trees.c revision 1.6.8.1 1 /* $NetBSD: trees.c,v 1.6.8.1 2025/08/02 05:18:28 perseant Exp $ */
2
3 /* trees.c -- output deflated data using Huffman coding
4 * Copyright (C) 1995-2024 Jean-loup Gailly
5 * detect_data_type() function provided freely by Cosmin Truta, 2006
6 * For conditions of distribution and use, see copyright notice in zlib.h
7 */
8
9 /*
10 * ALGORITHM
11 *
12 * The "deflation" process uses several Huffman trees. The more
13 * common source values are represented by shorter bit sequences.
14 *
15 * Each code tree is stored in a compressed form which is itself
16 * a Huffman encoding of the lengths of all the code strings (in
17 * ascending order by source values). The actual code strings are
18 * reconstructed from the lengths in the inflate process, as described
19 * in the deflate specification.
20 *
21 * REFERENCES
22 *
23 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
24 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25 *
26 * Storer, James A.
27 * Data Compression: Methods and Theory, pp. 49-50.
28 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
29 *
30 * Sedgewick, R.
31 * Algorithms, p290.
32 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
33 */
34
35 /* @(#) Id */
36
37 /* #define GEN_TREES_H */
38
39 #include "deflate.h"
40
41 #ifdef ZLIB_DEBUG
42 # include <ctype.h>
43 #endif
44
45 /* ===========================================================================
46 * Constants
47 */
48
49 #define MAX_BL_BITS 7
50 /* Bit length codes must not exceed MAX_BL_BITS bits */
51
52 #define END_BLOCK 256
53 /* end of block literal code */
54
55 #define REP_3_6 16
56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
57
58 #define REPZ_3_10 17
59 /* repeat a zero length 3-10 times (3 bits of repeat count) */
60
61 #define REPZ_11_138 18
62 /* repeat a zero length 11-138 times (7 bits of repeat count) */
63
64 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
65 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
66
67 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
68 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
69
70 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
71 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
72
73 local const uch bl_order[BL_CODES]
74 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 /* The lengths of the bit length codes are sent in order of decreasing
76 * probability, to avoid transmitting the lengths for unused bit length codes.
77 */
78
79 /* ===========================================================================
80 * Local data. These are initialized only once.
81 */
82
83 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
84
85 #if defined(GEN_TREES_H) || !defined(STDC)
86 /* non ANSI compilers may not accept trees.h */
87
88 local ct_data static_ltree[L_CODES+2];
89 /* The static literal tree. Since the bit lengths are imposed, there is no
90 * need for the L_CODES extra codes used during heap construction. However
91 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
92 * below).
93 */
94
95 local ct_data static_dtree[D_CODES];
96 /* The static distance tree. (Actually a trivial tree since all codes use
97 * 5 bits.)
98 */
99
100 uch _dist_code[DIST_CODE_LEN];
101 /* Distance codes. The first 256 values correspond to the distances
102 * 3 .. 258, the last 256 values correspond to the top 8 bits of
103 * the 15 bit distances.
104 */
105
106 uch _length_code[MAX_MATCH-MIN_MATCH+1];
107 /* length code for each normalized match length (0 == MIN_MATCH) */
108
109 local int base_length[LENGTH_CODES];
110 /* First normalized length for each code (0 = MIN_MATCH) */
111
112 local int base_dist[D_CODES];
113 /* First normalized distance for each code (0 = distance of 1) */
114
115 #else
116 # include "trees.h"
117 #endif /* GEN_TREES_H */
118
119 struct static_tree_desc_s {
120 const ct_data *static_tree; /* static tree or NULL */
121 const intf *extra_bits; /* extra bits for each code or NULL */
122 int extra_base; /* base index for extra_bits */
123 int elems; /* max number of elements in the tree */
124 int max_length; /* max bit length for the codes */
125 };
126
127 #ifdef NO_INIT_GLOBAL_POINTERS
128 # define TCONST
129 #else
130 # define TCONST const
131 #endif
132
133 local TCONST static_tree_desc static_l_desc =
134 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
135
136 local TCONST static_tree_desc static_d_desc =
137 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
138
139 local TCONST static_tree_desc static_bl_desc =
140 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
141
142 /* ===========================================================================
143 * Output a short LSB first on the stream.
144 * IN assertion: there is enough room in pendingBuf.
145 */
146 #define put_short(s, w) { \
147 put_byte(s, (uch)((w) & 0xff)); \
148 put_byte(s, (uch)((ush)(w) >> 8)); \
149 }
150
151 /* ===========================================================================
152 * Reverse the first len bits of a code, using straightforward code (a faster
153 * method would use a table)
154 * IN assertion: 1 <= len <= 15
155 */
156 local unsigned bi_reverse(unsigned code, int len) {
157 register unsigned res = 0;
158 do {
159 res |= code & 1;
160 code >>= 1, res <<= 1;
161 } while (--len > 0);
162 return res >> 1;
163 }
164
165 /* ===========================================================================
166 * Flush the bit buffer, keeping at most 7 bits in it.
167 */
168 local void bi_flush(deflate_state *s) {
169 if (s->bi_valid == 16) {
170 put_short(s, s->bi_buf);
171 s->bi_buf = 0;
172 s->bi_valid = 0;
173 } else if (s->bi_valid >= 8) {
174 put_byte(s, (Byte)s->bi_buf);
175 s->bi_buf >>= 8;
176 s->bi_valid -= 8;
177 }
178 }
179
180 /* ===========================================================================
181 * Flush the bit buffer and align the output on a byte boundary
182 */
183 local void bi_windup(deflate_state *s) {
184 if (s->bi_valid > 8) {
185 put_short(s, s->bi_buf);
186 } else if (s->bi_valid > 0) {
187 put_byte(s, (Byte)s->bi_buf);
188 }
189 s->bi_buf = 0;
190 s->bi_valid = 0;
191 #ifdef ZLIB_DEBUG
192 s->bits_sent = (s->bits_sent + 7) & ~7;
193 #endif
194 }
195
196 /* ===========================================================================
197 * Generate the codes for a given tree and bit counts (which need not be
198 * optimal).
199 * IN assertion: the array bl_count contains the bit length statistics for
200 * the given tree and the field len is set for all tree elements.
201 * OUT assertion: the field code is set for all tree elements of non
202 * zero code length.
203 */
204 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
205 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
206 unsigned code = 0; /* running code value */
207 int bits; /* bit index */
208 int n; /* code index */
209
210 /* The distribution counts are first used to generate the code values
211 * without bit reversal.
212 */
213 for (bits = 1; bits <= MAX_BITS; bits++) {
214 code = (code + bl_count[bits - 1]) << 1;
215 next_code[bits] = (ush)code;
216 }
217 /* Check that the bit counts in bl_count are consistent. The last code
218 * must be all ones.
219 */
220 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
221 "inconsistent bit counts");
222 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
223
224 for (n = 0; n <= max_code; n++) {
225 int len = tree[n].Len;
226 if (len == 0) continue;
227 /* Now reverse the bits */
228 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
229
230 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
231 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
232 }
233 }
234
235 #ifdef GEN_TREES_H
236 local void gen_trees_header(void);
237 #endif
238
239 #ifndef ZLIB_DEBUG
240 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
241 /* Send a code of the given tree. c and tree must not have side effects */
242
243 #else /* !ZLIB_DEBUG */
244 # define send_code(s, c, tree) \
245 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
246 send_bits(s, tree[c].Code, tree[c].Len); }
247 #endif
248
249 /* ===========================================================================
250 * Send a value on a given number of bits.
251 * IN assertion: length <= 16 and value fits in length bits.
252 */
253 #ifdef ZLIB_DEBUG
254 local void send_bits(deflate_state *s, int value, int length) {
255 Tracevv((stderr," l %2d v %4x ", length, value));
256 Assert(length > 0 && length <= 15, "invalid length");
257 s->bits_sent += (ulg)length;
258
259 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
260 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
261 * unused bits in value.
262 */
263 if (s->bi_valid > (int)Buf_size - length) {
264 s->bi_buf |= (ush)value << s->bi_valid;
265 put_short(s, s->bi_buf);
266 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
267 s->bi_valid += length - Buf_size;
268 } else {
269 s->bi_buf |= (ush)value << s->bi_valid;
270 s->bi_valid += length;
271 }
272 }
273 #else /* !ZLIB_DEBUG */
274
275 #define send_bits(s, value, length) \
276 { int len = length;\
277 if (s->bi_valid > (int)Buf_size - len) {\
278 int val = (int)value;\
279 s->bi_buf |= (ush)val << s->bi_valid;\
280 put_short(s, s->bi_buf);\
281 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
282 s->bi_valid += len - Buf_size;\
283 } else {\
284 s->bi_buf |= (ush)(value) << s->bi_valid;\
285 s->bi_valid += len;\
286 }\
287 }
288 #endif /* ZLIB_DEBUG */
289
290
291 /* the arguments must not have side effects */
292
293 /* ===========================================================================
294 * Initialize the various 'constant' tables.
295 */
296 local void tr_static_init(void) {
297 #if defined(GEN_TREES_H) || !defined(STDC)
298 static int static_init_done = 0;
299 int n; /* iterates over tree elements */
300 int bits; /* bit counter */
301 int length; /* length value */
302 int code; /* code value */
303 int dist; /* distance index */
304 ush bl_count[MAX_BITS+1];
305 /* number of codes at each bit length for an optimal tree */
306
307 if (static_init_done) return;
308
309 /* For some embedded targets, global variables are not initialized: */
310 #ifdef NO_INIT_GLOBAL_POINTERS
311 static_l_desc.static_tree = static_ltree;
312 static_l_desc.extra_bits = extra_lbits;
313 static_d_desc.static_tree = static_dtree;
314 static_d_desc.extra_bits = extra_dbits;
315 static_bl_desc.extra_bits = extra_blbits;
316 #endif
317
318 /* Initialize the mapping length (0..255) -> length code (0..28) */
319 length = 0;
320 for (code = 0; code < LENGTH_CODES-1; code++) {
321 base_length[code] = length;
322 for (n = 0; n < (1 << extra_lbits[code]); n++) {
323 _length_code[length++] = (uch)code;
324 }
325 }
326 Assert (length == 256, "tr_static_init: length != 256");
327 /* Note that the length 255 (match length 258) can be represented
328 * in two different ways: code 284 + 5 bits or code 285, so we
329 * overwrite length_code[255] to use the best encoding:
330 */
331 _length_code[length - 1] = (uch)code;
332
333 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
334 dist = 0;
335 for (code = 0 ; code < 16; code++) {
336 base_dist[code] = dist;
337 for (n = 0; n < (1 << extra_dbits[code]); n++) {
338 _dist_code[dist++] = (uch)code;
339 }
340 }
341 Assert (dist == 256, "tr_static_init: dist != 256");
342 dist >>= 7; /* from now on, all distances are divided by 128 */
343 for ( ; code < D_CODES; code++) {
344 base_dist[code] = dist << 7;
345 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
346 _dist_code[256 + dist++] = (uch)code;
347 }
348 }
349 Assert (dist == 256, "tr_static_init: 256 + dist != 512");
350
351 /* Construct the codes of the static literal tree */
352 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
353 n = 0;
354 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
355 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
356 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
357 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
358 /* Codes 286 and 287 do not exist, but we must include them in the
359 * tree construction to get a canonical Huffman tree (longest code
360 * all ones)
361 */
362 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
363
364 /* The static distance tree is trivial: */
365 for (n = 0; n < D_CODES; n++) {
366 static_dtree[n].Len = 5;
367 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
368 }
369 static_init_done = 1;
370
371 # ifdef GEN_TREES_H
372 gen_trees_header();
373 # endif
374 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
375 }
376
377 /* ===========================================================================
378 * Generate the file trees.h describing the static trees.
379 */
380 #ifdef GEN_TREES_H
381 # ifndef ZLIB_DEBUG
382 # include <stdio.h>
383 # endif
384
385 # define SEPARATOR(i, last, width) \
386 ((i) == (last)? "\n};\n\n" : \
387 ((i) % (width) == (width) - 1 ? ",\n" : ", "))
388
389 void gen_trees_header(void) {
390 FILE *header = fopen("trees.h", "w");
391 int i;
392
393 Assert (header != NULL, "Can't open trees.h");
394 fprintf(header,
395 "/* header created automatically with -DGEN_TREES_H */\n\n");
396
397 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
398 for (i = 0; i < L_CODES+2; i++) {
399 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
400 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
401 }
402
403 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
404 for (i = 0; i < D_CODES; i++) {
405 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
406 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
407 }
408
409 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
410 for (i = 0; i < DIST_CODE_LEN; i++) {
411 fprintf(header, "%2u%s", _dist_code[i],
412 SEPARATOR(i, DIST_CODE_LEN-1, 20));
413 }
414
415 fprintf(header,
416 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
417 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
418 fprintf(header, "%2u%s", _length_code[i],
419 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
420 }
421
422 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
423 for (i = 0; i < LENGTH_CODES; i++) {
424 fprintf(header, "%1u%s", base_length[i],
425 SEPARATOR(i, LENGTH_CODES-1, 20));
426 }
427
428 fprintf(header, "local const int base_dist[D_CODES] = {\n");
429 for (i = 0; i < D_CODES; i++) {
430 fprintf(header, "%5u%s", base_dist[i],
431 SEPARATOR(i, D_CODES-1, 10));
432 }
433
434 fclose(header);
435 }
436 #endif /* GEN_TREES_H */
437
438 /* ===========================================================================
439 * Initialize a new block.
440 */
441 local void init_block(deflate_state *s) {
442 int n; /* iterates over tree elements */
443
444 /* Initialize the trees. */
445 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
446 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
447 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
448
449 s->dyn_ltree[END_BLOCK].Freq = 1;
450 s->opt_len = s->static_len = 0L;
451 s->sym_next = s->matches = 0;
452 }
453
454 /* ===========================================================================
455 * Initialize the tree data structures for a new zlib stream.
456 */
457 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
458 tr_static_init();
459
460 s->l_desc.dyn_tree = s->dyn_ltree;
461 s->l_desc.stat_desc = &static_l_desc;
462
463 s->d_desc.dyn_tree = s->dyn_dtree;
464 s->d_desc.stat_desc = &static_d_desc;
465
466 s->bl_desc.dyn_tree = s->bl_tree;
467 s->bl_desc.stat_desc = &static_bl_desc;
468
469 s->bi_buf = 0;
470 s->bi_valid = 0;
471 #ifdef ZLIB_DEBUG
472 s->compressed_len = 0L;
473 s->bits_sent = 0L;
474 #endif
475
476 /* Initialize the first block of the first file: */
477 init_block(s);
478 }
479
480 #define SMALLEST 1
481 /* Index within the heap array of least frequent node in the Huffman tree */
482
483
484 /* ===========================================================================
485 * Remove the smallest element from the heap and recreate the heap with
486 * one less element. Updates heap and heap_len.
487 */
488 #define pqremove(s, tree, top) \
489 {\
490 top = s->heap[SMALLEST]; \
491 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
492 pqdownheap(s, tree, SMALLEST); \
493 }
494
495 /* ===========================================================================
496 * Compares to subtrees, using the tree depth as tie breaker when
497 * the subtrees have equal frequency. This minimizes the worst case length.
498 */
499 #define smaller(tree, n, m, depth) \
500 (tree[n].Freq < tree[m].Freq || \
501 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
502
503 /* ===========================================================================
504 * Restore the heap property by moving down the tree starting at node k,
505 * exchanging a node with the smallest of its two sons if necessary, stopping
506 * when the heap property is re-established (each father smaller than its
507 * two sons).
508 */
509 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
510 int v = s->heap[k];
511 int j = k << 1; /* left son of k */
512 while (j <= s->heap_len) {
513 /* Set j to the smallest of the two sons: */
514 if (j < s->heap_len &&
515 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
516 j++;
517 }
518 /* Exit if v is smaller than both sons */
519 if (smaller(tree, v, s->heap[j], s->depth)) break;
520
521 /* Exchange v with the smallest son */
522 s->heap[k] = s->heap[j]; k = j;
523
524 /* And continue down the tree, setting j to the left son of k */
525 j <<= 1;
526 }
527 s->heap[k] = v;
528 }
529
530 /* ===========================================================================
531 * Compute the optimal bit lengths for a tree and update the total bit length
532 * for the current block.
533 * IN assertion: the fields freq and dad are set, heap[heap_max] and
534 * above are the tree nodes sorted by increasing frequency.
535 * OUT assertions: the field len is set to the optimal bit length, the
536 * array bl_count contains the frequencies for each bit length.
537 * The length opt_len is updated; static_len is also updated if stree is
538 * not null.
539 */
540 local void gen_bitlen(deflate_state *s, tree_desc *desc) {
541 ct_data *tree = desc->dyn_tree;
542 int max_code = desc->max_code;
543 const ct_data *stree = desc->stat_desc->static_tree;
544 const intf *extra = desc->stat_desc->extra_bits;
545 int base = desc->stat_desc->extra_base;
546 int max_length = desc->stat_desc->max_length;
547 int h; /* heap index */
548 int n, m; /* iterate over the tree elements */
549 int bits; /* bit length */
550 int xbits; /* extra bits */
551 ush f; /* frequency */
552 int overflow = 0; /* number of elements with bit length too large */
553
554 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
555
556 /* In a first pass, compute the optimal bit lengths (which may
557 * overflow in the case of the bit length tree).
558 */
559 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
560
561 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
562 n = s->heap[h];
563 bits = tree[tree[n].Dad].Len + 1;
564 if (bits > max_length) bits = max_length, overflow++;
565 tree[n].Len = (ush)bits;
566 /* We overwrite tree[n].Dad which is no longer needed */
567
568 if (n > max_code) continue; /* not a leaf node */
569
570 s->bl_count[bits]++;
571 xbits = 0;
572 if (n >= base) xbits = extra[n - base];
573 f = tree[n].Freq;
574 s->opt_len += (ulg)f * (unsigned)(bits + xbits);
575 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
576 }
577 if (overflow == 0) return;
578
579 Tracev((stderr,"\nbit length overflow\n"));
580 /* This happens for example on obj2 and pic of the Calgary corpus */
581
582 /* Find the first bit length which could increase: */
583 do {
584 bits = max_length - 1;
585 while (s->bl_count[bits] == 0) bits--;
586 s->bl_count[bits]--; /* move one leaf down the tree */
587 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
588 s->bl_count[max_length]--;
589 /* The brother of the overflow item also moves one step up,
590 * but this does not affect bl_count[max_length]
591 */
592 overflow -= 2;
593 } while (overflow > 0);
594
595 /* Now recompute all bit lengths, scanning in increasing frequency.
596 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
597 * lengths instead of fixing only the wrong ones. This idea is taken
598 * from 'ar' written by Haruhiko Okumura.)
599 */
600 for (bits = max_length; bits != 0; bits--) {
601 n = s->bl_count[bits];
602 while (n != 0) {
603 m = s->heap[--h];
604 if (m > max_code) continue;
605 if ((unsigned) tree[m].Len != (unsigned) bits) {
606 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
607 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
608 tree[m].Len = (ush)bits;
609 }
610 n--;
611 }
612 }
613 }
614
615 #ifdef DUMP_BL_TREE
616 # include <stdio.h>
617 #endif
618
619 /* ===========================================================================
620 * Construct one Huffman tree and assigns the code bit strings and lengths.
621 * Update the total bit length for the current block.
622 * IN assertion: the field freq is set for all tree elements.
623 * OUT assertions: the fields len and code are set to the optimal bit length
624 * and corresponding code. The length opt_len is updated; static_len is
625 * also updated if stree is not null. The field max_code is set.
626 */
627 local void build_tree(deflate_state *s, tree_desc *desc) {
628 ct_data *tree = desc->dyn_tree;
629 const ct_data *stree = desc->stat_desc->static_tree;
630 int elems = desc->stat_desc->elems;
631 int n, m; /* iterate over heap elements */
632 int max_code = -1; /* largest code with non zero frequency */
633 int node; /* new node being created */
634
635 /* Construct the initial heap, with least frequent element in
636 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
637 * heap[0] is not used.
638 */
639 s->heap_len = 0, s->heap_max = HEAP_SIZE;
640
641 for (n = 0; n < elems; n++) {
642 if (tree[n].Freq != 0) {
643 s->heap[++(s->heap_len)] = max_code = n;
644 s->depth[n] = 0;
645 } else {
646 tree[n].Len = 0;
647 }
648 }
649
650 /* The pkzip format requires that at least one distance code exists,
651 * and that at least one bit should be sent even if there is only one
652 * possible code. So to avoid special checks later on we force at least
653 * two codes of non zero frequency.
654 */
655 while (s->heap_len < 2) {
656 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
657 tree[node].Freq = 1;
658 s->depth[node] = 0;
659 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
660 /* node is 0 or 1 so it does not have extra bits */
661 }
662 desc->max_code = max_code;
663
664 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
665 * establish sub-heaps of increasing lengths:
666 */
667 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
668
669 /* Construct the Huffman tree by repeatedly combining the least two
670 * frequent nodes.
671 */
672 node = elems; /* next internal node of the tree */
673 do {
674 pqremove(s, tree, n); /* n = node of least frequency */
675 m = s->heap[SMALLEST]; /* m = node of next least frequency */
676
677 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
678 s->heap[--(s->heap_max)] = m;
679
680 /* Create a new node father of n and m */
681 tree[node].Freq = tree[n].Freq + tree[m].Freq;
682 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
683 s->depth[n] : s->depth[m]) + 1);
684 tree[n].Dad = tree[m].Dad = (ush)node;
685 #ifdef DUMP_BL_TREE
686 if (tree == s->bl_tree) {
687 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
688 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
689 }
690 #endif
691 /* and insert the new node in the heap */
692 s->heap[SMALLEST] = node++;
693 pqdownheap(s, tree, SMALLEST);
694
695 } while (s->heap_len >= 2);
696
697 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
698
699 /* At this point, the fields freq and dad are set. We can now
700 * generate the bit lengths.
701 */
702 gen_bitlen(s, (tree_desc *)desc);
703
704 /* The field len is now set, we can generate the bit codes */
705 gen_codes ((ct_data *)tree, max_code, s->bl_count);
706 }
707
708 /* ===========================================================================
709 * Scan a literal or distance tree to determine the frequencies of the codes
710 * in the bit length tree.
711 */
712 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
713 int n; /* iterates over all tree elements */
714 int prevlen = -1; /* last emitted length */
715 int curlen; /* length of current code */
716 int nextlen = tree[0].Len; /* length of next code */
717 int count = 0; /* repeat count of the current code */
718 int max_count = 7; /* max repeat count */
719 int min_count = 4; /* min repeat count */
720
721 if (nextlen == 0) max_count = 138, min_count = 3;
722 tree[max_code + 1].Len = (ush)0xffff; /* guard */
723
724 for (n = 0; n <= max_code; n++) {
725 curlen = nextlen; nextlen = tree[n + 1].Len;
726 if (++count < max_count && curlen == nextlen) {
727 continue;
728 } else if (count < min_count) {
729 s->bl_tree[curlen].Freq += count;
730 } else if (curlen != 0) {
731 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
732 s->bl_tree[REP_3_6].Freq++;
733 } else if (count <= 10) {
734 s->bl_tree[REPZ_3_10].Freq++;
735 } else {
736 s->bl_tree[REPZ_11_138].Freq++;
737 }
738 count = 0; prevlen = curlen;
739 if (nextlen == 0) {
740 max_count = 138, min_count = 3;
741 } else if (curlen == nextlen) {
742 max_count = 6, min_count = 3;
743 } else {
744 max_count = 7, min_count = 4;
745 }
746 }
747 }
748
749 /* ===========================================================================
750 * Send a literal or distance tree in compressed form, using the codes in
751 * bl_tree.
752 */
753 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
754 int n; /* iterates over all tree elements */
755 int prevlen = -1; /* last emitted length */
756 int curlen; /* length of current code */
757 int nextlen = tree[0].Len; /* length of next code */
758 int count = 0; /* repeat count of the current code */
759 int max_count = 7; /* max repeat count */
760 int min_count = 4; /* min repeat count */
761
762 /* tree[max_code + 1].Len = -1; */ /* guard already set */
763 if (nextlen == 0) max_count = 138, min_count = 3;
764
765 for (n = 0; n <= max_code; n++) {
766 curlen = nextlen; nextlen = tree[n + 1].Len;
767 if (++count < max_count && curlen == nextlen) {
768 continue;
769 } else if (count < min_count) {
770 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
771
772 } else if (curlen != 0) {
773 if (curlen != prevlen) {
774 send_code(s, curlen, s->bl_tree); count--;
775 }
776 Assert(count >= 3 && count <= 6, " 3_6?");
777 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
778
779 } else if (count <= 10) {
780 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
781
782 } else {
783 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
784 }
785 count = 0; prevlen = curlen;
786 if (nextlen == 0) {
787 max_count = 138, min_count = 3;
788 } else if (curlen == nextlen) {
789 max_count = 6, min_count = 3;
790 } else {
791 max_count = 7, min_count = 4;
792 }
793 }
794 }
795
796 /* ===========================================================================
797 * Construct the Huffman tree for the bit lengths and return the index in
798 * bl_order of the last bit length code to send.
799 */
800 local int build_bl_tree(deflate_state *s) {
801 int max_blindex; /* index of last bit length code of non zero freq */
802
803 /* Determine the bit length frequencies for literal and distance trees */
804 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
805 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
806
807 /* Build the bit length tree: */
808 build_tree(s, (tree_desc *)(&(s->bl_desc)));
809 /* opt_len now includes the length of the tree representations, except the
810 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
811 */
812
813 /* Determine the number of bit length codes to send. The pkzip format
814 * requires that at least 4 bit length codes be sent. (appnote.txt says
815 * 3 but the actual value used is 4.)
816 */
817 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
818 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
819 }
820 /* Update opt_len to include the bit length tree and counts */
821 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
822 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
823 s->opt_len, s->static_len));
824
825 return max_blindex;
826 }
827
828 /* ===========================================================================
829 * Send the header for a block using dynamic Huffman trees: the counts, the
830 * lengths of the bit length codes, the literal tree and the distance tree.
831 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
832 */
833 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
834 int blcodes) {
835 int rank; /* index in bl_order */
836
837 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
838 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
839 "too many codes");
840 Tracev((stderr, "\nbl counts: "));
841 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
842 send_bits(s, dcodes - 1, 5);
843 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
844 for (rank = 0; rank < blcodes; rank++) {
845 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
846 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
847 }
848 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
849
850 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
851 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
852
853 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
854 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
855 }
856
857 /* ===========================================================================
858 * Send a stored block
859 */
860 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
861 ulg stored_len, int last) {
862 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
863 bi_windup(s); /* align on byte boundary */
864 put_short(s, (ush)stored_len);
865 put_short(s, (ush)~stored_len);
866 if (stored_len)
867 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
868 s->pending += stored_len;
869 #ifdef ZLIB_DEBUG
870 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
871 s->compressed_len += (stored_len + 4) << 3;
872 s->bits_sent += 2*16;
873 s->bits_sent += stored_len << 3;
874 #endif
875 }
876
877 /* ===========================================================================
878 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
879 */
880 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
881 bi_flush(s);
882 }
883
884 /* ===========================================================================
885 * Send one empty static block to give enough lookahead for inflate.
886 * This takes 10 bits, of which 7 may remain in the bit buffer.
887 */
888 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
889 send_bits(s, STATIC_TREES<<1, 3);
890 send_code(s, END_BLOCK, static_ltree);
891 #ifdef ZLIB_DEBUG
892 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
893 #endif
894 bi_flush(s);
895 }
896
897 /* ===========================================================================
898 * Send the block data compressed using the given Huffman trees
899 */
900 local void compress_block(deflate_state *s, const ct_data *ltree,
901 const ct_data *dtree) {
902 unsigned dist; /* distance of matched string */
903 int lc; /* match length or unmatched char (if dist == 0) */
904 unsigned sx = 0; /* running index in symbol buffers */
905 unsigned code; /* the code to send */
906 int extra; /* number of extra bits to send */
907
908 if (s->sym_next != 0) do {
909 #ifdef LIT_MEM
910 dist = s->d_buf[sx];
911 lc = s->l_buf[sx++];
912 #else
913 dist = s->sym_buf[sx++] & 0xff;
914 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
915 lc = s->sym_buf[sx++];
916 #endif
917 if (dist == 0) {
918 send_code(s, lc, ltree); /* send a literal byte */
919 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
920 } else {
921 /* Here, lc is the match length - MIN_MATCH */
922 code = _length_code[lc];
923 send_code(s, code + LITERALS + 1, ltree); /* send length code */
924 extra = extra_lbits[code];
925 if (extra != 0) {
926 lc -= base_length[code];
927 send_bits(s, lc, extra); /* send the extra length bits */
928 }
929 dist--; /* dist is now the match distance - 1 */
930 code = d_code(dist);
931 Assert (code < D_CODES, "bad d_code");
932
933 send_code(s, code, dtree); /* send the distance code */
934 extra = extra_dbits[code];
935 if (extra != 0) {
936 dist -= (unsigned)base_dist[code];
937 send_bits(s, dist, extra); /* send the extra distance bits */
938 }
939 } /* literal or match pair ? */
940
941 /* Check for no overlay of pending_buf on needed symbols */
942 #ifdef LIT_MEM
943 Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
944 #else
945 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
946 #endif
947
948 } while (sx < s->sym_next);
949
950 send_code(s, END_BLOCK, ltree);
951 }
952
953 /* ===========================================================================
954 * Check if the data type is TEXT or BINARY, using the following algorithm:
955 * - TEXT if the two conditions below are satisfied:
956 * a) There are no non-portable control characters belonging to the
957 * "block list" (0..6, 14..25, 28..31).
958 * b) There is at least one printable character belonging to the
959 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
960 * - BINARY otherwise.
961 * - The following partially-portable control characters form a
962 * "gray list" that is ignored in this detection algorithm:
963 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
964 * IN assertion: the fields Freq of dyn_ltree are set.
965 */
966 local int detect_data_type(deflate_state *s) {
967 /* block_mask is the bit mask of block-listed bytes
968 * set bits 0..6, 14..25, and 28..31
969 * 0xf3ffc07f = binary 11110011111111111100000001111111
970 */
971 unsigned long block_mask = 0xf3ffc07fUL;
972 int n;
973
974 /* Check for non-textual ("block-listed") bytes. */
975 for (n = 0; n <= 31; n++, block_mask >>= 1)
976 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
977 return Z_BINARY;
978
979 /* Check for textual ("allow-listed") bytes. */
980 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
981 || s->dyn_ltree[13].Freq != 0)
982 return Z_TEXT;
983 for (n = 32; n < LITERALS; n++)
984 if (s->dyn_ltree[n].Freq != 0)
985 return Z_TEXT;
986
987 /* There are no "block-listed" or "allow-listed" bytes:
988 * this stream either is empty or has tolerated ("gray-listed") bytes only.
989 */
990 return Z_BINARY;
991 }
992
993 /* ===========================================================================
994 * Determine the best encoding for the current block: dynamic trees, static
995 * trees or store, and write out the encoded block.
996 */
997 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
998 ulg stored_len, int last) {
999 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1000 int max_blindex = 0; /* index of last bit length code of non zero freq */
1001
1002 /* Build the Huffman trees unless a stored block is forced */
1003 if (s->level > 0) {
1004
1005 /* Check if the file is binary or text */
1006 if (s->strm->data_type == Z_UNKNOWN)
1007 s->strm->data_type = detect_data_type(s);
1008
1009 /* Construct the literal and distance trees */
1010 build_tree(s, (tree_desc *)(&(s->l_desc)));
1011 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1012 s->static_len));
1013
1014 build_tree(s, (tree_desc *)(&(s->d_desc)));
1015 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1016 s->static_len));
1017 /* At this point, opt_len and static_len are the total bit lengths of
1018 * the compressed block data, excluding the tree representations.
1019 */
1020
1021 /* Build the bit length tree for the above two trees, and get the index
1022 * in bl_order of the last bit length code to send.
1023 */
1024 max_blindex = build_bl_tree(s);
1025
1026 /* Determine the best encoding. Compute the block lengths in bytes. */
1027 opt_lenb = (s->opt_len + 3 + 7) >> 3;
1028 static_lenb = (s->static_len + 3 + 7) >> 3;
1029
1030 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1031 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1032 s->sym_next / 3));
1033
1034 #ifndef FORCE_STATIC
1035 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1036 #endif
1037 opt_lenb = static_lenb;
1038
1039 } else {
1040 Assert(buf != (char*)0, "lost buf");
1041 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1042 }
1043
1044 #ifdef FORCE_STORED
1045 if (buf != (char*)0) { /* force stored block */
1046 #else
1047 if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1048 /* 4: two words for the lengths */
1049 #endif
1050 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1051 * Otherwise we can't have processed more than WSIZE input bytes since
1052 * the last block flush, because compression would have been
1053 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1054 * transform a block into a stored block.
1055 */
1056 _tr_stored_block(s, buf, stored_len, last);
1057
1058 } else if (static_lenb == opt_lenb) {
1059 send_bits(s, (STATIC_TREES<<1) + last, 3);
1060 compress_block(s, (const ct_data *)static_ltree,
1061 (const ct_data *)static_dtree);
1062 #ifdef ZLIB_DEBUG
1063 s->compressed_len += 3 + s->static_len;
1064 #endif
1065 } else {
1066 send_bits(s, (DYN_TREES<<1) + last, 3);
1067 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1068 max_blindex + 1);
1069 compress_block(s, (const ct_data *)s->dyn_ltree,
1070 (const ct_data *)s->dyn_dtree);
1071 #ifdef ZLIB_DEBUG
1072 s->compressed_len += 3 + s->opt_len;
1073 #endif
1074 }
1075 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1076 /* The above check is made mod 2^32, for files larger than 512 MB
1077 * and uLong implemented on 32 bits.
1078 */
1079 init_block(s);
1080
1081 if (last) {
1082 bi_windup(s);
1083 #ifdef ZLIB_DEBUG
1084 s->compressed_len += 7; /* align on byte boundary */
1085 #endif
1086 }
1087 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1088 s->compressed_len - 7*last));
1089 }
1090
1091 /* ===========================================================================
1092 * Save the match info and tally the frequency counts. Return true if
1093 * the current block must be flushed.
1094 */
1095 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1096 #ifdef LIT_MEM
1097 s->d_buf[s->sym_next] = (ush)dist;
1098 s->l_buf[s->sym_next++] = (uch)lc;
1099 #else
1100 s->sym_buf[s->sym_next++] = (uch)dist;
1101 s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1102 s->sym_buf[s->sym_next++] = (uch)lc;
1103 #endif
1104 if (dist == 0) {
1105 /* lc is the unmatched char */
1106 s->dyn_ltree[lc].Freq++;
1107 } else {
1108 s->matches++;
1109 /* Here, lc is the match length - MIN_MATCH */
1110 dist--; /* dist = match distance - 1 */
1111 Assert((ush)dist < (ush)MAX_DIST(s) &&
1112 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1113 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1114
1115 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1116 s->dyn_dtree[d_code(dist)].Freq++;
1117 }
1118 return (s->sym_next == s->sym_end);
1119 }
1120