trees.c revision 1.6 1 /* $NetBSD: trees.c,v 1.6 2022/10/15 19:49:32 christos Exp $ */
2
3 /* trees.c -- output deflated data using Huffman coding
4 * Copyright (C) 1995-2021 Jean-loup Gailly
5 * detect_data_type() function provided freely by Cosmin Truta, 2006
6 * For conditions of distribution and use, see copyright notice in zlib.h
7 */
8
9 /*
10 * ALGORITHM
11 *
12 * The "deflation" process uses several Huffman trees. The more
13 * common source values are represented by shorter bit sequences.
14 *
15 * Each code tree is stored in a compressed form which is itself
16 * a Huffman encoding of the lengths of all the code strings (in
17 * ascending order by source values). The actual code strings are
18 * reconstructed from the lengths in the inflate process, as described
19 * in the deflate specification.
20 *
21 * REFERENCES
22 *
23 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
24 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25 *
26 * Storer, James A.
27 * Data Compression: Methods and Theory, pp. 49-50.
28 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
29 *
30 * Sedgewick, R.
31 * Algorithms, p290.
32 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
33 */
34
35 /* @(#) Id */
36
37 /* #define GEN_TREES_H */
38
39 #include "deflate.h"
40
41 #ifdef ZLIB_DEBUG
42 # include <ctype.h>
43 #endif
44
45 /* ===========================================================================
46 * Constants
47 */
48
49 #define MAX_BL_BITS 7
50 /* Bit length codes must not exceed MAX_BL_BITS bits */
51
52 #define END_BLOCK 256
53 /* end of block literal code */
54
55 #define REP_3_6 16
56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
57
58 #define REPZ_3_10 17
59 /* repeat a zero length 3-10 times (3 bits of repeat count) */
60
61 #define REPZ_11_138 18
62 /* repeat a zero length 11-138 times (7 bits of repeat count) */
63
64 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
65 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
66
67 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
68 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
69
70 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
71 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
72
73 local const uch bl_order[BL_CODES]
74 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 /* The lengths of the bit length codes are sent in order of decreasing
76 * probability, to avoid transmitting the lengths for unused bit length codes.
77 */
78
79 /* ===========================================================================
80 * Local data. These are initialized only once.
81 */
82
83 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
84
85 #if defined(GEN_TREES_H) || !defined(STDC)
86 /* non ANSI compilers may not accept trees.h */
87
88 local ct_data static_ltree[L_CODES+2];
89 /* The static literal tree. Since the bit lengths are imposed, there is no
90 * need for the L_CODES extra codes used during heap construction. However
91 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
92 * below).
93 */
94
95 local ct_data static_dtree[D_CODES];
96 /* The static distance tree. (Actually a trivial tree since all codes use
97 * 5 bits.)
98 */
99
100 uch _dist_code[DIST_CODE_LEN];
101 /* Distance codes. The first 256 values correspond to the distances
102 * 3 .. 258, the last 256 values correspond to the top 8 bits of
103 * the 15 bit distances.
104 */
105
106 uch _length_code[MAX_MATCH-MIN_MATCH+1];
107 /* length code for each normalized match length (0 == MIN_MATCH) */
108
109 local int base_length[LENGTH_CODES];
110 /* First normalized length for each code (0 = MIN_MATCH) */
111
112 local int base_dist[D_CODES];
113 /* First normalized distance for each code (0 = distance of 1) */
114
115 #else
116 # include "trees.h"
117 #endif /* GEN_TREES_H */
118
119 struct static_tree_desc_s {
120 const ct_data *static_tree; /* static tree or NULL */
121 const intf *extra_bits; /* extra bits for each code or NULL */
122 int extra_base; /* base index for extra_bits */
123 int elems; /* max number of elements in the tree */
124 int max_length; /* max bit length for the codes */
125 };
126
127 local const static_tree_desc static_l_desc =
128 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
129
130 local const static_tree_desc static_d_desc =
131 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
132
133 local const static_tree_desc static_bl_desc =
134 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
135
136 /* ===========================================================================
137 * Local (static) routines in this file.
138 */
139
140 local void tr_static_init OF((void));
141 local void init_block OF((deflate_state *s));
142 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
143 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
144 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
145 local void build_tree OF((deflate_state *s, tree_desc *desc));
146 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
147 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
148 local int build_bl_tree OF((deflate_state *s));
149 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
150 int blcodes));
151 local void compress_block OF((deflate_state *s, const ct_data *ltree,
152 const ct_data *dtree));
153 local int detect_data_type OF((deflate_state *s));
154 local unsigned bi_reverse OF((unsigned code, int len));
155 local void bi_windup OF((deflate_state *s));
156 local void bi_flush OF((deflate_state *s));
157
158 #ifdef GEN_TREES_H
159 local void gen_trees_header OF((void));
160 #endif
161
162 #ifndef ZLIB_DEBUG
163 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164 /* Send a code of the given tree. c and tree must not have side effects */
165
166 #else /* !ZLIB_DEBUG */
167 # define send_code(s, c, tree) \
168 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169 send_bits(s, tree[c].Code, tree[c].Len); }
170 #endif
171
172 /* ===========================================================================
173 * Output a short LSB first on the stream.
174 * IN assertion: there is enough room in pendingBuf.
175 */
176 #define put_short(s, w) { \
177 put_byte(s, (uch)((w) & 0xff)); \
178 put_byte(s, (uch)((ush)(w) >> 8)); \
179 }
180
181 /* ===========================================================================
182 * Send a value on a given number of bits.
183 * IN assertion: length <= 16 and value fits in length bits.
184 */
185 #ifdef ZLIB_DEBUG
186 local void send_bits OF((deflate_state *s, int value, int length));
187
188 local void send_bits(s, value, length)
189 deflate_state *s;
190 int value; /* value to send */
191 int length; /* number of bits */
192 {
193 Tracevv((stderr," l %2d v %4x ", length, value));
194 Assert(length > 0 && length <= 15, "invalid length");
195 s->bits_sent += (ulg)length;
196
197 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
198 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
199 * unused bits in value.
200 */
201 if (s->bi_valid > (int)Buf_size - length) {
202 s->bi_buf |= (ush)value << s->bi_valid;
203 put_short(s, s->bi_buf);
204 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
205 s->bi_valid += length - Buf_size;
206 } else {
207 s->bi_buf |= (ush)value << s->bi_valid;
208 s->bi_valid += length;
209 }
210 }
211 #else /* !ZLIB_DEBUG */
212
213 #define send_bits(s, value, length) \
214 { int len = length;\
215 if (s->bi_valid > (int)Buf_size - len) {\
216 int val = (int)value;\
217 s->bi_buf |= (ush)val << s->bi_valid;\
218 put_short(s, s->bi_buf);\
219 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
220 s->bi_valid += len - Buf_size;\
221 } else {\
222 s->bi_buf |= (ush)(value) << s->bi_valid;\
223 s->bi_valid += len;\
224 }\
225 }
226 #endif /* ZLIB_DEBUG */
227
228
229 /* the arguments must not have side effects */
230
231 /* ===========================================================================
232 * Initialize the various 'constant' tables.
233 */
234 local void tr_static_init()
235 {
236 #if defined(GEN_TREES_H) || !defined(STDC)
237 static int static_init_done = 0;
238 int n; /* iterates over tree elements */
239 int bits; /* bit counter */
240 int length; /* length value */
241 int code; /* code value */
242 int dist; /* distance index */
243 ush bl_count[MAX_BITS+1];
244 /* number of codes at each bit length for an optimal tree */
245
246 if (static_init_done) return;
247
248 /* For some embedded targets, global variables are not initialized: */
249 #ifdef NO_INIT_GLOBAL_POINTERS
250 static_l_desc.static_tree = static_ltree;
251 static_l_desc.extra_bits = extra_lbits;
252 static_d_desc.static_tree = static_dtree;
253 static_d_desc.extra_bits = extra_dbits;
254 static_bl_desc.extra_bits = extra_blbits;
255 #endif
256
257 /* Initialize the mapping length (0..255) -> length code (0..28) */
258 length = 0;
259 for (code = 0; code < LENGTH_CODES-1; code++) {
260 base_length[code] = length;
261 for (n = 0; n < (1 << extra_lbits[code]); n++) {
262 _length_code[length++] = (uch)code;
263 }
264 }
265 Assert (length == 256, "tr_static_init: length != 256");
266 /* Note that the length 255 (match length 258) can be represented
267 * in two different ways: code 284 + 5 bits or code 285, so we
268 * overwrite length_code[255] to use the best encoding:
269 */
270 _length_code[length - 1] = (uch)code;
271
272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
273 dist = 0;
274 for (code = 0 ; code < 16; code++) {
275 base_dist[code] = dist;
276 for (n = 0; n < (1 << extra_dbits[code]); n++) {
277 _dist_code[dist++] = (uch)code;
278 }
279 }
280 Assert (dist == 256, "tr_static_init: dist != 256");
281 dist >>= 7; /* from now on, all distances are divided by 128 */
282 for ( ; code < D_CODES; code++) {
283 base_dist[code] = dist << 7;
284 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
285 _dist_code[256 + dist++] = (uch)code;
286 }
287 }
288 Assert (dist == 256, "tr_static_init: 256 + dist != 512");
289
290 /* Construct the codes of the static literal tree */
291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
292 n = 0;
293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
297 /* Codes 286 and 287 do not exist, but we must include them in the
298 * tree construction to get a canonical Huffman tree (longest code
299 * all ones)
300 */
301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
302
303 /* The static distance tree is trivial: */
304 for (n = 0; n < D_CODES; n++) {
305 static_dtree[n].Len = 5;
306 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
307 }
308 static_init_done = 1;
309
310 # ifdef GEN_TREES_H
311 gen_trees_header();
312 # endif
313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
314 }
315
316 /* ===========================================================================
317 * Generate the file trees.h describing the static trees.
318 */
319 #ifdef GEN_TREES_H
320 # ifndef ZLIB_DEBUG
321 # include <stdio.h>
322 # endif
323
324 # define SEPARATOR(i, last, width) \
325 ((i) == (last)? "\n};\n\n" : \
326 ((i) % (width) == (width) - 1 ? ",\n" : ", "))
327
328 void gen_trees_header()
329 {
330 FILE *header = fopen("trees.h", "w");
331 int i;
332
333 Assert (header != NULL, "Can't open trees.h");
334 fprintf(header,
335 "/* header created automatically with -DGEN_TREES_H */\n\n");
336
337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
338 for (i = 0; i < L_CODES+2; i++) {
339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
341 }
342
343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
344 for (i = 0; i < D_CODES; i++) {
345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
347 }
348
349 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
350 for (i = 0; i < DIST_CODE_LEN; i++) {
351 fprintf(header, "%2u%s", _dist_code[i],
352 SEPARATOR(i, DIST_CODE_LEN-1, 20));
353 }
354
355 fprintf(header,
356 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
357 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
358 fprintf(header, "%2u%s", _length_code[i],
359 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
360 }
361
362 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
363 for (i = 0; i < LENGTH_CODES; i++) {
364 fprintf(header, "%1u%s", base_length[i],
365 SEPARATOR(i, LENGTH_CODES-1, 20));
366 }
367
368 fprintf(header, "local const int base_dist[D_CODES] = {\n");
369 for (i = 0; i < D_CODES; i++) {
370 fprintf(header, "%5u%s", base_dist[i],
371 SEPARATOR(i, D_CODES-1, 10));
372 }
373
374 fclose(header);
375 }
376 #endif /* GEN_TREES_H */
377
378 /* ===========================================================================
379 * Initialize the tree data structures for a new zlib stream.
380 */
381 void ZLIB_INTERNAL _tr_init(s)
382 deflate_state *s;
383 {
384 tr_static_init();
385
386 s->l_desc.dyn_tree = s->dyn_ltree;
387 s->l_desc.stat_desc = &static_l_desc;
388
389 s->d_desc.dyn_tree = s->dyn_dtree;
390 s->d_desc.stat_desc = &static_d_desc;
391
392 s->bl_desc.dyn_tree = s->bl_tree;
393 s->bl_desc.stat_desc = &static_bl_desc;
394
395 s->bi_buf = 0;
396 s->bi_valid = 0;
397 #ifdef ZLIB_DEBUG
398 s->compressed_len = 0L;
399 s->bits_sent = 0L;
400 #endif
401
402 /* Initialize the first block of the first file: */
403 init_block(s);
404 }
405
406 /* ===========================================================================
407 * Initialize a new block.
408 */
409 local void init_block(s)
410 deflate_state *s;
411 {
412 int n; /* iterates over tree elements */
413
414 /* Initialize the trees. */
415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
418
419 s->dyn_ltree[END_BLOCK].Freq = 1;
420 s->opt_len = s->static_len = 0L;
421 s->sym_next = s->matches = 0;
422 }
423
424 #define SMALLEST 1
425 /* Index within the heap array of least frequent node in the Huffman tree */
426
427
428 /* ===========================================================================
429 * Remove the smallest element from the heap and recreate the heap with
430 * one less element. Updates heap and heap_len.
431 */
432 #define pqremove(s, tree, top) \
433 {\
434 top = s->heap[SMALLEST]; \
435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
436 pqdownheap(s, tree, SMALLEST); \
437 }
438
439 /* ===========================================================================
440 * Compares to subtrees, using the tree depth as tie breaker when
441 * the subtrees have equal frequency. This minimizes the worst case length.
442 */
443 #define smaller(tree, n, m, depth) \
444 (tree[n].Freq < tree[m].Freq || \
445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
446
447 /* ===========================================================================
448 * Restore the heap property by moving down the tree starting at node k,
449 * exchanging a node with the smallest of its two sons if necessary, stopping
450 * when the heap property is re-established (each father smaller than its
451 * two sons).
452 */
453 local void pqdownheap(s, tree, k)
454 deflate_state *s;
455 ct_data *tree; /* the tree to restore */
456 int k; /* node to move down */
457 {
458 int v = s->heap[k];
459 int j = k << 1; /* left son of k */
460 while (j <= s->heap_len) {
461 /* Set j to the smallest of the two sons: */
462 if (j < s->heap_len &&
463 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
464 j++;
465 }
466 /* Exit if v is smaller than both sons */
467 if (smaller(tree, v, s->heap[j], s->depth)) break;
468
469 /* Exchange v with the smallest son */
470 s->heap[k] = s->heap[j]; k = j;
471
472 /* And continue down the tree, setting j to the left son of k */
473 j <<= 1;
474 }
475 s->heap[k] = v;
476 }
477
478 /* ===========================================================================
479 * Compute the optimal bit lengths for a tree and update the total bit length
480 * for the current block.
481 * IN assertion: the fields freq and dad are set, heap[heap_max] and
482 * above are the tree nodes sorted by increasing frequency.
483 * OUT assertions: the field len is set to the optimal bit length, the
484 * array bl_count contains the frequencies for each bit length.
485 * The length opt_len is updated; static_len is also updated if stree is
486 * not null.
487 */
488 local void gen_bitlen(s, desc)
489 deflate_state *s;
490 tree_desc *desc; /* the tree descriptor */
491 {
492 ct_data *tree = desc->dyn_tree;
493 int max_code = desc->max_code;
494 const ct_data *stree = desc->stat_desc->static_tree;
495 const intf *extra = desc->stat_desc->extra_bits;
496 int base = desc->stat_desc->extra_base;
497 int max_length = desc->stat_desc->max_length;
498 int h; /* heap index */
499 int n, m; /* iterate over the tree elements */
500 int bits; /* bit length */
501 int xbits; /* extra bits */
502 ush f; /* frequency */
503 int overflow = 0; /* number of elements with bit length too large */
504
505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
506
507 /* In a first pass, compute the optimal bit lengths (which may
508 * overflow in the case of the bit length tree).
509 */
510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
511
512 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
513 n = s->heap[h];
514 bits = tree[tree[n].Dad].Len + 1;
515 if (bits > max_length) bits = max_length, overflow++;
516 tree[n].Len = (ush)bits;
517 /* We overwrite tree[n].Dad which is no longer needed */
518
519 if (n > max_code) continue; /* not a leaf node */
520
521 s->bl_count[bits]++;
522 xbits = 0;
523 if (n >= base) xbits = extra[n - base];
524 f = tree[n].Freq;
525 s->opt_len += (ulg)f * (unsigned)(bits + xbits);
526 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
527 }
528 if (overflow == 0) return;
529
530 Tracev((stderr,"\nbit length overflow\n"));
531 /* This happens for example on obj2 and pic of the Calgary corpus */
532
533 /* Find the first bit length which could increase: */
534 do {
535 bits = max_length - 1;
536 while (s->bl_count[bits] == 0) bits--;
537 s->bl_count[bits]--; /* move one leaf down the tree */
538 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
539 s->bl_count[max_length]--;
540 /* The brother of the overflow item also moves one step up,
541 * but this does not affect bl_count[max_length]
542 */
543 overflow -= 2;
544 } while (overflow > 0);
545
546 /* Now recompute all bit lengths, scanning in increasing frequency.
547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
548 * lengths instead of fixing only the wrong ones. This idea is taken
549 * from 'ar' written by Haruhiko Okumura.)
550 */
551 for (bits = max_length; bits != 0; bits--) {
552 n = s->bl_count[bits];
553 while (n != 0) {
554 m = s->heap[--h];
555 if (m > max_code) continue;
556 if ((unsigned) tree[m].Len != (unsigned) bits) {
557 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
558 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
559 tree[m].Len = (ush)bits;
560 }
561 n--;
562 }
563 }
564 }
565
566 /* ===========================================================================
567 * Generate the codes for a given tree and bit counts (which need not be
568 * optimal).
569 * IN assertion: the array bl_count contains the bit length statistics for
570 * the given tree and the field len is set for all tree elements.
571 * OUT assertion: the field code is set for all tree elements of non
572 * zero code length.
573 */
574 local void gen_codes(tree, max_code, bl_count)
575 ct_data *tree; /* the tree to decorate */
576 int max_code; /* largest code with non zero frequency */
577 ushf *bl_count; /* number of codes at each bit length */
578 {
579 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
580 unsigned code = 0; /* running code value */
581 int bits; /* bit index */
582 int n; /* code index */
583
584 /* The distribution counts are first used to generate the code values
585 * without bit reversal.
586 */
587 for (bits = 1; bits <= MAX_BITS; bits++) {
588 code = (code + bl_count[bits - 1]) << 1;
589 next_code[bits] = (ush)code;
590 }
591 /* Check that the bit counts in bl_count are consistent. The last code
592 * must be all ones.
593 */
594 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
595 "inconsistent bit counts");
596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
597
598 for (n = 0; n <= max_code; n++) {
599 int len = tree[n].Len;
600 if (len == 0) continue;
601 /* Now reverse the bits */
602 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
603
604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
606 }
607 }
608
609 /* ===========================================================================
610 * Construct one Huffman tree and assigns the code bit strings and lengths.
611 * Update the total bit length for the current block.
612 * IN assertion: the field freq is set for all tree elements.
613 * OUT assertions: the fields len and code are set to the optimal bit length
614 * and corresponding code. The length opt_len is updated; static_len is
615 * also updated if stree is not null. The field max_code is set.
616 */
617 local void build_tree(s, desc)
618 deflate_state *s;
619 tree_desc *desc; /* the tree descriptor */
620 {
621 ct_data *tree = desc->dyn_tree;
622 const ct_data *stree = desc->stat_desc->static_tree;
623 int elems = desc->stat_desc->elems;
624 int n, m; /* iterate over heap elements */
625 int max_code = -1; /* largest code with non zero frequency */
626 int node; /* new node being created */
627
628 /* Construct the initial heap, with least frequent element in
629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
630 * heap[0] is not used.
631 */
632 s->heap_len = 0, s->heap_max = HEAP_SIZE;
633
634 for (n = 0; n < elems; n++) {
635 if (tree[n].Freq != 0) {
636 s->heap[++(s->heap_len)] = max_code = n;
637 s->depth[n] = 0;
638 } else {
639 tree[n].Len = 0;
640 }
641 }
642
643 /* The pkzip format requires that at least one distance code exists,
644 * and that at least one bit should be sent even if there is only one
645 * possible code. So to avoid special checks later on we force at least
646 * two codes of non zero frequency.
647 */
648 while (s->heap_len < 2) {
649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
650 tree[node].Freq = 1;
651 s->depth[node] = 0;
652 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
653 /* node is 0 or 1 so it does not have extra bits */
654 }
655 desc->max_code = max_code;
656
657 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
658 * establish sub-heaps of increasing lengths:
659 */
660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
661
662 /* Construct the Huffman tree by repeatedly combining the least two
663 * frequent nodes.
664 */
665 node = elems; /* next internal node of the tree */
666 do {
667 pqremove(s, tree, n); /* n = node of least frequency */
668 m = s->heap[SMALLEST]; /* m = node of next least frequency */
669
670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
671 s->heap[--(s->heap_max)] = m;
672
673 /* Create a new node father of n and m */
674 tree[node].Freq = tree[n].Freq + tree[m].Freq;
675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
676 s->depth[n] : s->depth[m]) + 1);
677 tree[n].Dad = tree[m].Dad = (ush)node;
678 #ifdef DUMP_BL_TREE
679 if (tree == s->bl_tree) {
680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
682 }
683 #endif
684 /* and insert the new node in the heap */
685 s->heap[SMALLEST] = node++;
686 pqdownheap(s, tree, SMALLEST);
687
688 } while (s->heap_len >= 2);
689
690 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
691
692 /* At this point, the fields freq and dad are set. We can now
693 * generate the bit lengths.
694 */
695 gen_bitlen(s, (tree_desc *)desc);
696
697 /* The field len is now set, we can generate the bit codes */
698 gen_codes ((ct_data *)tree, max_code, s->bl_count);
699 }
700
701 /* ===========================================================================
702 * Scan a literal or distance tree to determine the frequencies of the codes
703 * in the bit length tree.
704 */
705 local void scan_tree(s, tree, max_code)
706 deflate_state *s;
707 ct_data *tree; /* the tree to be scanned */
708 int max_code; /* and its largest code of non zero frequency */
709 {
710 int n; /* iterates over all tree elements */
711 int prevlen = -1; /* last emitted length */
712 int curlen; /* length of current code */
713 int nextlen = tree[0].Len; /* length of next code */
714 int count = 0; /* repeat count of the current code */
715 int max_count = 7; /* max repeat count */
716 int min_count = 4; /* min repeat count */
717
718 if (nextlen == 0) max_count = 138, min_count = 3;
719 tree[max_code + 1].Len = (ush)0xffff; /* guard */
720
721 for (n = 0; n <= max_code; n++) {
722 curlen = nextlen; nextlen = tree[n + 1].Len;
723 if (++count < max_count && curlen == nextlen) {
724 continue;
725 } else if (count < min_count) {
726 s->bl_tree[curlen].Freq += count;
727 } else if (curlen != 0) {
728 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
729 s->bl_tree[REP_3_6].Freq++;
730 } else if (count <= 10) {
731 s->bl_tree[REPZ_3_10].Freq++;
732 } else {
733 s->bl_tree[REPZ_11_138].Freq++;
734 }
735 count = 0; prevlen = curlen;
736 if (nextlen == 0) {
737 max_count = 138, min_count = 3;
738 } else if (curlen == nextlen) {
739 max_count = 6, min_count = 3;
740 } else {
741 max_count = 7, min_count = 4;
742 }
743 }
744 }
745
746 /* ===========================================================================
747 * Send a literal or distance tree in compressed form, using the codes in
748 * bl_tree.
749 */
750 local void send_tree(s, tree, max_code)
751 deflate_state *s;
752 ct_data *tree; /* the tree to be scanned */
753 int max_code; /* and its largest code of non zero frequency */
754 {
755 int n; /* iterates over all tree elements */
756 int prevlen = -1; /* last emitted length */
757 int curlen; /* length of current code */
758 int nextlen = tree[0].Len; /* length of next code */
759 int count = 0; /* repeat count of the current code */
760 int max_count = 7; /* max repeat count */
761 int min_count = 4; /* min repeat count */
762
763 /* tree[max_code + 1].Len = -1; */ /* guard already set */
764 if (nextlen == 0) max_count = 138, min_count = 3;
765
766 for (n = 0; n <= max_code; n++) {
767 curlen = nextlen; nextlen = tree[n + 1].Len;
768 if (++count < max_count && curlen == nextlen) {
769 continue;
770 } else if (count < min_count) {
771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
772
773 } else if (curlen != 0) {
774 if (curlen != prevlen) {
775 send_code(s, curlen, s->bl_tree); count--;
776 }
777 Assert(count >= 3 && count <= 6, " 3_6?");
778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
779
780 } else if (count <= 10) {
781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
782
783 } else {
784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
785 }
786 count = 0; prevlen = curlen;
787 if (nextlen == 0) {
788 max_count = 138, min_count = 3;
789 } else if (curlen == nextlen) {
790 max_count = 6, min_count = 3;
791 } else {
792 max_count = 7, min_count = 4;
793 }
794 }
795 }
796
797 /* ===========================================================================
798 * Construct the Huffman tree for the bit lengths and return the index in
799 * bl_order of the last bit length code to send.
800 */
801 local int build_bl_tree(s)
802 deflate_state *s;
803 {
804 int max_blindex; /* index of last bit length code of non zero freq */
805
806 /* Determine the bit length frequencies for literal and distance trees */
807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
809
810 /* Build the bit length tree: */
811 build_tree(s, (tree_desc *)(&(s->bl_desc)));
812 /* opt_len now includes the length of the tree representations, except the
813 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
814 */
815
816 /* Determine the number of bit length codes to send. The pkzip format
817 * requires that at least 4 bit length codes be sent. (appnote.txt says
818 * 3 but the actual value used is 4.)
819 */
820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
822 }
823 /* Update opt_len to include the bit length tree and counts */
824 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
826 s->opt_len, s->static_len));
827
828 return max_blindex;
829 }
830
831 /* ===========================================================================
832 * Send the header for a block using dynamic Huffman trees: the counts, the
833 * lengths of the bit length codes, the literal tree and the distance tree.
834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
835 */
836 local void send_all_trees(s, lcodes, dcodes, blcodes)
837 deflate_state *s;
838 int lcodes, dcodes, blcodes; /* number of codes for each tree */
839 {
840 int rank; /* index in bl_order */
841
842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
844 "too many codes");
845 Tracev((stderr, "\nbl counts: "));
846 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
847 send_bits(s, dcodes - 1, 5);
848 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
849 for (rank = 0; rank < blcodes; rank++) {
850 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
852 }
853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
854
855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
857
858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
860 }
861
862 /* ===========================================================================
863 * Send a stored block
864 */
865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
866 deflate_state *s;
867 charf *buf; /* input block */
868 ulg stored_len; /* length of input block */
869 int last; /* one if this is the last block for a file */
870 {
871 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
872 bi_windup(s); /* align on byte boundary */
873 put_short(s, (ush)stored_len);
874 put_short(s, (ush)~stored_len);
875 if (stored_len)
876 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
877 s->pending += stored_len;
878 #ifdef ZLIB_DEBUG
879 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
880 s->compressed_len += (stored_len + 4) << 3;
881 s->bits_sent += 2*16;
882 s->bits_sent += stored_len << 3;
883 #endif
884 }
885
886 /* ===========================================================================
887 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
888 */
889 void ZLIB_INTERNAL _tr_flush_bits(s)
890 deflate_state *s;
891 {
892 bi_flush(s);
893 }
894
895 /* ===========================================================================
896 * Send one empty static block to give enough lookahead for inflate.
897 * This takes 10 bits, of which 7 may remain in the bit buffer.
898 */
899 void ZLIB_INTERNAL _tr_align(s)
900 deflate_state *s;
901 {
902 send_bits(s, STATIC_TREES<<1, 3);
903 send_code(s, END_BLOCK, static_ltree);
904 #ifdef ZLIB_DEBUG
905 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
906 #endif
907 bi_flush(s);
908 }
909
910 /* ===========================================================================
911 * Determine the best encoding for the current block: dynamic trees, static
912 * trees or store, and write out the encoded block.
913 */
914 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
915 deflate_state *s;
916 charf *buf; /* input block, or NULL if too old */
917 ulg stored_len; /* length of input block */
918 int last; /* one if this is the last block for a file */
919 {
920 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
921 int max_blindex = 0; /* index of last bit length code of non zero freq */
922
923 /* Build the Huffman trees unless a stored block is forced */
924 if (s->level > 0) {
925
926 /* Check if the file is binary or text */
927 if (s->strm->data_type == Z_UNKNOWN)
928 s->strm->data_type = detect_data_type(s);
929
930 /* Construct the literal and distance trees */
931 build_tree(s, (tree_desc *)(&(s->l_desc)));
932 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
933 s->static_len));
934
935 build_tree(s, (tree_desc *)(&(s->d_desc)));
936 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
937 s->static_len));
938 /* At this point, opt_len and static_len are the total bit lengths of
939 * the compressed block data, excluding the tree representations.
940 */
941
942 /* Build the bit length tree for the above two trees, and get the index
943 * in bl_order of the last bit length code to send.
944 */
945 max_blindex = build_bl_tree(s);
946
947 /* Determine the best encoding. Compute the block lengths in bytes. */
948 opt_lenb = (s->opt_len + 3 + 7) >> 3;
949 static_lenb = (s->static_len + 3 + 7) >> 3;
950
951 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
952 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
953 s->sym_next / 3));
954
955 #ifndef FORCE_STATIC
956 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
957 #endif
958 opt_lenb = static_lenb;
959
960 } else {
961 Assert(buf != (char*)0, "lost buf");
962 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
963 }
964
965 #ifdef FORCE_STORED
966 if (buf != (char*)0) { /* force stored block */
967 #else
968 if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
969 /* 4: two words for the lengths */
970 #endif
971 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
972 * Otherwise we can't have processed more than WSIZE input bytes since
973 * the last block flush, because compression would have been
974 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
975 * transform a block into a stored block.
976 */
977 _tr_stored_block(s, buf, stored_len, last);
978
979 } else if (static_lenb == opt_lenb) {
980 send_bits(s, (STATIC_TREES<<1) + last, 3);
981 compress_block(s, (const ct_data *)static_ltree,
982 (const ct_data *)static_dtree);
983 #ifdef ZLIB_DEBUG
984 s->compressed_len += 3 + s->static_len;
985 #endif
986 } else {
987 send_bits(s, (DYN_TREES<<1) + last, 3);
988 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
989 max_blindex + 1);
990 compress_block(s, (const ct_data *)s->dyn_ltree,
991 (const ct_data *)s->dyn_dtree);
992 #ifdef ZLIB_DEBUG
993 s->compressed_len += 3 + s->opt_len;
994 #endif
995 }
996 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
997 /* The above check is made mod 2^32, for files larger than 512 MB
998 * and uLong implemented on 32 bits.
999 */
1000 init_block(s);
1001
1002 if (last) {
1003 bi_windup(s);
1004 #ifdef ZLIB_DEBUG
1005 s->compressed_len += 7; /* align on byte boundary */
1006 #endif
1007 }
1008 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1009 s->compressed_len - 7*last));
1010 }
1011
1012 /* ===========================================================================
1013 * Save the match info and tally the frequency counts. Return true if
1014 * the current block must be flushed.
1015 */
1016 int ZLIB_INTERNAL _tr_tally(s, dist, lc)
1017 deflate_state *s;
1018 unsigned dist; /* distance of matched string */
1019 unsigned lc; /* match length - MIN_MATCH or unmatched char (dist==0) */
1020 {
1021 s->sym_buf[s->sym_next++] = (uch)dist;
1022 s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1023 s->sym_buf[s->sym_next++] = (uch)lc;
1024 if (dist == 0) {
1025 /* lc is the unmatched char */
1026 s->dyn_ltree[lc].Freq++;
1027 } else {
1028 s->matches++;
1029 /* Here, lc is the match length - MIN_MATCH */
1030 dist--; /* dist = match distance - 1 */
1031 Assert((ush)dist < (ush)MAX_DIST(s) &&
1032 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1033 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1034
1035 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1036 s->dyn_dtree[d_code(dist)].Freq++;
1037 }
1038 return (s->sym_next == s->sym_end);
1039 }
1040
1041 /* ===========================================================================
1042 * Send the block data compressed using the given Huffman trees
1043 */
1044 local void compress_block(s, ltree, dtree)
1045 deflate_state *s;
1046 const ct_data *ltree; /* literal tree */
1047 const ct_data *dtree; /* distance tree */
1048 {
1049 unsigned dist; /* distance of matched string */
1050 int lc; /* match length or unmatched char (if dist == 0) */
1051 unsigned sx = 0; /* running index in sym_buf */
1052 unsigned code; /* the code to send */
1053 int extra; /* number of extra bits to send */
1054
1055 if (s->sym_next != 0) do {
1056 dist = s->sym_buf[sx++] & 0xff;
1057 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
1058 lc = s->sym_buf[sx++];
1059 if (dist == 0) {
1060 send_code(s, lc, ltree); /* send a literal byte */
1061 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1062 } else {
1063 /* Here, lc is the match length - MIN_MATCH */
1064 code = _length_code[lc];
1065 send_code(s, code + LITERALS + 1, ltree); /* send length code */
1066 extra = extra_lbits[code];
1067 if (extra != 0) {
1068 lc -= base_length[code];
1069 send_bits(s, lc, extra); /* send the extra length bits */
1070 }
1071 dist--; /* dist is now the match distance - 1 */
1072 code = d_code(dist);
1073 Assert (code < D_CODES, "bad d_code");
1074
1075 send_code(s, code, dtree); /* send the distance code */
1076 extra = extra_dbits[code];
1077 if (extra != 0) {
1078 dist -= (unsigned)base_dist[code];
1079 send_bits(s, dist, extra); /* send the extra distance bits */
1080 }
1081 } /* literal or match pair ? */
1082
1083 /* Check that the overlay between pending_buf and sym_buf is ok: */
1084 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
1085
1086 } while (sx < s->sym_next);
1087
1088 send_code(s, END_BLOCK, ltree);
1089 }
1090
1091 /* ===========================================================================
1092 * Check if the data type is TEXT or BINARY, using the following algorithm:
1093 * - TEXT if the two conditions below are satisfied:
1094 * a) There are no non-portable control characters belonging to the
1095 * "block list" (0..6, 14..25, 28..31).
1096 * b) There is at least one printable character belonging to the
1097 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1098 * - BINARY otherwise.
1099 * - The following partially-portable control characters form a
1100 * "gray list" that is ignored in this detection algorithm:
1101 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1102 * IN assertion: the fields Freq of dyn_ltree are set.
1103 */
1104 local int detect_data_type(s)
1105 deflate_state *s;
1106 {
1107 /* block_mask is the bit mask of block-listed bytes
1108 * set bits 0..6, 14..25, and 28..31
1109 * 0xf3ffc07f = binary 11110011111111111100000001111111
1110 */
1111 unsigned long block_mask = 0xf3ffc07fUL;
1112 int n;
1113
1114 /* Check for non-textual ("block-listed") bytes. */
1115 for (n = 0; n <= 31; n++, block_mask >>= 1)
1116 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1117 return Z_BINARY;
1118
1119 /* Check for textual ("allow-listed") bytes. */
1120 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1121 || s->dyn_ltree[13].Freq != 0)
1122 return Z_TEXT;
1123 for (n = 32; n < LITERALS; n++)
1124 if (s->dyn_ltree[n].Freq != 0)
1125 return Z_TEXT;
1126
1127 /* There are no "block-listed" or "allow-listed" bytes:
1128 * this stream either is empty or has tolerated ("gray-listed") bytes only.
1129 */
1130 return Z_BINARY;
1131 }
1132
1133 /* ===========================================================================
1134 * Reverse the first len bits of a code, using straightforward code (a faster
1135 * method would use a table)
1136 * IN assertion: 1 <= len <= 15
1137 */
1138 local unsigned bi_reverse(code, len)
1139 unsigned code; /* the value to invert */
1140 int len; /* its bit length */
1141 {
1142 register unsigned res = 0;
1143 do {
1144 res |= code & 1;
1145 code >>= 1, res <<= 1;
1146 } while (--len > 0);
1147 return res >> 1;
1148 }
1149
1150 /* ===========================================================================
1151 * Flush the bit buffer, keeping at most 7 bits in it.
1152 */
1153 local void bi_flush(s)
1154 deflate_state *s;
1155 {
1156 if (s->bi_valid == 16) {
1157 put_short(s, s->bi_buf);
1158 s->bi_buf = 0;
1159 s->bi_valid = 0;
1160 } else if (s->bi_valid >= 8) {
1161 put_byte(s, (Byte)s->bi_buf);
1162 s->bi_buf >>= 8;
1163 s->bi_valid -= 8;
1164 }
1165 }
1166
1167 /* ===========================================================================
1168 * Flush the bit buffer and align the output on a byte boundary
1169 */
1170 local void bi_windup(s)
1171 deflate_state *s;
1172 {
1173 if (s->bi_valid > 8) {
1174 put_short(s, s->bi_buf);
1175 } else if (s->bi_valid > 0) {
1176 put_byte(s, (Byte)s->bi_buf);
1177 }
1178 s->bi_buf = 0;
1179 s->bi_valid = 0;
1180 #ifdef ZLIB_DEBUG
1181 s->bits_sent = (s->bits_sent + 7) & ~7;
1182 #endif
1183 }
1184