ_11_138  18
     61 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
     62 
     63 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
     64    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
     65 
     66 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
     67    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
     68 
     69 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
     70    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
     71 
     72 local const uch bl_order[BL_CODES]
     73    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
     74 /* The lengths of the bit length codes are sent in order of decreasing
     75  * probability, to avoid transmitting the lengths for unused bit length codes.
     76  */
     77 
     78 #define Buf_size (8 * 2*sizeof(char))
     79 /* Number of bits used within bi_buf. (bi_buf might be implemented on
     80  * more than 16 bits on some systems.)
     81  */
     82 
     83 /* ===========================================================================
     84  * Local data. These are initialized only once.
     85  */
     86 
     87 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
     88 
     89 #if defined(GEN_TREES_H) || !defined(STDC)
     90 /* non ANSI compilers may not accept trees.h */
     91 
     92 local ct_data static_ltree[L_CODES+2];
     93 /* The static literal tree. Since the bit lengths are imposed, there is no
     94  * need for the L_CODES extra codes used during heap construction. However
     95  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
     96  * below).
     97  */
     98 
     99 local ct_data static_dtree[D_CODES];
    100 /* The static distance tree. (Actually a trivial tree since all codes use
    101  * 5 bits.)
    102  */
    103 
    104 uch _dist_code[DIST_CODE_LEN];
    105 /* Distance codes. The first 256 values correspond to the distances
    106  * 3 .. 258, the last 256 values correspond to the top 8 bits of
    107  * the 15 bit distances.
    108  */
    109 
    110 uch _length_code[MAX_MATCH-MIN_MATCH+1];
    111 /* length code for each normalized match length (0 == MIN_MATCH) */
    112 
    113 local int base_length[LENGTH_CODES];
    114 /* First normalized length for each code (0 = MIN_MATCH) */
    115 
    116 local int base_dist[D_CODES];
    117 /* First normalized distance for each code (0 = distance of 1) */
    118 
    119 #else
    120 #  include "trees.h"
    121 #endif /* GEN_TREES_H */
    122 
    123 struct static_tree_desc_s {
    124     const ct_data *static_tree;  /* static tree or NULL */
    125     const intf *extra_bits;      /* extra bits for each code or NULL */
    126     int     extra_base;          /* base index for extra_bits */
    127     int     elems;               /* max number of elements in the tree */
    128     int     max_length;          /* max bit length for the codes */
    129 };
    130 
    131 local static_tree_desc  static_l_desc =
    132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
    133 
    134 local static_tree_desc  static_d_desc =
    135 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
    136 
    137 local static_tree_desc  static_bl_desc =
    138 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
    139 
    140 /* ===========================================================================
    141  * Local (static) routines in this file.
    142  */
    143 
    144 local void tr_static_init OF((void));
    145 local void init_block     OF((deflate_state *s));
    146 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
    147 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
    148 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
    149 local void build_tree     OF((deflate_state *s, tree_desc *desc));
    150 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
    151 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
    152 local int  build_bl_tree  OF((deflate_state *s));
    153 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
    154                               int blcodes));
    155 local void compress_block OF((deflate_state *s, ct_data *ltree,
    156                               ct_data *dtree));
    157 local void set_data_type  OF((deflate_state *s));
    158 local unsigned bi_reverse OF((unsigned value, int length));
    159 local void bi_windup      OF((deflate_state *s));
    160 local void bi_flush       OF((deflate_state *s));
    161 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
    162                               int header));
    163 
    164 #ifdef GEN_TREES_H
    165 local void gen_trees_header OF((void));
    166 #endif
    167 
    168 #ifndef ZLIB_DEBUG
    169 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
    170    /* Send a code of the given tree. c and tree must not have side effects */
    171 
    172 #else /* ZLIB_DEBUG */
    173 #  define send_code(s, c, tree) \
    174      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
    175        send_bits(s, tree[c].Code, tree[c].Len); }
    176 #endif
    177 
    178 /* ===========================================================================
    179  * Output a short LSB first on the stream.
    180  * IN assertion: there is enough room in pendingBuf.
    181  */
    182 #define put_short(s, w) { \
    183     put_byte(s, (uch)((w) & 0xff)); \
    184     put_byte(s, (uch)((ush)(w) >> 8)); \
    185 }
    186 
    187 /* ===========================================================================
    188  * Send a value on a given number of bits.
    189  * IN assertion: length <= 16 and value fits in length bits.
    190  */
    191 #ifdef ZLIB_DEBUG
    192 local void send_bits      OF((deflate_state *s, int value, int length));
    193 
    194 local void send_bits(s, value, length)
    195     deflate_state *s;
    196     int value;  /* value to send */
    197     int length; /* number of bits */
    198 {
    199     Tracevv((stderr," l %2d v %4x ", length, value));
    200     Assert(length > 0 && length <= 15, "invalid length");
    201     s->bits_sent += (ulg)length;
    202 
    203     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
    204      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
    205      * unused bits in value.
    206      */
    207     if (s->bi_valid > (int)Buf_size - length) {
    208         s->bi_buf |= (value << s->bi_valid);
    209         put_short(s, s->bi_buf);
    210         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
    211         s->bi_valid += length - Buf_size;
    212     } else {
    213         s->bi_buf |= value << s->bi_valid;
    214         s->bi_valid += length;
    215     }
    216 }
    217 #else /* !ZLIB_DEBUG */
    218 
    219 #define send_bits(s, value, length) \
    220 { int len = length;\
    221   if (s->bi_valid > (int)Buf_size - len) {\
    222     int val = value;\
    223     s->bi_buf |= (val << s->bi_valid);\
    224     put_short(s, s->bi_buf);\
    225     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
    226     s->bi_valid += len - Buf_size;\
    227   } else {\
    228     s->bi_buf |= (value) << s->bi_valid;\
    229     s->bi_valid += len;\
    230   }\
    231 }
    232 #endif /* ZLIB_DEBUG */
    233 
    234 
    235 /* the arguments must not have side effects */
    236 
    237 /* ===========================================================================
    238  * Initialize the various 'constant' tables.
    239  */
    240 local void tr_static_init()
    241 {
    242 #if defined(GEN_TREES_H) || !defined(STDC)
    243     static int static_init_done = 0;
    244     int n;        /* iterates over tree elements */
    245     int bits;     /* bit counter */
    246     int length;   /* length value */
    247     int code;     /* code value */
    248     int dist;     /* distance index */
    249     ush bl_count[MAX_BITS+1];
    250     /* number of codes at each bit length for an optimal tree */
    251 
    252     if (static_init_done) return;
    253 
    254     /* For some embedded targets, global variables are not initialized: */
    255     static_l_desc.static_tree = static_ltree;
    256     static_l_desc.extra_bits = extra_lbits;
    257     static_d_desc.static_tree = static_dtree;
    258     static_d_desc.extra_bits = extra_dbits;
    259     static_bl_desc.extra_bits = extra_blbits;
    260 
    261     /* Initialize the mapping length (0..255) -> length code (0..28) */
    262     length = 0;
    263     for (code = 0; code < LENGTH_CODES-1; code++) {
    264         base_length[code] = length;
    265         for (n = 0; n < (1<<extra_lbits[code]); n++) {
    266             _length_code[length++] = (uch)code;
    267         }
    268     }
    269     Assert (length == 256, "tr_static_init: length != 256");
    270     /* Note that the length 255 (match length 258) can be represented
    271      * in two different ways: code 284 + 5 bits or code 285, so we
    272      * overwrite length_code[255] to use the best encoding:
    273      */
    274     _length_code[length-1] = (uch)code;
    275 
    276     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    277     dist = 0;
    278     for (code = 0 ; code < 16; code++) {
    279         base_dist[code] = dist;
    280         for (n = 0; n < (1<<extra_dbits[code]); n++) {
    281             _dist_code[dist++] = (uch)code;
    282         }
    283     }
    284     Assert (dist == 256, "tr_static_init: dist != 256");
    285     dist >>= 7; /* from now on, all distances are divided by 128 */
    286     for ( ; code < D_CODES; code++) {
    287         base_dist[code] = dist << 7;
    288         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
    289             _dist_code[256 + dist++] = (uch)code;
    290         }
    291     }
    292     Assert (dist == 256, "tr_static_init: 256+dist != 512");
    293 
    294     /* Construct the codes of the static literal tree */
    295     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    296     n = 0;
    297     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    298     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    299     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    300     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    301     /* Codes 286 and 287 do not exist, but we must include them in the
    302      * tree construction to get a canonical Huffman tree (longest code
    303      * all ones)
    304      */
    305     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
    306 
    307     /* The static distance tree is trivial: */
    308     for (n = 0; n < D_CODES; n++) {
    309         static_dtree[n].Len = 5;
    310         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
    311     }
    312     static_init_done = 1;
    313 
    314 #  ifdef GEN_TREES_H
    315     gen_trees_header();
    316 #  endif
    317 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
    318 }
    319 
    320 /* ===========================================================================
    321  * Genererate the file trees.h describing the static trees.
    322  */
    323 #ifdef GEN_TREES_H
    324 #  ifndef ZLIB_DEBUG
    325 #    include <stdio.h>
    326 #  endif
    327 
    328 #  define SEPARATOR(i, last, width) \
    329       ((i) == (last)? "\n};\n\n" :    \
    330        ((i) % (width) == (width)-1 ? ",\n" : ", "))
    331 
    332 void gen_trees_header()
    333 {
    334     FILE *header = fopen("trees.h", "w");
    335     int i;
    336 
    337     Assert (header != NULL, "Can't open trees.h");
    338     fprintf(header,
    339             "/* header created automatically with -DGEN_TREES_H */\n\n");
    340 
    341     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
    342     for (i = 0; i < L_CODES+2; i++) {
    343         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
    344                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
    345     }
    346 
    347     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
    348     for (i = 0; i < D_CODES; i++) {
    349         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
    350                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
    351     }
    352 
    353     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
    354     for (i = 0; i < DIST_CODE_LEN; i++) {
    355         fprintf(header, "%2u%s", _dist_code[i],
    356                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
    357     }
    358 
    359     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
    360     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
    361         fprintf(header, "%2u%s", _length_code[i],
    362                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
    363     }
    364 
    365     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
    366     for (i = 0; i < LENGTH_CODES; i++) {
    367         fprintf(header, "%1u%s", base_length[i],
    368                 SEPARATOR(i, LENGTH_CODES-1, 20));
    369     }
    370 
    371     fprintf(header, "local const int base_dist[D_CODES] = {\n");
    372     for (i = 0; i < D_CODES; i++) {
    373         fprintf(header, "%5u%s", base_dist[i],
    374                 SEPARATOR(i, D_CODES-1, 10));
    375     }
    376 
    377     fclose(header);
    378 }
    379 #endif /* GEN_TREES_H */
    380 
    381 /* ===========================================================================
    382  * Initialize the tree data structures for a new zlib stream.
    383  */
    384 void _tr_init(s)
    385     deflate_state *s;
    386 {
    387     tr_static_init();
    388 
    389     s->l_desc.dyn_tree = s->dyn_ltree;
    390     s->l_desc.stat_desc = &static_l_desc;
    391 
    392     s->d_desc.dyn_tree = s->dyn_dtree;
    393     s->d_desc.stat_desc = &static_d_desc;
    394 
    395     s->bl_desc.dyn_tree = s->bl_tree;
    396     s->bl_desc.stat_desc = &static_bl_desc;
    397 
    398     s->bi_buf = 0;
    399     s->bi_valid = 0;
    400     s->last_eob_len = 8; /* enough lookahead for inflate */
    401 #ifdef ZLIB_DEBUG
    402     s->compressed_len = 0L;
    403     s->bits_sent = 0L;
    404 #endif
    405 
    406     /* Initialize the first block of the first file: */
    407     init_block(s);
    408 }
    409 
    410 /* ===========================================================================
    411  * Initialize a new block.
    412  */
    413 local void init_block(s)
    414     deflate_state *s;
    415 {
    416     int n; /* iterates over tree elements */
    417 
    418     /* Initialize the trees. */
    419     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
    420     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
    421     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
    422 
    423     s->dyn_ltree[END_BLOCK].Freq = 1;
    424     s->opt_len = s->static_len = 0L;
    425     s->last_lit = s->matches = 0;
    426 }
    427 
    428 #define SMALLEST 1
    429 /* Index within the heap array of least frequent node in the Huffman tree */
    430 
    431 
    432 /* ===========================================================================
    433  * Remove the smallest element from the heap and recreate the heap with
    434  * one less element. Updates heap and heap_len.
    435  */
    436 #define pqremove(s, tree, top) \
    437 {\
    438     top = s->heap[SMALLEST]; \
    439     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
    440     pqdownheap(s, tree, SMALLEST); \
    441 }
    442 
    443 /* ===========================================================================
    444  * Compares to subtrees, using the tree depth as tie breaker when
    445  * the subtrees have equal frequency. This minimizes the worst case length.
    446  */
    447 #define smaller(tree, n, m, depth) \
    448    (tree[n].Freq < tree[m].Freq || \
    449    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
    450 
    451 /* ===========================================================================
    452  * Restore the heap property by moving down the tree starting at node k,
    453  * exchanging a node with the smallest of its two sons if necessary, stopping
    454  * when the heap property is re-established (each father smaller than its
    455  * two sons).
    456  */
    457 local void pqdownheap(s, tree, k)
    458     deflate_state *s;
    459     ct_data *tree;  /* the tree to restore */
    460     int k;               /* node to move down */
    461 {
    462     int v = s->heap[k];
    463     int j = k << 1;  /* left son of k */
    464     while (j <= s->heap_len) {
    465         /* Set j to the smallest of the two sons: */
    466         if (j < s->heap_len &&
    467             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
    468             j++;
    469         }
    470         /* Exit if v is smaller than both sons */
    471         if (smaller(tree, v, s->heap[j], s->depth)) break;
    472 
    473         /* Exchange v with the smallest son */
    474         s->heap[k] = s->heap[j];  k = j;
    475 
    476         /* And continue down the tree, setting j to the left son of k */
    477         j <<= 1;
    478     }
    479     s->heap[k] = v;
    480 }
    481 
    482 /* ===========================================================================
    483  * Compute the optimal bit lengths for a tree and update the total bit length
    484  * for the current block.
    485  * IN assertion: the fields freq and dad are set, heap[heap_max] and
    486  *    above are the tree nodes sorted by increasing frequency.
    487  * OUT assertions: the field len is set to the optimal bit length, the
    488  *     array bl_count contains the frequencies for each bit length.
    489  *     The length opt_len is updated; static_len is also updated if stree is
    490  *     not null.
    491  */
    492 local void gen_bitlen(s, desc)
    493     deflate_state *s;
    494     tree_desc *desc;    /* the tree descriptor */
    495 {
    496     ct_data *tree        = desc->dyn_tree;
    497     int max_code         = desc->max_code;
    498     const ct_data *stree = desc->stat_desc->static_tree;
    499     const intf *extra    = desc->stat_desc->extra_bits;
    500     int base             = desc->stat_desc->extra_base;
    501     int max_length       = desc->stat_desc->max_length;
    502     int h;              /* heap index */
    503     int n, m;           /* iterate over the tree elements */
    504     int bits;           /* bit length */
    505     int xbits;          /* extra bits */
    506     ush f;              /* frequency */
    507     int overflow = 0;   /* number of elements with bit length too large */
    508 
    509     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
    510 
    511     /* In a first pass, compute the optimal bit lengths (which may
    512      * overflow in the case of the bit length tree).
    513      */
    514     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
    515 
    516     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
    517         n = s->heap[h];
    518         bits = tree[tree[n].Dad].Len + 1;
    519         if (bits > max_length) bits = max_length, overflow++;
    520         tree[n].Len = (ush)bits;
    521         /* We overwrite tree[n].Dad which is no longer needed */
    522 
    523         if (n > max_code) continue; /* not a leaf node */
    524 
    525         s->bl_count[bits]++;
    526         xbits = 0;
    527         if (n >= base) xbits = extra[n-base];
    528         f = tree[n].Freq;
    529         s->opt_len += (ulg)f * (bits + xbits);
    530         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
    531     }
    532     if (overflow == 0) return;
    533 
    534     Trace((stderr,"\nbit length overflow\n"));
    535     /* This happens for example on obj2 and pic of the Calgary corpus */
    536 
    537     /* Find the first bit length which could increase: */
    538     do {
    539         bits = max_length-1;
    540         while (s->bl_count[bits] == 0) bits--;
    541         s->bl_count[bits]--;      /* move one leaf down the tree */
    542         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
    543         s->bl_count[max_length]--;
    544         /* The brother of the overflow item also moves one step up,
    545          * but this does not affect bl_count[max_length]
    546          */
    547         overflow -= 2;
    548     } while (overflow > 0);
    549 
    550     /* Now recompute all bit lengths, scanning in increasing frequency.
    551      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
    552      * lengths instead of fixing only the wrong ones. This idea is taken
    553      * from 'ar' written by Haruhiko Okumura.)
    554      */
    555     for (bits = max_length; bits != 0; bits--) {
    556         n = s->bl_count[bits];
    557         while (n != 0) {
    558             m = s->heap[--h];
    559             if (m > max_code) continue;
    560             if ((unsigned) tree[m].Len != (unsigned) bits) {
    561                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
    562                 s->opt_len += ((long)bits - (long)tree[m].Len)
    563                               *(long)tree[m].Freq;
    564                 tree[m].Len = (ush)bits;
    565             }
    566             n--;
    567         }
    568     }
    569 }
    570 
    571 /* ===========================================================================
    572  * Generate the codes for a given tree and bit counts (which need not be
    573  * optimal).
    574  * IN assertion: the array bl_count contains the bit length statistics for
    575  * the given tree and the field len is set for all tree elements.
    576  * OUT assertion: the field code is set for all tree elements of non
    577  *     zero code length.
    578  */
    579 local void gen_codes (tree, max_code, bl_count)
    580     ct_data *tree;             /* the tree to decorate */
    581     int max_code;              /* largest code with non zero frequency */
    582     ushf *bl_count;            /* number of codes at each bit length */
    583 {
    584     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    585     ush code = 0;              /* running code value */
    586     int bits;                  /* bit index */
    587     int n;                     /* code index */
    588 
    589     /* The distribution counts are first used to generate the code values
    590      * without bit reversal.
    591      */
    592     for (bits = 1; bits <= MAX_BITS; bits++) {
    593         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
    594     }
    595     /* Check that the bit counts in bl_count are consistent. The last code
    596      * must be all ones.
    597      */
    598     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
    599             "inconsistent bit counts");
    600     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
    601 
    602     for (n = 0;  n <= max_code; n++) {
    603         int len = tree[n].Len;
    604         if (len == 0) continue;
    605         /* Now reverse the bits */
    606         tree[n].Code = bi_reverse(next_code[len]++, len);
    607 
    608         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
    609              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    610     }
    611 }
    612 
    613 /* ===========================================================================
    614  * Construct one Huffman tree and assigns the code bit strings and lengths.
    615  * Update the total bit length for the current block.
    616  * IN assertion: the field freq is set for all tree elements.
    617  * OUT assertions: the fields len and code are set to the optimal bit length
    618  *     and corresponding code. The length opt_len is updated; static_len is
    619  *     also updated if stree is not null. The field max_code is set.
    620  */
    621 local void build_tree(s, desc)
    622     deflate_state *s;
    623     tree_desc *desc; /* the tree descriptor */
    624 {
    625     ct_data *tree         = desc->dyn_tree;
    626     const ct_data *stree  = desc->stat_desc->static_tree;
    627     int elems             = desc->stat_desc->elems;
    628     int n, m;          /* iterate over heap elements */
    629     int max_code = -1; /* largest code with non zero frequency */
    630     int node;          /* new node being created */
    631 
    632     /* Construct the initial heap, with least frequent element in
    633      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
    634      * heap[0] is not used.
    635      */
    636     s->heap_len = 0, s->heap_max = HEAP_SIZE;
    637 
    638     for (n = 0; n < elems; n++) {
    639         if (tree[n].Freq != 0) {
    640             s->heap[++(s->heap_len)] = max_code = n;
    641             s->depth[n] = 0;
    642         } else {
    643             tree[n].Len = 0;
    644         }
    645     }
    646 
    647     /* The pkzip format requires that at least one distance code exists,
    648      * and that at least one bit should be sent even if there is only one
    649      * possible code. So to avoid special checks later on we force at least
    650      * two codes of non zero frequency.
    651      */
    652     while (s->heap_len < 2) {
    653         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
    654         tree[node].Freq = 1;
    655         s->depth[node] = 0;
    656         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
    657         /* node is 0 or 1 so it does not have extra bits */
    658     }
    659     desc->max_code = max_code;
    660 
    661     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
    662      * establish sub-heaps of increasing lengths:
    663      */
    664     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
    665 
    666     /* Construct the Huffman tree by repeatedly combining the least two
    667      * frequent nodes.
    668      */
    669     node = elems;              /* next internal node of the tree */
    670     do {
    671         pqremove(s, tree, n);  /* n = node of least frequency */
    672         m = s->heap[SMALLEST]; /* m = node of next least frequency */
    673 
    674         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
    675         s->heap[--(s->heap_max)] = m;
    676 
    677         /* Create a new node father of n and m */
    678         tree[node].Freq = tree[n].Freq + tree[m].Freq;
    679         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
    680                                 s->depth[n] : s->depth[m]) + 1);
    681         tree[n].Dad = tree[m].Dad = (ush)node;
    682 #ifdef DUMP_BL_TREE
    683         if (tree == s->bl_tree) {
    684             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
    685                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
    686         }
    687 #endif
    688         /* and insert the new node in the heap */
    689         s->heap[SMALLEST] = node++;
    690         pqdownheap(s, tree, SMALLEST);
    691 
    692     } while (s->heap_len >= 2);
    693 
    694     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
    695 
    696     /* At this point, the fields freq and dad are set. We can now
    697      * generate the bit lengths.
    698      */
    699     gen_bitlen(s, (tree_desc *)desc);
    700 
    701     /* The field len is now set, we can generate the bit codes */
    702     gen_codes ((ct_data *)tree, max_code, s->bl_count);
    703 }
    704 
    705 /* ===========================================================================
    706  * Scan a literal or distance tree to determine the frequencies of the codes
    707  * in the bit length tree.
    708  */
    709 local void scan_tree (s, tree, max_code)
    710     deflate_state *s;
    711     ct_data *tree;   /* the tree to be scanned */
    712     int max_code;    /* and its largest code of non zero frequency */
    713 {
    714     int n;                     /* iterates over all tree elements */
    715     int prevlen = -1;          /* last emitted length */
    716     int curlen;                /* length of current code */
    717     int nextlen = tree[0].Len; /* length of next code */
    718     int count = 0;             /* repeat count of the current code */
    719     int max_count = 7;         /* max repeat count */
    720     int min_count = 4;         /* min repeat count */
    721 
    722     if (nextlen == 0) max_count = 138, min_count = 3;
    723     tree[max_code+1].Len = (ush)0xffff; /* guard */
    724 
    725     for (n = 0; n <= max_code; n++) {
    726         curlen = nextlen; nextlen = tree[n+1].Len;
    727         if (++count < max_count && curlen == nextlen) {
    728             continue;
    729         } else if (count < min_count) {
    730             s->bl_tree[curlen].Freq += count;
    731         } else if (curlen != 0) {
    732             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
    733             s->bl_tree[REP_3_6].Freq++;
    734         } else if (count <= 10) {
    735             s->bl_tree[REPZ_3_10].Freq++;
    736         } else {
    737             s->bl_tree[REPZ_11_138].Freq++;
    738         }
    739         count = 0; prevlen = curlen;
    740         if (nextlen == 0) {
    741             max_count = 138, min_count = 3;
    742         } else if (curlen == nextlen) {
    743             max_count = 6, min_count = 3;
    744         } else {
    745             max_count = 7, min_count = 4;
    746         }
    747     }
    748 }
    749 
    750 /* ===========================================================================
    751  * Send a literal or distance tree in compressed form, using the codes in
    752  * bl_tree.
    753  */
    754 local void send_tree (s, tree, max_code)
    755     deflate_state *s;
    756     ct_data *tree; /* the tree to be scanned */
    757     int max_code;       /* and its largest code of non zero frequency */
    758 {
    759     int n;                     /* iterates over all tree elements */
    760     int prevlen = -1;          /* last emitted length */
    761     int curlen;                /* length of current code */
    762     int nextlen = tree[0].Len; /* length of next code */
    763     int count = 0;             /* repeat count of the current code */
    764     int max_count = 7;         /* max repeat count */
    765     int min_count = 4;         /* min repeat count */
    766 
    767     /* tree[max_code+1].Len = -1; */  /* guard already set */
    768     if (nextlen == 0) max_count = 138, min_count = 3;
    769 
    770     for (n = 0; n <= max_code; n++) {
    771         curlen = nextlen; nextlen = tree[n+1].Len;
    772         if (++count < max_count && curlen == nextlen) {
    773             continue;
    774         } else if (count < min_count) {
    775             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
    776 
    777         } else if (curlen != 0) {
    778             if (curlen != prevlen) {
    779                 send_code(s, curlen, s->bl_tree); count--;
    780             }
    781             Assert(count >= 3 && count <= 6, " 3_6?");
    782             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
    783 
    784         } else if (count <= 10) {
    785             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
    786 
    787         } else {
    788             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
    789         }
    790         count = 0; prevlen = curlen;
    791         if (nextlen == 0) {
    792             max_count = 138, min_count = 3;
    793         } else if (curlen == nextlen) {
    794             max_count = 6, min_count = 3;
    795         } else {
    796             max_count = 7, min_count = 4;
    797         }
    798     }
    799 }
    800 
    801 /* ===========================================================================
    802  * Construct the Huffman tree for the bit lengths and return the index in
    803  * bl_order of the last bit length code to send.
    804  */
    805 local int build_bl_tree(s)
    806     deflate_state *s;
    807 {
    808     int max_blindex;  /* index of last bit length code of non zero freq */
    809 
    810     /* Determine the bit length frequencies for literal and distance trees */
    811     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
    812     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
    813 
    814     /* Build the bit length tree: */
    815     build_tree(s, (tree_desc *)(&(s->bl_desc)));
    816     /* opt_len now includes the length of the tree representations, except
    817      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
    818      */
    819 
    820     /* Determine the number of bit length codes to send. The pkzip format
    821      * requires that at least 4 bit length codes be sent. (appnote.txt says
    822      * 3 but the actual value used is 4.)
    823      */
    824     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
    825         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
    826     }
    827     /* Update opt_len to include the bit length tree and counts */
    828     s->opt_len += 3*(max_blindex+1) + 5+5+4;
    829     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
    830             s->opt_len, s->static_len));
    831 
    832     return max_blindex;
    833 }
    834 
    835 /* ===========================================================================
    836  * Send the header for a block using dynamic Huffman trees: the counts, the
    837  * lengths of the bit length codes, the literal tree and the distance tree.
    838  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
    839  */
    840 local void send_all_trees(s, lcodes, dcodes, blcodes)
    841     deflate_state *s;
    842     int lcodes, dcodes, blcodes; /* number of codes for each tree */
    843 {
    844     int rank;                    /* index in bl_order */
    845 
    846     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    847     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
    848             "too many codes");
    849     Tracev((stderr, "\nbl counts: "));
    850     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
    851     send_bits(s, dcodes-1,   5);
    852     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
    853     for (rank = 0; rank < blcodes; rank++) {
    854         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
    855         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
    856     }
    857     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
    858 
    859     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
    860     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
    861 
    862     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
    863     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
    864 }
    865 
    866 /* ===========================================================================
    867  * Send a stored block
    868  */
    869 void _tr_stored_block(s, buf, stored_len, eof)
    870     deflate_state *s;
    871     charf *buf;       /* input block */
    872     ulg stored_len;   /* length of input block */
    873     int eof;          /* true if this is the last block for a file */
    874 {
    875     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
    876 #ifdef ZLIB_DEBUG
    877     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
    878     s->compressed_len += (stored_len + 4) << 3;
    879 #endif
    880     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
    881 }
    882 
    883 /* ===========================================================================
    884  * Send one empty static block to give enough lookahead for inflate.
    885  * This takes 10 bits, of which 7 may remain in the bit buffer.
    886  * The current inflate code requires 9 bits of lookahead. If the
    887  * last two codes for the previous block (real code plus EOB) were coded
    888  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
    889  * the last real code. In this case we send two empty static blocks instead
    890  * of one. (There are no problems if the previous block is stored or fixed.)
    891  * To simplify the code, we assume the worst case of last real code encoded
    892  * on one bit only.
    893  */
    894 void _tr_align(s)
    895     deflate_state *s;
    896 {
    897     send_bits(s, STATIC_TREES<<1, 3);
    898     send_code(s, END_BLOCK, static_ltree);
    899 #ifdef ZLIB_DEBUG
    900     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
    901 #endif
    902     bi_flush(s);
    903     /* Of the 10 bits for the empty block, we have already sent
    904      * (10 - bi_valid) bits. The lookahead for the last real code (before
    905      * the EOB of the previous block) was thus at least one plus the length
    906      * of the EOB plus what we have just sent of the empty static block.
    907      */
    908     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
    909         send_bits(s, STATIC_TREES<<1, 3);
    910         send_code(s, END_BLOCK, static_ltree);
    911 #ifdef ZLIB_DEBUG
    912         s->compressed_len += 10L;
    913 #endif
    914         bi_flush(s);
    915     }
    916     s->last_eob_len = 7;
    917 }
    918 
    919 /* ===========================================================================
    920  * Determine the best encoding for the current block: dynamic trees, static
    921  * trees or store, and output the encoded block to the zip file.
    922  */
    923 void _tr_flush_block(s, buf, stored_len, eof)
    924     deflate_state *s;
    925     charf *buf;       /* input block, or NULL if too old */
    926     ulg stored_len;   /* length of input block */
    927     int eof;          /* true if this is the last block for a file */
    928 {
    929     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    930     int max_blindex = 0;  /* index of last bit length code of non zero freq */
    931 
    932     /* Build the Huffman trees unless a stored block is forced */
    933     if (s->level > 0) {
    934 
    935         /* Check if the file is binary or text */
    936         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
    937             set_data_type(s);
    938 
    939         /* Construct the literal and distance trees */
    940         build_tree(s, (tree_desc *)(&(s->l_desc)));
    941         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
    942                 s->static_len));
    943 
    944         build_tree(s, (tree_desc *)(&(s->d_desc)));
    945         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
    946                 s->static_len));
    947         /* At this point, opt_len and static_len are the total bit lengths of
    948          * the compressed block data, excluding the tree representations.
    949          */
    950 
    951         /* Build the bit length tree for the above two trees, and get the index
    952          * in bl_order of the last bit length code to send.
    953          */
    954         max_blindex = build_bl_tree(s);
    955 
    956         /* Determine the best encoding. Compute the block lengths in bytes. */
    957         opt_lenb = (s->opt_len+3+7)>>3;
    958         static_lenb = (s->static_len+3+7)>>3;
    959 
    960         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
    961                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
    962                 s->last_lit));
    963 
    964         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
    965 
    966     } else {
    967         Assert(buf != (char*)0, "lost buf");
    968         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
    969     }
    970 
    971 #ifdef FORCE_STORED
    972     if (buf != (char*)0) { /* force stored block */
    973 #else
    974     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
    975                        /* 4: two words for the lengths */
    976 #endif
    977         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
    978          * Otherwise we can't have processed more than WSIZE input bytes since
    979          * the last block flush, because compression would have been
    980          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
    981          * transform a block into a stored block.
    982          */
    983         _tr_stored_block(s, buf, stored_len, eof);
    984 
    985 #ifdef FORCE_STATIC
    986     } else if (static_lenb >= 0) { /* force static trees */
    987 #else
    988     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
    989 #endif
    990         send_bits(s, (STATIC_TREES<<1)+eof, 3);
    991         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
    992 #ifdef ZLIB_DEBUG
    993         s->compressed_len += 3 + s->static_len;
    994 #endif
    995     } else {
    996         send_bits(s, (DYN_TREES<<1)+eof, 3);
    997         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
    998                        max_blindex+1);
    999         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
   1000 #ifdef ZLIB_DEBUG
   1001         s->compressed_len += 3 + s->opt_len;
   1002 #endif
   1003     }
   1004     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   1005     /* The above check is made mod 2^32, for files larger than 512 MB
   1006      * and uLong implemented on 32 bits.
   1007      */
   1008     init_block(s);
   1009 
   1010     if (eof) {
   1011         bi_windup(s);
   1012 #ifdef ZLIB_DEBUG
   1013         s->compressed_len += 7;  /* align on byte boundary */
   1014 #endif
   1015     }
   1016     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
   1017            s->compressed_len-7*eof));
   1018 }
   1019 
   1020 /* ===========================================================================
   1021  * Save the match info and tally the frequency counts. Return true if
   1022  * the current block must be flushed.
   1023  */
   1024 int _tr_tally (s, dist, lc)
   1025     deflate_state *s;
   1026     unsigned dist;  /* distance of matched string */
   1027     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
   1028 {
   1029     s->d_buf[s->last_lit] = (ush)dist;
   1030     s->l_buf[s->last_lit++] = (uch)lc;
   1031     if (dist == 0) {
   1032         /* lc is the unmatched char */
   1033         s->dyn_ltree[lc].Freq++;
   1034     } else {
   1035         s->matches++;
   1036         /* Here, lc is the match length - MIN_MATCH */
   1037         dist--;             /* dist = match distance - 1 */
   1038         Assert((ush)dist < (ush)MAX_DIST(s) &&
   1039                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   1040                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   1041 
   1042         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
   1043         s->dyn_dtree[d_code(dist)].Freq++;
   1044     }
   1045 
   1046 #ifdef TRUNCATE_BLOCK
   1047     /* Try to guess if it is profitable to stop the current block here */
   1048     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
   1049         /* Compute an upper bound for the compressed length */
   1050         ulg out_length = (ulg)s->last_lit*8L;
   1051         ulg in_length = (ulg)((long)s->strstart - s->block_start);
   1052         int dcode;
   1053         for (dcode = 0; dcode < D_CODES; dcode++) {
   1054             out_length += (ulg)s->dyn_dtree[dcode].Freq *
   1055                 (5L+extra_dbits[dcode]);
   1056         }
   1057         out_length >>= 3;
   1058         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
   1059                s->last_lit, in_length, out_length,
   1060                100L - out_length*100L/in_length));
   1061         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
   1062     }
   1063 #endif
   1064     return (s->last_lit == s->lit_bufsize-1);
   1065     /* We avoid equality with lit_bufsize because of wraparound at 64K
   1066      * on 16 bit machines and because stored blocks are restricted to
   1067      * 64K-1 bytes.
   1068      */
   1069 }
   1070 
   1071 /* ===========================================================================
   1072  * Send the block data compressed using the given Huffman trees
   1073  */
   1074 local void compress_block(s, ltree, dtree)
   1075     deflate_state *s;
   1076     ct_data *ltree; /* literal tree */
   1077     ct_data *dtree; /* distance tree */
   1078 {
   1079     unsigned dist;      /* distance of matched string */
   1080     int lc;             /* match length or unmatched char (if dist == 0) */
   1081     unsigned lx = 0;    /* running index in l_buf */
   1082     unsigned code;      /* the code to send */
   1083     int extra;          /* number of extra bits to send */
   1084 
   1085     if (s->last_lit != 0) do {
   1086         dist = s->d_buf[lx];
   1087         lc = s->l_buf[lx++];
   1088         if (dist == 0) {
   1089             send_code(s, lc, ltree); /* send a literal byte */
   1090             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
   1091         } else {
   1092             /* Here, lc is the match length - MIN_MATCH */
   1093             code = _length_code[lc];
   1094             send_code(s, code+LITERALS+1, ltree); /* send the length code */
   1095             extra = extra_lbits[code];
   1096             if (extra != 0) {
   1097                 lc -= base_length[code];
   1098                 send_bits(s, lc, extra);       /* send the extra length bits */
   1099             }
   1100             dist--; /* dist is now the match distance - 1 */
   1101             code = d_code(dist);
   1102             Assert (code < D_CODES, "bad d_code");
   1103 
   1104             send_code(s, code, dtree);       /* send the distance code */
   1105             extra = extra_dbits[code];
   1106             if (extra != 0) {
   1107                 dist -= base_dist[code];
   1108                 send_bits(s, dist, extra);   /* send the extra distance bits */
   1109             }
   1110         } /* literal or match pair ? */
   1111 
   1112         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
   1113         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
   1114                "pendingBuf overflow");
   1115 
   1116     } while (lx < s->last_lit);
   1117 
   1118     send_code(s, END_BLOCK, ltree);
   1119     s->last_eob_len = ltree[END_BLOCK].Len;
   1120 }
   1121 
   1122 /* ===========================================================================
   1123  * Set the data type to BINARY or TEXT, using a crude approximation:
   1124  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
   1125  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
   1126  * IN assertion: the fields Freq of dyn_ltree are set.
   1127  */
   1128 local void set_data_type(s)
   1129     deflate_state *s;
   1130 {
   1131     int n;
   1132 
   1133     for (n = 0; n < 9; n++)
   1134         if (s->dyn_ltree[n].Freq != 0)
   1135             break;
   1136     if (n == 9)
   1137         for (n = 14; n < 32; n++)
   1138             if (s->dyn_ltree[n].Freq != 0)
   1139                 break;
   1140     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
   1141 }
   1142 
   1143 /* ===========================================================================
   1144  * Reverse the first len bits of a code, using straightforward code (a faster
   1145  * method would use a table)
   1146  * IN assertion: 1 <= len <= 15
   1147  */
   1148 local unsigned bi_reverse(code, len)
   1149     unsigned code; /* the value to invert */
   1150     int len;       /* its bit length */
   1151 {
   1152     register unsigned res = 0;
   1153     do {
   1154         res |= code & 1;
   1155         code >>= 1, res <<= 1;
   1156     } while (--len > 0);
   1157     return res >> 1;
   1158 }
   1159 
   1160 /* ===========================================================================
   1161  * Flush the bit buffer, keeping at most 7 bits in it.
   1162  */
   1163 local void bi_flush(s)
   1164     deflate_state *s;
   1165 {
   1166     if (s->bi_valid == 16) {
   1167         put_short(s, s->bi_buf);
   1168         s->bi_buf = 0;
   1169         s->bi_valid = 0;
   1170     } else if (s->bi_valid >= 8) {
   1171         put_byte(s, (Byte)s->bi_buf);
   1172         s->bi_buf >>= 8;
   1173         s->bi_valid -= 8;
   1174     }
   1175 }
   1176 
   1177 /* ===========================================================================
   1178  * Flush the bit buffer and align the output on a byte boundary
   1179  */
   1180 local void bi_windup(s)
   1181     deflate_state *s;
   1182 {
   1183     if (s->bi_valid > 8) {
   1184         put_short(s, s->bi_buf);
   1185     } else if (s->bi_valid > 0) {
   1186         put_byte(s, (Byte)s->bi_buf);
   1187     }
   1188     s->bi_buf = 0;
   1189     s->bi_valid = 0;
   1190 #ifdef ZLIB_DEBUG
   1191     s->bits_sent = (s->bits_sent+7) & ~7;
   1192 #endif
   1193 }
   1194 
   1195 /* ===========================================================================
   1196  * Copy a stored block, storing first the length and its
   1197  * one's complement if requested.
   1198  */
   1199 local void copy_block(s, buf, len, header)
   1200     deflate_state *s;
   1201     charf    *buf;    /* the input data */
   1202     unsigned len;     /* its length */
   1203     int      header;  /* true if block header must be written */
   1204 {
   1205     bi_windup(s);        /* align on byte boundary */
   1206     s->last_eob_len = 8; /* enough lookahead for inflate */
   1207 
   1208     if (header) {
   1209         put_short(s, (ush)len);
   1210         put_short(s, (ush)~len);
   1211 #ifdef ZLIB_DEBUG
   1212         s->bits_sent += 2*16;
   1213 #endif
   1214     }
   1215 #ifdef ZLIB_DEBUG
   1216     s->bits_sent += (ulg)len<<3;
   1217 #endif
   1218     while (len--) {
   1219         put_byte(s, *buf++);
   1220     }
   1221 }
   1222