Home | History | Annotate | Line # | Download | only in btree
      1 /*	$NetBSD: bt_seq.c,v 1.20 2016/09/24 21:31:25 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Mike Olson.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #if HAVE_NBTOOL_CONFIG_H
     36 #include "nbtool_config.h"
     37 #endif
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: bt_seq.c,v 1.20 2016/09/24 21:31:25 christos Exp $");
     41 
     42 #include "namespace.h"
     43 #include <sys/types.h>
     44 
     45 #include <assert.h>
     46 #include <errno.h>
     47 #include <stddef.h>
     48 #include <stdio.h>
     49 #include <stdlib.h>
     50 
     51 #include <db.h>
     52 #include "btree.h"
     53 
     54 static int __bt_first(BTREE *, const DBT *, EPG *, int *);
     55 static int __bt_seqadv(BTREE *, EPG *, int);
     56 static int __bt_seqset(BTREE *, EPG *, DBT *, int);
     57 static int __bt_rseq_next(BTREE *, EPG *);
     58 static int __bt_rseq_prev(BTREE *, EPG *);
     59 
     60 /*
     61  * Sequential scan support.
     62  *
     63  * The tree can be scanned sequentially, starting from either end of the
     64  * tree or from any specific key.  A scan request before any scanning is
     65  * done is initialized as starting from the least node.
     66  */
     67 
     68 /*
     69  * __bt_seq --
     70  *	Btree sequential scan interface.
     71  *
     72  * Parameters:
     73  *	dbp:	pointer to access method
     74  *	key:	key for positioning and return value
     75  *	data:	data return value
     76  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
     77  *
     78  * Returns:
     79  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
     80  */
     81 int
     82 __bt_seq(const DB *dbp, DBT *key, DBT *data, u_int flags)
     83 {
     84 	BTREE *t;
     85 	EPG e;
     86 	int status;
     87 
     88 	t = dbp->internal;
     89 
     90 	/* Toss any page pinned across calls. */
     91 	if (t->bt_pinned != NULL) {
     92 		mpool_put(t->bt_mp, t->bt_pinned, 0);
     93 		t->bt_pinned = NULL;
     94 	}
     95 
     96 	/*
     97 	 * If scan uninitialized as yet, or starting at a specific record, set
     98 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
     99 	 * the page the cursor references if they're successful.
    100 	 */
    101 	switch (flags) {
    102 	case R_NEXT:
    103 	case R_PREV:
    104 	case R_RNEXT:
    105 	case R_RPREV:
    106 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
    107 			status = __bt_seqadv(t, &e, (int)flags);
    108 			break;
    109 		}
    110 		/* FALLTHROUGH */
    111 	case R_FIRST:
    112 	case R_LAST:
    113 	case R_CURSOR:
    114 		status = __bt_seqset(t, &e, key, (int)flags);
    115 		break;
    116 	default:
    117 		errno = EINVAL;
    118 		return (RET_ERROR);
    119 	}
    120 
    121 	if (status == RET_SUCCESS) {
    122 		__bt_setcur(t, e.page->pgno, (u_int)e.index);
    123 
    124 		status =
    125 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
    126 
    127 		/*
    128 		 * If the user is doing concurrent access, we copied the
    129 		 * key/data, toss the page.
    130 		 */
    131 		if (F_ISSET(t, B_DB_LOCK))
    132 			mpool_put(t->bt_mp, e.page, 0);
    133 		else
    134 			t->bt_pinned = e.page;
    135 	}
    136 	return (status);
    137 }
    138 
    139 /*
    140  * __bt_seqset --
    141  *	Set the sequential scan to a specific key.
    142  *
    143  * Parameters:
    144  *	t:	tree
    145  *	ep:	storage for returned key
    146  *	key:	key for initial scan position
    147  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
    148  *
    149  * Side effects:
    150  *	Pins the page the cursor references.
    151  *
    152  * Returns:
    153  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    154  */
    155 static int
    156 __bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
    157 {
    158 	PAGE *h;
    159 	pgno_t pg;
    160 	int exact;
    161 
    162 	/*
    163 	 * Find the first, last or specific key in the tree and point the
    164 	 * cursor at it.  The cursor may not be moved until a new key has
    165 	 * been found.
    166 	 */
    167 	switch (flags) {
    168 	case R_CURSOR:				/* Keyed scan. */
    169 		/*
    170 		 * Find the first instance of the key or the smallest key
    171 		 * which is greater than or equal to the specified key.
    172 		 */
    173 		if (key->data == NULL || key->size == 0) {
    174 			errno = EINVAL;
    175 			return (RET_ERROR);
    176 		}
    177 		return (__bt_first(t, key, ep, &exact));
    178 	case R_FIRST:				/* First record. */
    179 	case R_NEXT:
    180 	case R_RNEXT:
    181 		BT_CLR(t);
    182 		/* Walk down the left-hand side of the tree. */
    183 		for (pg = P_ROOT;;) {
    184 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    185 				return (RET_ERROR);
    186 
    187 			/* Check for an empty tree. */
    188 			if (NEXTINDEX(h) == 0) {
    189 				mpool_put(t->bt_mp, h, 0);
    190 				return (RET_SPECIAL);
    191 			}
    192 
    193 			if (h->flags & (P_BLEAF | P_RLEAF))
    194 				break;
    195 			pg = GETBINTERNAL(h, 0)->pgno;
    196 			BT_PUSH(t, h->pgno, 0);
    197 			mpool_put(t->bt_mp, h, 0);
    198 		}
    199 		ep->page = h;
    200 		ep->index = 0;
    201 		break;
    202 	case R_LAST:				/* Last record. */
    203 	case R_PREV:
    204 	case R_RPREV:
    205 		BT_CLR(t);
    206 		/* Walk down the right-hand side of the tree. */
    207 		for (pg = P_ROOT;;) {
    208 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    209 				return (RET_ERROR);
    210 
    211 			/* Check for an empty tree. */
    212 			if (NEXTINDEX(h) == 0) {
    213 				mpool_put(t->bt_mp, h, 0);
    214 				return (RET_SPECIAL);
    215 			}
    216 
    217 			if (h->flags & (P_BLEAF | P_RLEAF))
    218 				break;
    219 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
    220 			BT_PUSH(t, h->pgno, NEXTINDEX(h) - 1);
    221 			mpool_put(t->bt_mp, h, 0);
    222 		}
    223 
    224 		ep->page = h;
    225 		ep->index = NEXTINDEX(h) - 1;
    226 		break;
    227 	}
    228 	return (RET_SUCCESS);
    229 }
    230 
    231 /*
    232  * __bt_seqadvance --
    233  *	Advance the sequential scan.
    234  *
    235  * Parameters:
    236  *	t:	tree
    237  *	flags:	R_NEXT, R_PREV, R_RNEXT, R_RPREV
    238  *
    239  * Side effects:
    240  *	Pins the page the new key/data record is on.
    241  *
    242  * Returns:
    243  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    244  */
    245 static int
    246 __bt_seqadv(BTREE *t, EPG *ep, int flags)
    247 {
    248 	CURSOR *c;
    249 	PAGE *h;
    250 	indx_t idx = 0;	/* pacify gcc */
    251 	pgno_t pg;
    252 	int exact, rval;
    253 
    254 	/*
    255 	 * There are a couple of states that we can be in.  The cursor has
    256 	 * been initialized by the time we get here, but that's all we know.
    257 	 */
    258 	c = &t->bt_cursor;
    259 
    260 	/*
    261 	 * The cursor was deleted and there weren't any duplicate records,
    262 	 * so the cursor's key was saved.  Find out where that key would
    263 	 * be in the current tree.  If the returned key is an exact match,
    264 	 * it means that a key/data pair was inserted into the tree after
    265 	 * the delete.  We could reasonably return the key, but the problem
    266 	 * is that this is the access pattern we'll see if the user is
    267 	 * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
    268 	 * the cursor record and then replaces it, so the cursor was saved,
    269 	 * and we'll simply return the same "new" record until the user
    270 	 * notices and doesn't do a put() of it.  Since the key is an exact
    271 	 * match, we could as easily put the new record before the cursor,
    272 	 * and we've made no guarantee to return it.  So, move forward or
    273 	 * back a record if it's an exact match.
    274 	 *
    275 	 * XXX
    276 	 * In the current implementation, put's to the cursor are done with
    277 	 * delete/add pairs.  This has two consequences.  First, it means
    278 	 * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
    279 	 * the same behavior as above.  Second, you can return the same key
    280 	 * twice if you have duplicate records.  The scenario is that the
    281 	 * cursor record is deleted, moving the cursor forward or backward
    282 	 * to a duplicate.  The add then inserts the new record at a location
    283 	 * ahead of the cursor because duplicates aren't sorted in any way,
    284 	 * and the new record is later returned.  This has to be fixed at some
    285 	 * point.
    286 	 */
    287 	if (F_ISSET(c, CURS_ACQUIRE)) {
    288 		if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
    289 			return RET_ERROR;
    290 		if (!exact)
    291 			return rval;
    292 		/*
    293 		 * XXX
    294 		 * Kluge -- get, release, get the page.
    295 		 */
    296 		c->pg.pgno = ep->page->pgno;
    297 		c->pg.index = ep->index;
    298 		mpool_put(t->bt_mp, ep->page, 0);
    299 	}
    300 
    301 	/* Get the page referenced by the cursor. */
    302 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
    303 		return (RET_ERROR);
    304 
    305 	/*
    306  	 * Find the next/previous record in the tree and point the cursor at
    307 	 * it.  The cursor may not be moved until a new key has been found.
    308 	 */
    309 	switch (flags) {
    310 	case R_NEXT:			/* Next record. */
    311 	case R_RNEXT:
    312 		/*
    313 		 * The cursor was deleted in duplicate records, and moved
    314 		 * forward to a record that has yet to be returned.  Clear
    315 		 * that flag, and return the record.
    316 		 */
    317 		if (F_ISSET(c, CURS_AFTER))
    318 			goto usecurrent;
    319 		idx = c->pg.index;
    320 		if (++idx == NEXTINDEX(h)) {
    321 			if (flags == R_RNEXT) {
    322 				ep->page = h;
    323 				ep->index = idx;
    324 				return __bt_rseq_next(t, ep);
    325 			}
    326 			pg = h->nextpg;
    327 			mpool_put(t->bt_mp, h, 0);
    328 			if (pg == P_INVALID)
    329 				return RET_SPECIAL;
    330 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    331 				return RET_ERROR;
    332 			idx = 0;
    333 		}
    334 		break;
    335 	case R_PREV:			/* Previous record. */
    336 	case R_RPREV:
    337 		/*
    338 		 * The cursor was deleted in duplicate records, and moved
    339 		 * backward to a record that has yet to be returned.  Clear
    340 		 * that flag, and return the record.
    341 		 */
    342 		if (F_ISSET(c, CURS_BEFORE)) {
    343 usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
    344 			ep->page = h;
    345 			ep->index = c->pg.index;
    346 			return (RET_SUCCESS);
    347 		}
    348 		idx = c->pg.index;
    349 		if (idx == 0) {
    350 			if (flags == R_RPREV) {
    351 				ep->page = h;
    352 				ep->index = idx;
    353 				return __bt_rseq_prev(t, ep);
    354 			}
    355 			pg = h->prevpg;
    356 			mpool_put(t->bt_mp, h, 0);
    357 			if (pg == P_INVALID)
    358 				return RET_SPECIAL;
    359 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    360 				return RET_ERROR;
    361 			idx = NEXTINDEX(h) - 1;
    362 		} else
    363 			--idx;
    364 		break;
    365 	}
    366 
    367 	ep->page = h;
    368 	ep->index = idx;
    369 	return (RET_SUCCESS);
    370 }
    371 /*
    372  * Get the first item on the next page, but by going up and down the tree.
    373  */
    374 static int
    375 __bt_rseq_next(BTREE *t, EPG *ep)
    376 {
    377 	PAGE *h;
    378 	indx_t idx;
    379 	EPGNO *up;
    380 	pgno_t pg;
    381 
    382 	h = ep->page;
    383 	idx = ep->index;
    384 	do {
    385 		/* Move up the tree. */
    386 		up = BT_POP(t);
    387 		mpool_put(t->bt_mp, h, 0);
    388 		/* Did we hit the right edge of the root? */
    389 		if (up == NULL)
    390 			return RET_SPECIAL;
    391 		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
    392 			return RET_ERROR;
    393 		idx = up->index;
    394 	} while (++idx == NEXTINDEX(h));
    395 
    396 	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
    397 		/* Move back down the tree. */
    398 		BT_PUSH(t, h->pgno, idx);
    399 		pg = GETBINTERNAL(h, idx)->pgno;
    400 		mpool_put(t->bt_mp, h, 0);
    401 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    402 			return RET_ERROR;
    403 		idx = 0;
    404 	}
    405 	ep->page = h;
    406 	ep->index = idx;
    407 	return RET_SUCCESS;
    408 }
    409 
    410 /*
    411  * Get the last item on the previous page, but by going up and down the tree.
    412  */
    413 static int
    414 __bt_rseq_prev(BTREE *t, EPG *ep)
    415 {
    416 	PAGE *h;
    417 	indx_t idx;
    418 	EPGNO *up;
    419 	pgno_t pg;
    420 
    421 	h = ep->page;
    422 	idx = ep->index;
    423 	do {
    424 		/* Move up the tree. */
    425 		up = BT_POP(t);
    426 		mpool_put(t->bt_mp, h, 0);
    427 		/* Did we hit the left edge of the root? */
    428 		if (up == NULL)
    429 			return RET_SPECIAL;
    430 		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
    431 			return RET_ERROR;
    432 		idx = up->index;
    433 	} while (idx == 0);
    434 	--idx;
    435 	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
    436 		/* Move back down the tree. */
    437 		BT_PUSH(t, h->pgno, idx);
    438 		pg = GETBINTERNAL(h, idx)->pgno;
    439 		mpool_put(t->bt_mp, h, 0);
    440 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    441 			return RET_ERROR;
    442 		idx = NEXTINDEX(h) - 1;
    443 	}
    444 	ep->page = h;
    445 	ep->index = idx;
    446 	return RET_SUCCESS;
    447 }
    448 
    449 /*
    450  * __bt_first --
    451  *	Find the first entry.
    452  *
    453  * Parameters:
    454  *	t:	the tree
    455  *    key:	the key
    456  *  erval:	return EPG
    457  * exactp:	pointer to exact match flag
    458  *
    459  * Returns:
    460  *	The first entry in the tree greater than or equal to key,
    461  *	or RET_SPECIAL if no such key exists.
    462  */
    463 static int
    464 __bt_first(BTREE *t, const DBT *key, EPG *erval, int *exactp)
    465 {
    466 	PAGE *h, *hprev;
    467 	EPG *ep, save;
    468 	pgno_t pg;
    469 
    470 	/*
    471 	 * Find any matching record; __bt_search pins the page.
    472 	 *
    473 	 * If it's an exact match and duplicates are possible, walk backwards
    474 	 * in the tree until we find the first one.  Otherwise, make sure it's
    475 	 * a valid key (__bt_search may return an index just past the end of a
    476 	 * page) and return it.
    477 	 */
    478 	if ((ep = __bt_search(t, key, exactp)) == NULL)
    479 		return RET_SPECIAL;
    480 	if (*exactp) {
    481 		if (F_ISSET(t, B_NODUPS)) {
    482 			*erval = *ep;
    483 			return (RET_SUCCESS);
    484 		}
    485 
    486 		/*
    487 		 * Walk backwards, as long as the entry matches and there are
    488 		 * keys left in the tree.  Save a copy of each match in case
    489 		 * we go too far.
    490 		 */
    491 		save = *ep;
    492 		h = ep->page;
    493 		do {
    494 			if (save.page->pgno != ep->page->pgno) {
    495 				mpool_put(t->bt_mp, save.page, 0);
    496 				save = *ep;
    497 			} else
    498 				save.index = ep->index;
    499 
    500 			/*
    501 			 * Don't unpin the page the last (or original) match
    502 			 * was on, but make sure it's unpinned if an error
    503 			 * occurs.
    504 			 */
    505 			if (ep->index == 0) {
    506 				if (h->prevpg == P_INVALID)
    507 					break;
    508 				if (h->pgno != save.page->pgno)
    509 					mpool_put(t->bt_mp, h, 0);
    510 				if ((hprev = mpool_get(t->bt_mp,
    511 				    h->prevpg, 0)) == NULL) {
    512 					if (h->pgno == save.page->pgno)
    513 						mpool_put(t->bt_mp,
    514 						    save.page, 0);
    515  					return RET_ERROR;
    516 				}
    517 				ep->page = h = hprev;
    518 				ep->index = NEXTINDEX(h);
    519 			}
    520 			--ep->index;
    521 		} while (__bt_cmp(t, key, ep) == 0);
    522 
    523 		/*
    524 		 * Reach here with the last page that was looked at pinned,
    525 		 * which may or may not be the same as the last (or original)
    526 		 * match page.  If it's not useful, release it.
    527 		 */
    528 		if (h->pgno != save.page->pgno)
    529 			mpool_put(t->bt_mp, h, 0);
    530 
    531 		*erval = save;
    532 		return (RET_SUCCESS);
    533 	}
    534 
    535 	/* If at the end of a page, find the next entry. */
    536 	if (ep->index == NEXTINDEX(ep->page)) {
    537 		h = ep->page;
    538 		pg = h->nextpg;
    539 		mpool_put(t->bt_mp, h, 0);
    540 		if (pg == P_INVALID)
    541 			return (RET_SPECIAL);
    542 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    543 			return (RET_ERROR);
    544 		ep->index = 0;
    545 		ep->page = h;
    546 	}
    547 	*erval = *ep;
    548 	return (RET_SUCCESS);
    549 }
    550 
    551 /*
    552  * __bt_setcur --
    553  *	Set the cursor to an entry in the tree.
    554  *
    555  * Parameters:
    556  *	t:	the tree
    557  *   pgno:	page number
    558  *    idx:	page index
    559  */
    560 void
    561 __bt_setcur(BTREE *t, pgno_t pgno, u_int idx)
    562 {
    563 	/* Lose any already deleted key. */
    564 	if (t->bt_cursor.key.data != NULL) {
    565 		free(t->bt_cursor.key.data);
    566 		t->bt_cursor.key.size = 0;
    567 		t->bt_cursor.key.data = NULL;
    568 	}
    569 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
    570 
    571 	/* Update the cursor. */
    572 	t->bt_cursor.pg.pgno = pgno;
    573 	t->bt_cursor.pg.index = idx;
    574 	F_SET(&t->bt_cursor, CURS_INIT);
    575 }
    576