Home | History | Annotate | Line # | Download | only in btree
bt_seq.c revision 1.17
      1  1.17     joerg /*	$NetBSD: bt_seq.c,v 1.17 2008/09/11 12:58:00 joerg Exp $	*/
      2   1.6       cgd 
      3   1.1       cgd /*-
      4   1.7       cgd  * Copyright (c) 1990, 1993, 1994
      5   1.1       cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * This code is derived from software contributed to Berkeley by
      8   1.1       cgd  * Mike Olson.
      9   1.1       cgd  *
     10   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.1       cgd  * modification, are permitted provided that the following conditions
     12   1.1       cgd  * are met:
     13   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18  1.13       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1       cgd  *    may be used to endorse or promote products derived from this software
     20   1.1       cgd  *    without specific prior written permission.
     21   1.1       cgd  *
     22   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1       cgd  * SUCH DAMAGE.
     33   1.1       cgd  */
     34   1.1       cgd 
     35  1.17     joerg #if HAVE_NBTOOL_CONFIG_H
     36  1.17     joerg #include "nbtool_config.h"
     37  1.17     joerg #endif
     38  1.17     joerg 
     39   1.9  christos #include <sys/cdefs.h>
     40  1.17     joerg __RCSID("$NetBSD: bt_seq.c,v 1.17 2008/09/11 12:58:00 joerg Exp $");
     41   1.1       cgd 
     42  1.10       jtc #include "namespace.h"
     43   1.1       cgd #include <sys/types.h>
     44   1.1       cgd 
     45  1.15  christos #include <assert.h>
     46   1.1       cgd #include <errno.h>
     47   1.1       cgd #include <stddef.h>
     48   1.1       cgd #include <stdio.h>
     49   1.1       cgd #include <stdlib.h>
     50   1.1       cgd 
     51   1.1       cgd #include <db.h>
     52   1.1       cgd #include "btree.h"
     53   1.1       cgd 
     54  1.15  christos static int __bt_first(BTREE *, const DBT *, EPG *, int *);
     55  1.15  christos static int __bt_seqadv(BTREE *, EPG *, int);
     56  1.15  christos static int __bt_seqset(BTREE *, EPG *, DBT *, int);
     57   1.1       cgd 
     58   1.1       cgd /*
     59   1.1       cgd  * Sequential scan support.
     60   1.1       cgd  *
     61   1.7       cgd  * The tree can be scanned sequentially, starting from either end of the
     62   1.7       cgd  * tree or from any specific key.  A scan request before any scanning is
     63   1.7       cgd  * done is initialized as starting from the least node.
     64   1.1       cgd  */
     65   1.1       cgd 
     66   1.1       cgd /*
     67   1.7       cgd  * __bt_seq --
     68   1.7       cgd  *	Btree sequential scan interface.
     69   1.1       cgd  *
     70   1.1       cgd  * Parameters:
     71   1.1       cgd  *	dbp:	pointer to access method
     72   1.1       cgd  *	key:	key for positioning and return value
     73   1.1       cgd  *	data:	data return value
     74   1.1       cgd  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
     75   1.1       cgd  *
     76   1.1       cgd  * Returns:
     77   1.1       cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
     78   1.1       cgd  */
     79   1.1       cgd int
     80  1.15  christos __bt_seq(const DB *dbp, DBT *key, DBT *data, u_int flags)
     81   1.1       cgd {
     82   1.1       cgd 	BTREE *t;
     83   1.1       cgd 	EPG e;
     84   1.1       cgd 	int status;
     85   1.1       cgd 
     86   1.4       cgd 	t = dbp->internal;
     87   1.4       cgd 
     88   1.4       cgd 	/* Toss any page pinned across calls. */
     89   1.4       cgd 	if (t->bt_pinned != NULL) {
     90   1.4       cgd 		mpool_put(t->bt_mp, t->bt_pinned, 0);
     91   1.4       cgd 		t->bt_pinned = NULL;
     92   1.4       cgd 	}
     93   1.4       cgd 
     94   1.1       cgd 	/*
     95   1.1       cgd 	 * If scan unitialized as yet, or starting at a specific record, set
     96   1.7       cgd 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
     97   1.7       cgd 	 * the page the cursor references if they're successful.
     98   1.1       cgd 	 */
     99   1.7       cgd 	switch (flags) {
    100   1.1       cgd 	case R_NEXT:
    101   1.1       cgd 	case R_PREV:
    102   1.7       cgd 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
    103  1.11  christos 			status = __bt_seqadv(t, &e, (int)flags);
    104   1.1       cgd 			break;
    105   1.1       cgd 		}
    106   1.1       cgd 		/* FALLTHROUGH */
    107   1.1       cgd 	case R_FIRST:
    108   1.1       cgd 	case R_LAST:
    109   1.7       cgd 	case R_CURSOR:
    110  1.11  christos 		status = __bt_seqset(t, &e, key, (int)flags);
    111   1.1       cgd 		break;
    112   1.1       cgd 	default:
    113   1.1       cgd 		errno = EINVAL;
    114   1.1       cgd 		return (RET_ERROR);
    115   1.1       cgd 	}
    116   1.1       cgd 
    117   1.1       cgd 	if (status == RET_SUCCESS) {
    118  1.11  christos 		__bt_setcur(t, e.page->pgno, (u_int)e.index);
    119   1.1       cgd 
    120   1.7       cgd 		status =
    121   1.7       cgd 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
    122   1.4       cgd 
    123   1.4       cgd 		/*
    124   1.4       cgd 		 * If the user is doing concurrent access, we copied the
    125   1.4       cgd 		 * key/data, toss the page.
    126   1.4       cgd 		 */
    127   1.7       cgd 		if (F_ISSET(t, B_DB_LOCK))
    128   1.4       cgd 			mpool_put(t->bt_mp, e.page, 0);
    129   1.4       cgd 		else
    130   1.4       cgd 			t->bt_pinned = e.page;
    131   1.1       cgd 	}
    132   1.1       cgd 	return (status);
    133   1.1       cgd }
    134   1.1       cgd 
    135   1.1       cgd /*
    136   1.7       cgd  * __bt_seqset --
    137   1.7       cgd  *	Set the sequential scan to a specific key.
    138   1.1       cgd  *
    139   1.1       cgd  * Parameters:
    140   1.1       cgd  *	t:	tree
    141   1.1       cgd  *	ep:	storage for returned key
    142   1.1       cgd  *	key:	key for initial scan position
    143   1.1       cgd  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
    144   1.1       cgd  *
    145   1.1       cgd  * Side effects:
    146   1.1       cgd  *	Pins the page the cursor references.
    147   1.1       cgd  *
    148   1.1       cgd  * Returns:
    149   1.1       cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    150   1.1       cgd  */
    151   1.1       cgd static int
    152  1.15  christos __bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
    153   1.1       cgd {
    154   1.1       cgd 	PAGE *h;
    155   1.1       cgd 	pgno_t pg;
    156   1.1       cgd 	int exact;
    157   1.1       cgd 
    158   1.1       cgd 	/*
    159   1.7       cgd 	 * Find the first, last or specific key in the tree and point the
    160   1.7       cgd 	 * cursor at it.  The cursor may not be moved until a new key has
    161   1.7       cgd 	 * been found.
    162   1.1       cgd 	 */
    163   1.7       cgd 	switch (flags) {
    164   1.1       cgd 	case R_CURSOR:				/* Keyed scan. */
    165   1.1       cgd 		/*
    166   1.7       cgd 		 * Find the first instance of the key or the smallest key
    167   1.7       cgd 		 * which is greater than or equal to the specified key.
    168   1.1       cgd 		 */
    169   1.1       cgd 		if (key->data == NULL || key->size == 0) {
    170   1.1       cgd 			errno = EINVAL;
    171   1.1       cgd 			return (RET_ERROR);
    172   1.1       cgd 		}
    173   1.7       cgd 		return (__bt_first(t, key, ep, &exact));
    174   1.1       cgd 	case R_FIRST:				/* First record. */
    175   1.1       cgd 	case R_NEXT:
    176   1.1       cgd 		/* Walk down the left-hand side of the tree. */
    177   1.1       cgd 		for (pg = P_ROOT;;) {
    178   1.1       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    179   1.1       cgd 				return (RET_ERROR);
    180   1.7       cgd 
    181   1.7       cgd 			/* Check for an empty tree. */
    182   1.7       cgd 			if (NEXTINDEX(h) == 0) {
    183   1.7       cgd 				mpool_put(t->bt_mp, h, 0);
    184   1.7       cgd 				return (RET_SPECIAL);
    185   1.7       cgd 			}
    186   1.7       cgd 
    187   1.1       cgd 			if (h->flags & (P_BLEAF | P_RLEAF))
    188   1.1       cgd 				break;
    189   1.1       cgd 			pg = GETBINTERNAL(h, 0)->pgno;
    190   1.1       cgd 			mpool_put(t->bt_mp, h, 0);
    191   1.1       cgd 		}
    192   1.1       cgd 		ep->page = h;
    193   1.1       cgd 		ep->index = 0;
    194   1.1       cgd 		break;
    195   1.1       cgd 	case R_LAST:				/* Last record. */
    196   1.1       cgd 	case R_PREV:
    197   1.1       cgd 		/* Walk down the right-hand side of the tree. */
    198   1.1       cgd 		for (pg = P_ROOT;;) {
    199   1.1       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    200   1.1       cgd 				return (RET_ERROR);
    201   1.7       cgd 
    202   1.7       cgd 			/* Check for an empty tree. */
    203   1.7       cgd 			if (NEXTINDEX(h) == 0) {
    204   1.7       cgd 				mpool_put(t->bt_mp, h, 0);
    205   1.7       cgd 				return (RET_SPECIAL);
    206   1.7       cgd 			}
    207   1.7       cgd 
    208   1.1       cgd 			if (h->flags & (P_BLEAF | P_RLEAF))
    209   1.1       cgd 				break;
    210   1.1       cgd 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
    211   1.1       cgd 			mpool_put(t->bt_mp, h, 0);
    212   1.1       cgd 		}
    213   1.1       cgd 
    214   1.1       cgd 		ep->page = h;
    215   1.1       cgd 		ep->index = NEXTINDEX(h) - 1;
    216   1.1       cgd 		break;
    217   1.1       cgd 	}
    218   1.1       cgd 	return (RET_SUCCESS);
    219   1.1       cgd }
    220   1.1       cgd 
    221   1.1       cgd /*
    222   1.7       cgd  * __bt_seqadvance --
    223   1.7       cgd  *	Advance the sequential scan.
    224   1.1       cgd  *
    225   1.1       cgd  * Parameters:
    226   1.1       cgd  *	t:	tree
    227   1.1       cgd  *	flags:	R_NEXT, R_PREV
    228   1.1       cgd  *
    229   1.1       cgd  * Side effects:
    230   1.1       cgd  *	Pins the page the new key/data record is on.
    231   1.1       cgd  *
    232   1.1       cgd  * Returns:
    233   1.1       cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    234   1.1       cgd  */
    235   1.1       cgd static int
    236  1.15  christos __bt_seqadv(BTREE *t, EPG *ep, int flags)
    237   1.1       cgd {
    238   1.7       cgd 	CURSOR *c;
    239   1.1       cgd 	PAGE *h;
    240  1.12   thorpej 	indx_t idx = 0;	/* pacify gcc */
    241   1.1       cgd 	pgno_t pg;
    242   1.7       cgd 	int exact;
    243   1.7       cgd 
    244   1.7       cgd 	/*
    245   1.7       cgd 	 * There are a couple of states that we can be in.  The cursor has
    246   1.7       cgd 	 * been initialized by the time we get here, but that's all we know.
    247   1.7       cgd 	 */
    248   1.7       cgd 	c = &t->bt_cursor;
    249   1.1       cgd 
    250   1.7       cgd 	/*
    251   1.7       cgd 	 * The cursor was deleted where there weren't any duplicate records,
    252   1.7       cgd 	 * so the key was saved.  Find out where that key would go in the
    253   1.7       cgd 	 * current tree.  It doesn't matter if the returned key is an exact
    254   1.7       cgd 	 * match or not -- if it's an exact match, the record was added after
    255   1.7       cgd 	 * the delete so we can just return it.  If not, as long as there's
    256   1.7       cgd 	 * a record there, return it.
    257   1.7       cgd 	 */
    258   1.7       cgd 	if (F_ISSET(c, CURS_ACQUIRE))
    259   1.7       cgd 		return (__bt_first(t, &c->key, ep, &exact));
    260   1.1       cgd 
    261   1.7       cgd 	/* Get the page referenced by the cursor. */
    262   1.7       cgd 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
    263   1.1       cgd 		return (RET_ERROR);
    264   1.1       cgd 
    265   1.1       cgd 	/*
    266   1.7       cgd  	 * Find the next/previous record in the tree and point the cursor at
    267   1.7       cgd 	 * it.  The cursor may not be moved until a new key has been found.
    268   1.1       cgd 	 */
    269   1.7       cgd 	switch (flags) {
    270   1.1       cgd 	case R_NEXT:			/* Next record. */
    271   1.7       cgd 		/*
    272   1.7       cgd 		 * The cursor was deleted in duplicate records, and moved
    273   1.7       cgd 		 * forward to a record that has yet to be returned.  Clear
    274   1.7       cgd 		 * that flag, and return the record.
    275   1.7       cgd 		 */
    276   1.7       cgd 		if (F_ISSET(c, CURS_AFTER))
    277   1.7       cgd 			goto usecurrent;
    278  1.12   thorpej 		idx = c->pg.index;
    279  1.12   thorpej 		if (++idx == NEXTINDEX(h)) {
    280   1.7       cgd 			pg = h->nextpg;
    281   1.7       cgd 			mpool_put(t->bt_mp, h, 0);
    282   1.7       cgd 			if (pg == P_INVALID)
    283   1.7       cgd 				return (RET_SPECIAL);
    284   1.7       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    285   1.7       cgd 				return (RET_ERROR);
    286  1.12   thorpej 			idx = 0;
    287   1.1       cgd 		}
    288   1.1       cgd 		break;
    289   1.1       cgd 	case R_PREV:			/* Previous record. */
    290   1.7       cgd 		/*
    291   1.7       cgd 		 * The cursor was deleted in duplicate records, and moved
    292   1.7       cgd 		 * backward to a record that has yet to be returned.  Clear
    293   1.7       cgd 		 * that flag, and return the record.
    294   1.7       cgd 		 */
    295   1.7       cgd 		if (F_ISSET(c, CURS_BEFORE)) {
    296   1.7       cgd usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
    297   1.7       cgd 			ep->page = h;
    298   1.7       cgd 			ep->index = c->pg.index;
    299   1.7       cgd 			return (RET_SUCCESS);
    300   1.7       cgd 		}
    301  1.12   thorpej 		idx = c->pg.index;
    302  1.12   thorpej 		if (idx == 0) {
    303   1.7       cgd 			pg = h->prevpg;
    304   1.7       cgd 			mpool_put(t->bt_mp, h, 0);
    305   1.7       cgd 			if (pg == P_INVALID)
    306   1.7       cgd 				return (RET_SPECIAL);
    307   1.7       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    308   1.7       cgd 				return (RET_ERROR);
    309  1.12   thorpej 			idx = NEXTINDEX(h) - 1;
    310   1.7       cgd 		} else
    311  1.12   thorpej 			--idx;
    312   1.1       cgd 		break;
    313   1.1       cgd 	}
    314   1.1       cgd 
    315   1.7       cgd 	ep->page = h;
    316  1.12   thorpej 	ep->index = idx;
    317   1.7       cgd 	return (RET_SUCCESS);
    318   1.7       cgd }
    319   1.7       cgd 
    320   1.7       cgd /*
    321   1.7       cgd  * __bt_first --
    322   1.7       cgd  *	Find the first entry.
    323   1.7       cgd  *
    324   1.7       cgd  * Parameters:
    325   1.7       cgd  *	t:	the tree
    326   1.7       cgd  *    key:	the key
    327   1.7       cgd  *  erval:	return EPG
    328   1.7       cgd  * exactp:	pointer to exact match flag
    329   1.7       cgd  *
    330   1.7       cgd  * Returns:
    331   1.7       cgd  *	The first entry in the tree greater than or equal to key,
    332   1.7       cgd  *	or RET_SPECIAL if no such key exists.
    333   1.7       cgd  */
    334   1.7       cgd static int
    335  1.15  christos __bt_first(BTREE *t, const DBT *key, EPG *erval, int *exactp)
    336   1.7       cgd {
    337   1.7       cgd 	PAGE *h;
    338   1.7       cgd 	EPG *ep, save;
    339   1.7       cgd 	pgno_t pg;
    340   1.1       cgd 
    341   1.1       cgd 	/*
    342   1.7       cgd 	 * Find any matching record; __bt_search pins the page.
    343   1.7       cgd 	 *
    344   1.7       cgd 	 * If it's an exact match and duplicates are possible, walk backwards
    345   1.7       cgd 	 * in the tree until we find the first one.  Otherwise, make sure it's
    346   1.7       cgd 	 * a valid key (__bt_search may return an index just past the end of a
    347   1.7       cgd 	 * page) and return it.
    348   1.1       cgd 	 */
    349   1.7       cgd 	if ((ep = __bt_search(t, key, exactp)) == NULL)
    350   1.8        pk 		return (0);
    351   1.7       cgd 	if (*exactp) {
    352   1.7       cgd 		if (F_ISSET(t, B_NODUPS)) {
    353   1.7       cgd 			*erval = *ep;
    354   1.7       cgd 			return (RET_SUCCESS);
    355   1.7       cgd 		}
    356   1.7       cgd 
    357   1.7       cgd 		/*
    358   1.7       cgd 		 * Walk backwards, as long as the entry matches and there are
    359   1.7       cgd 		 * keys left in the tree.  Save a copy of each match in case
    360   1.7       cgd 		 * we go too far.
    361   1.7       cgd 		 */
    362   1.7       cgd 		save = *ep;
    363   1.7       cgd 		h = ep->page;
    364   1.7       cgd 		do {
    365   1.7       cgd 			if (save.page->pgno != ep->page->pgno) {
    366   1.7       cgd 				mpool_put(t->bt_mp, save.page, 0);
    367   1.7       cgd 				save = *ep;
    368   1.7       cgd 			} else
    369   1.7       cgd 				save.index = ep->index;
    370   1.7       cgd 
    371   1.7       cgd 			/*
    372   1.7       cgd 			 * Don't unpin the page the last (or original) match
    373   1.7       cgd 			 * was on, but make sure it's unpinned if an error
    374   1.7       cgd 			 * occurs.
    375   1.7       cgd 			 */
    376   1.7       cgd 			if (ep->index == 0) {
    377   1.7       cgd 				if (h->prevpg == P_INVALID)
    378   1.7       cgd 					break;
    379   1.7       cgd 				if (h->pgno != save.page->pgno)
    380   1.7       cgd 					mpool_put(t->bt_mp, h, 0);
    381   1.7       cgd 				if ((h = mpool_get(t->bt_mp,
    382  1.14  christos 				    h->prevpg, 0)) == NULL)
    383   1.7       cgd 					return (RET_ERROR);
    384   1.7       cgd 				ep->page = h;
    385   1.7       cgd 				ep->index = NEXTINDEX(h);
    386   1.7       cgd 			}
    387   1.7       cgd 			--ep->index;
    388   1.7       cgd 		} while (__bt_cmp(t, key, ep) == 0);
    389   1.7       cgd 
    390   1.7       cgd 		/*
    391   1.7       cgd 		 * Reach here with the last page that was looked at pinned,
    392   1.7       cgd 		 * which may or may not be the same as the last (or original)
    393   1.7       cgd 		 * match page.  If it's not useful, release it.
    394   1.7       cgd 		 */
    395   1.7       cgd 		if (h->pgno != save.page->pgno)
    396   1.7       cgd 			mpool_put(t->bt_mp, h, 0);
    397   1.7       cgd 
    398   1.7       cgd 		*erval = save;
    399   1.7       cgd 		return (RET_SUCCESS);
    400   1.7       cgd 	}
    401   1.7       cgd 
    402   1.7       cgd 	/* If at the end of a page, find the next entry. */
    403   1.7       cgd 	if (ep->index == NEXTINDEX(ep->page)) {
    404   1.7       cgd 		h = ep->page;
    405   1.7       cgd 		pg = h->nextpg;
    406   1.7       cgd 		mpool_put(t->bt_mp, h, 0);
    407   1.7       cgd 		if (pg == P_INVALID)
    408   1.7       cgd 			return (RET_SPECIAL);
    409   1.7       cgd 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    410   1.1       cgd 			return (RET_ERROR);
    411   1.7       cgd 		ep->index = 0;
    412   1.7       cgd 		ep->page = h;
    413   1.1       cgd 	}
    414   1.7       cgd 	*erval = *ep;
    415   1.1       cgd 	return (RET_SUCCESS);
    416   1.1       cgd }
    417   1.1       cgd 
    418   1.1       cgd /*
    419   1.7       cgd  * __bt_setcur --
    420   1.7       cgd  *	Set the cursor to an entry in the tree.
    421   1.1       cgd  *
    422   1.1       cgd  * Parameters:
    423   1.7       cgd  *	t:	the tree
    424   1.7       cgd  *   pgno:	page number
    425  1.12   thorpej  *    idx:	page index
    426   1.1       cgd  */
    427   1.7       cgd void
    428  1.15  christos __bt_setcur(BTREE *t, pgno_t pgno, u_int idx)
    429   1.1       cgd {
    430   1.7       cgd 	/* Lose any already deleted key. */
    431   1.7       cgd 	if (t->bt_cursor.key.data != NULL) {
    432   1.7       cgd 		free(t->bt_cursor.key.data);
    433   1.7       cgd 		t->bt_cursor.key.size = 0;
    434   1.7       cgd 		t->bt_cursor.key.data = NULL;
    435   1.7       cgd 	}
    436   1.7       cgd 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
    437   1.1       cgd 
    438   1.7       cgd 	/* Update the cursor. */
    439   1.7       cgd 	t->bt_cursor.pg.pgno = pgno;
    440  1.12   thorpej 	t->bt_cursor.pg.index = idx;
    441   1.7       cgd 	F_SET(&t->bt_cursor, CURS_INIT);
    442   1.1       cgd }
    443