Home | History | Annotate | Line # | Download | only in btree
bt_seq.c revision 1.18.8.1
      1  1.18.8.1  pgoyette /*	$NetBSD: bt_seq.c,v 1.18.8.1 2016/11/04 14:48:52 pgoyette Exp $	*/
      2       1.6       cgd 
      3       1.1       cgd /*-
      4       1.7       cgd  * Copyright (c) 1990, 1993, 1994
      5       1.1       cgd  *	The Regents of the University of California.  All rights reserved.
      6       1.1       cgd  *
      7       1.1       cgd  * This code is derived from software contributed to Berkeley by
      8       1.1       cgd  * Mike Olson.
      9       1.1       cgd  *
     10       1.1       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.1       cgd  * modification, are permitted provided that the following conditions
     12       1.1       cgd  * are met:
     13       1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.1       cgd  *    documentation and/or other materials provided with the distribution.
     18      1.13       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1       cgd  *    may be used to endorse or promote products derived from this software
     20       1.1       cgd  *    without specific prior written permission.
     21       1.1       cgd  *
     22       1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1       cgd  * SUCH DAMAGE.
     33       1.1       cgd  */
     34       1.1       cgd 
     35      1.17     joerg #if HAVE_NBTOOL_CONFIG_H
     36      1.17     joerg #include "nbtool_config.h"
     37      1.17     joerg #endif
     38      1.17     joerg 
     39       1.9  christos #include <sys/cdefs.h>
     40  1.18.8.1  pgoyette __RCSID("$NetBSD: bt_seq.c,v 1.18.8.1 2016/11/04 14:48:52 pgoyette Exp $");
     41       1.1       cgd 
     42      1.10       jtc #include "namespace.h"
     43       1.1       cgd #include <sys/types.h>
     44       1.1       cgd 
     45      1.15  christos #include <assert.h>
     46       1.1       cgd #include <errno.h>
     47       1.1       cgd #include <stddef.h>
     48       1.1       cgd #include <stdio.h>
     49       1.1       cgd #include <stdlib.h>
     50       1.1       cgd 
     51       1.1       cgd #include <db.h>
     52       1.1       cgd #include "btree.h"
     53       1.1       cgd 
     54      1.15  christos static int __bt_first(BTREE *, const DBT *, EPG *, int *);
     55      1.15  christos static int __bt_seqadv(BTREE *, EPG *, int);
     56      1.15  christos static int __bt_seqset(BTREE *, EPG *, DBT *, int);
     57  1.18.8.1  pgoyette static int __bt_rseq_next(BTREE *, EPG *);
     58  1.18.8.1  pgoyette static int __bt_rseq_prev(BTREE *, EPG *);
     59       1.1       cgd 
     60       1.1       cgd /*
     61       1.1       cgd  * Sequential scan support.
     62       1.1       cgd  *
     63       1.7       cgd  * The tree can be scanned sequentially, starting from either end of the
     64       1.7       cgd  * tree or from any specific key.  A scan request before any scanning is
     65       1.7       cgd  * done is initialized as starting from the least node.
     66       1.1       cgd  */
     67       1.1       cgd 
     68       1.1       cgd /*
     69       1.7       cgd  * __bt_seq --
     70       1.7       cgd  *	Btree sequential scan interface.
     71       1.1       cgd  *
     72       1.1       cgd  * Parameters:
     73       1.1       cgd  *	dbp:	pointer to access method
     74       1.1       cgd  *	key:	key for positioning and return value
     75       1.1       cgd  *	data:	data return value
     76  1.18.8.1  pgoyette  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
     77       1.1       cgd  *
     78       1.1       cgd  * Returns:
     79       1.1       cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
     80       1.1       cgd  */
     81       1.1       cgd int
     82      1.15  christos __bt_seq(const DB *dbp, DBT *key, DBT *data, u_int flags)
     83       1.1       cgd {
     84       1.1       cgd 	BTREE *t;
     85       1.1       cgd 	EPG e;
     86       1.1       cgd 	int status;
     87       1.1       cgd 
     88       1.4       cgd 	t = dbp->internal;
     89       1.4       cgd 
     90       1.4       cgd 	/* Toss any page pinned across calls. */
     91       1.4       cgd 	if (t->bt_pinned != NULL) {
     92       1.4       cgd 		mpool_put(t->bt_mp, t->bt_pinned, 0);
     93       1.4       cgd 		t->bt_pinned = NULL;
     94       1.4       cgd 	}
     95       1.4       cgd 
     96       1.1       cgd 	/*
     97      1.18     ryoon 	 * If scan uninitialized as yet, or starting at a specific record, set
     98       1.7       cgd 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
     99       1.7       cgd 	 * the page the cursor references if they're successful.
    100       1.1       cgd 	 */
    101       1.7       cgd 	switch (flags) {
    102       1.1       cgd 	case R_NEXT:
    103       1.1       cgd 	case R_PREV:
    104  1.18.8.1  pgoyette 	case R_RNEXT:
    105  1.18.8.1  pgoyette 	case R_RPREV:
    106       1.7       cgd 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
    107      1.11  christos 			status = __bt_seqadv(t, &e, (int)flags);
    108       1.1       cgd 			break;
    109       1.1       cgd 		}
    110       1.1       cgd 		/* FALLTHROUGH */
    111       1.1       cgd 	case R_FIRST:
    112       1.1       cgd 	case R_LAST:
    113       1.7       cgd 	case R_CURSOR:
    114      1.11  christos 		status = __bt_seqset(t, &e, key, (int)flags);
    115       1.1       cgd 		break;
    116       1.1       cgd 	default:
    117       1.1       cgd 		errno = EINVAL;
    118       1.1       cgd 		return (RET_ERROR);
    119       1.1       cgd 	}
    120       1.1       cgd 
    121       1.1       cgd 	if (status == RET_SUCCESS) {
    122      1.11  christos 		__bt_setcur(t, e.page->pgno, (u_int)e.index);
    123       1.1       cgd 
    124       1.7       cgd 		status =
    125       1.7       cgd 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
    126       1.4       cgd 
    127       1.4       cgd 		/*
    128       1.4       cgd 		 * If the user is doing concurrent access, we copied the
    129       1.4       cgd 		 * key/data, toss the page.
    130       1.4       cgd 		 */
    131       1.7       cgd 		if (F_ISSET(t, B_DB_LOCK))
    132       1.4       cgd 			mpool_put(t->bt_mp, e.page, 0);
    133       1.4       cgd 		else
    134       1.4       cgd 			t->bt_pinned = e.page;
    135       1.1       cgd 	}
    136       1.1       cgd 	return (status);
    137       1.1       cgd }
    138       1.1       cgd 
    139       1.1       cgd /*
    140       1.7       cgd  * __bt_seqset --
    141       1.7       cgd  *	Set the sequential scan to a specific key.
    142       1.1       cgd  *
    143       1.1       cgd  * Parameters:
    144       1.1       cgd  *	t:	tree
    145       1.1       cgd  *	ep:	storage for returned key
    146       1.1       cgd  *	key:	key for initial scan position
    147  1.18.8.1  pgoyette  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
    148       1.1       cgd  *
    149       1.1       cgd  * Side effects:
    150       1.1       cgd  *	Pins the page the cursor references.
    151       1.1       cgd  *
    152       1.1       cgd  * Returns:
    153       1.1       cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    154       1.1       cgd  */
    155       1.1       cgd static int
    156      1.15  christos __bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
    157       1.1       cgd {
    158       1.1       cgd 	PAGE *h;
    159       1.1       cgd 	pgno_t pg;
    160       1.1       cgd 	int exact;
    161       1.1       cgd 
    162       1.1       cgd 	/*
    163       1.7       cgd 	 * Find the first, last or specific key in the tree and point the
    164       1.7       cgd 	 * cursor at it.  The cursor may not be moved until a new key has
    165       1.7       cgd 	 * been found.
    166       1.1       cgd 	 */
    167       1.7       cgd 	switch (flags) {
    168       1.1       cgd 	case R_CURSOR:				/* Keyed scan. */
    169       1.1       cgd 		/*
    170       1.7       cgd 		 * Find the first instance of the key or the smallest key
    171       1.7       cgd 		 * which is greater than or equal to the specified key.
    172       1.1       cgd 		 */
    173       1.1       cgd 		if (key->data == NULL || key->size == 0) {
    174       1.1       cgd 			errno = EINVAL;
    175       1.1       cgd 			return (RET_ERROR);
    176       1.1       cgd 		}
    177       1.7       cgd 		return (__bt_first(t, key, ep, &exact));
    178       1.1       cgd 	case R_FIRST:				/* First record. */
    179       1.1       cgd 	case R_NEXT:
    180  1.18.8.1  pgoyette 	case R_RNEXT:
    181  1.18.8.1  pgoyette 		BT_CLR(t);
    182       1.1       cgd 		/* Walk down the left-hand side of the tree. */
    183       1.1       cgd 		for (pg = P_ROOT;;) {
    184       1.1       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    185       1.1       cgd 				return (RET_ERROR);
    186       1.7       cgd 
    187       1.7       cgd 			/* Check for an empty tree. */
    188       1.7       cgd 			if (NEXTINDEX(h) == 0) {
    189       1.7       cgd 				mpool_put(t->bt_mp, h, 0);
    190       1.7       cgd 				return (RET_SPECIAL);
    191       1.7       cgd 			}
    192       1.7       cgd 
    193       1.1       cgd 			if (h->flags & (P_BLEAF | P_RLEAF))
    194       1.1       cgd 				break;
    195       1.1       cgd 			pg = GETBINTERNAL(h, 0)->pgno;
    196  1.18.8.1  pgoyette 			BT_PUSH(t, h->pgno, 0);
    197       1.1       cgd 			mpool_put(t->bt_mp, h, 0);
    198       1.1       cgd 		}
    199       1.1       cgd 		ep->page = h;
    200       1.1       cgd 		ep->index = 0;
    201       1.1       cgd 		break;
    202       1.1       cgd 	case R_LAST:				/* Last record. */
    203       1.1       cgd 	case R_PREV:
    204  1.18.8.1  pgoyette 	case R_RPREV:
    205  1.18.8.1  pgoyette 		BT_CLR(t);
    206       1.1       cgd 		/* Walk down the right-hand side of the tree. */
    207       1.1       cgd 		for (pg = P_ROOT;;) {
    208       1.1       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    209       1.1       cgd 				return (RET_ERROR);
    210       1.7       cgd 
    211       1.7       cgd 			/* Check for an empty tree. */
    212       1.7       cgd 			if (NEXTINDEX(h) == 0) {
    213       1.7       cgd 				mpool_put(t->bt_mp, h, 0);
    214       1.7       cgd 				return (RET_SPECIAL);
    215       1.7       cgd 			}
    216       1.7       cgd 
    217       1.1       cgd 			if (h->flags & (P_BLEAF | P_RLEAF))
    218       1.1       cgd 				break;
    219       1.1       cgd 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
    220  1.18.8.1  pgoyette 			BT_PUSH(t, h->pgno, NEXTINDEX(h) - 1);
    221       1.1       cgd 			mpool_put(t->bt_mp, h, 0);
    222       1.1       cgd 		}
    223       1.1       cgd 
    224       1.1       cgd 		ep->page = h;
    225       1.1       cgd 		ep->index = NEXTINDEX(h) - 1;
    226       1.1       cgd 		break;
    227       1.1       cgd 	}
    228       1.1       cgd 	return (RET_SUCCESS);
    229       1.1       cgd }
    230       1.1       cgd 
    231       1.1       cgd /*
    232       1.7       cgd  * __bt_seqadvance --
    233       1.7       cgd  *	Advance the sequential scan.
    234       1.1       cgd  *
    235       1.1       cgd  * Parameters:
    236       1.1       cgd  *	t:	tree
    237  1.18.8.1  pgoyette  *	flags:	R_NEXT, R_PREV, R_RNEXT, R_RPREV
    238       1.1       cgd  *
    239       1.1       cgd  * Side effects:
    240       1.1       cgd  *	Pins the page the new key/data record is on.
    241       1.1       cgd  *
    242       1.1       cgd  * Returns:
    243       1.1       cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    244       1.1       cgd  */
    245       1.1       cgd static int
    246      1.15  christos __bt_seqadv(BTREE *t, EPG *ep, int flags)
    247       1.1       cgd {
    248       1.7       cgd 	CURSOR *c;
    249       1.1       cgd 	PAGE *h;
    250      1.12   thorpej 	indx_t idx = 0;	/* pacify gcc */
    251       1.1       cgd 	pgno_t pg;
    252  1.18.8.1  pgoyette 	int exact, rval;
    253       1.7       cgd 
    254       1.7       cgd 	/*
    255       1.7       cgd 	 * There are a couple of states that we can be in.  The cursor has
    256       1.7       cgd 	 * been initialized by the time we get here, but that's all we know.
    257       1.7       cgd 	 */
    258       1.7       cgd 	c = &t->bt_cursor;
    259       1.1       cgd 
    260       1.7       cgd 	/*
    261  1.18.8.1  pgoyette 	 * The cursor was deleted and there weren't any duplicate records,
    262  1.18.8.1  pgoyette 	 * so the cursor's key was saved.  Find out where that key would
    263  1.18.8.1  pgoyette 	 * be in the current tree.  If the returned key is an exact match,
    264  1.18.8.1  pgoyette 	 * it means that a key/data pair was inserted into the tree after
    265  1.18.8.1  pgoyette 	 * the delete.  We could reasonably return the key, but the problem
    266  1.18.8.1  pgoyette 	 * is that this is the access pattern we'll see if the user is
    267  1.18.8.1  pgoyette 	 * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
    268  1.18.8.1  pgoyette 	 * the cursor record and then replaces it, so the cursor was saved,
    269  1.18.8.1  pgoyette 	 * and we'll simply return the same "new" record until the user
    270  1.18.8.1  pgoyette 	 * notices and doesn't do a put() of it.  Since the key is an exact
    271  1.18.8.1  pgoyette 	 * match, we could as easily put the new record before the cursor,
    272  1.18.8.1  pgoyette 	 * and we've made no guarantee to return it.  So, move forward or
    273  1.18.8.1  pgoyette 	 * back a record if it's an exact match.
    274  1.18.8.1  pgoyette 	 *
    275  1.18.8.1  pgoyette 	 * XXX
    276  1.18.8.1  pgoyette 	 * In the current implementation, put's to the cursor are done with
    277  1.18.8.1  pgoyette 	 * delete/add pairs.  This has two consequences.  First, it means
    278  1.18.8.1  pgoyette 	 * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
    279  1.18.8.1  pgoyette 	 * the same behavior as above.  Second, you can return the same key
    280  1.18.8.1  pgoyette 	 * twice if you have duplicate records.  The scenario is that the
    281  1.18.8.1  pgoyette 	 * cursor record is deleted, moving the cursor forward or backward
    282  1.18.8.1  pgoyette 	 * to a duplicate.  The add then inserts the new record at a location
    283  1.18.8.1  pgoyette 	 * ahead of the cursor because duplicates aren't sorted in any way,
    284  1.18.8.1  pgoyette 	 * and the new record is later returned.  This has to be fixed at some
    285  1.18.8.1  pgoyette 	 * point.
    286       1.7       cgd 	 */
    287  1.18.8.1  pgoyette 	if (F_ISSET(c, CURS_ACQUIRE)) {
    288  1.18.8.1  pgoyette 		if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
    289  1.18.8.1  pgoyette 			return RET_ERROR;
    290  1.18.8.1  pgoyette 		if (!exact)
    291  1.18.8.1  pgoyette 			return rval;
    292  1.18.8.1  pgoyette 		/*
    293  1.18.8.1  pgoyette 		 * XXX
    294  1.18.8.1  pgoyette 		 * Kluge -- get, release, get the page.
    295  1.18.8.1  pgoyette 		 */
    296  1.18.8.1  pgoyette 		c->pg.pgno = ep->page->pgno;
    297  1.18.8.1  pgoyette 		c->pg.index = ep->index;
    298  1.18.8.1  pgoyette 		mpool_put(t->bt_mp, ep->page, 0);
    299  1.18.8.1  pgoyette 	}
    300       1.1       cgd 
    301       1.7       cgd 	/* Get the page referenced by the cursor. */
    302       1.7       cgd 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
    303       1.1       cgd 		return (RET_ERROR);
    304       1.1       cgd 
    305       1.1       cgd 	/*
    306       1.7       cgd  	 * Find the next/previous record in the tree and point the cursor at
    307       1.7       cgd 	 * it.  The cursor may not be moved until a new key has been found.
    308       1.1       cgd 	 */
    309       1.7       cgd 	switch (flags) {
    310       1.1       cgd 	case R_NEXT:			/* Next record. */
    311  1.18.8.1  pgoyette 	case R_RNEXT:
    312       1.7       cgd 		/*
    313       1.7       cgd 		 * The cursor was deleted in duplicate records, and moved
    314       1.7       cgd 		 * forward to a record that has yet to be returned.  Clear
    315       1.7       cgd 		 * that flag, and return the record.
    316       1.7       cgd 		 */
    317       1.7       cgd 		if (F_ISSET(c, CURS_AFTER))
    318       1.7       cgd 			goto usecurrent;
    319      1.12   thorpej 		idx = c->pg.index;
    320      1.12   thorpej 		if (++idx == NEXTINDEX(h)) {
    321  1.18.8.1  pgoyette 			if (flags == R_RNEXT) {
    322  1.18.8.1  pgoyette 				ep->page = h;
    323  1.18.8.1  pgoyette 				ep->index = idx;
    324  1.18.8.1  pgoyette 				return __bt_rseq_next(t, ep);
    325  1.18.8.1  pgoyette 			}
    326       1.7       cgd 			pg = h->nextpg;
    327       1.7       cgd 			mpool_put(t->bt_mp, h, 0);
    328       1.7       cgd 			if (pg == P_INVALID)
    329  1.18.8.1  pgoyette 				return RET_SPECIAL;
    330       1.7       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    331  1.18.8.1  pgoyette 				return RET_ERROR;
    332      1.12   thorpej 			idx = 0;
    333       1.1       cgd 		}
    334       1.1       cgd 		break;
    335       1.1       cgd 	case R_PREV:			/* Previous record. */
    336  1.18.8.1  pgoyette 	case R_RPREV:
    337       1.7       cgd 		/*
    338       1.7       cgd 		 * The cursor was deleted in duplicate records, and moved
    339       1.7       cgd 		 * backward to a record that has yet to be returned.  Clear
    340       1.7       cgd 		 * that flag, and return the record.
    341       1.7       cgd 		 */
    342       1.7       cgd 		if (F_ISSET(c, CURS_BEFORE)) {
    343       1.7       cgd usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
    344       1.7       cgd 			ep->page = h;
    345       1.7       cgd 			ep->index = c->pg.index;
    346       1.7       cgd 			return (RET_SUCCESS);
    347       1.7       cgd 		}
    348      1.12   thorpej 		idx = c->pg.index;
    349      1.12   thorpej 		if (idx == 0) {
    350  1.18.8.1  pgoyette 			if (flags == R_RPREV) {
    351  1.18.8.1  pgoyette 				ep->page = h;
    352  1.18.8.1  pgoyette 				ep->index = idx;
    353  1.18.8.1  pgoyette 				return __bt_rseq_prev(t, ep);
    354  1.18.8.1  pgoyette 			}
    355       1.7       cgd 			pg = h->prevpg;
    356       1.7       cgd 			mpool_put(t->bt_mp, h, 0);
    357       1.7       cgd 			if (pg == P_INVALID)
    358  1.18.8.1  pgoyette 				return RET_SPECIAL;
    359       1.7       cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    360  1.18.8.1  pgoyette 				return RET_ERROR;
    361      1.12   thorpej 			idx = NEXTINDEX(h) - 1;
    362       1.7       cgd 		} else
    363      1.12   thorpej 			--idx;
    364       1.1       cgd 		break;
    365       1.1       cgd 	}
    366       1.1       cgd 
    367       1.7       cgd 	ep->page = h;
    368      1.12   thorpej 	ep->index = idx;
    369       1.7       cgd 	return (RET_SUCCESS);
    370       1.7       cgd }
    371  1.18.8.1  pgoyette /*
    372  1.18.8.1  pgoyette  * Get the first item on the next page, but by going up and down the tree.
    373  1.18.8.1  pgoyette  */
    374  1.18.8.1  pgoyette static int
    375  1.18.8.1  pgoyette __bt_rseq_next(BTREE *t, EPG *ep)
    376  1.18.8.1  pgoyette {
    377  1.18.8.1  pgoyette 	PAGE *h;
    378  1.18.8.1  pgoyette 	indx_t idx;
    379  1.18.8.1  pgoyette 	EPGNO *up;
    380  1.18.8.1  pgoyette 	pgno_t pg;
    381  1.18.8.1  pgoyette 
    382  1.18.8.1  pgoyette 	h = ep->page;
    383  1.18.8.1  pgoyette 	idx = ep->index;
    384  1.18.8.1  pgoyette 	do {
    385  1.18.8.1  pgoyette 		/* Move up the tree. */
    386  1.18.8.1  pgoyette 		up = BT_POP(t);
    387  1.18.8.1  pgoyette 		mpool_put(t->bt_mp, h, 0);
    388  1.18.8.1  pgoyette 		/* Did we hit the right edge of the root? */
    389  1.18.8.1  pgoyette 		if (up == NULL)
    390  1.18.8.1  pgoyette 			return RET_SPECIAL;
    391  1.18.8.1  pgoyette 		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
    392  1.18.8.1  pgoyette 			return RET_ERROR;
    393  1.18.8.1  pgoyette 		idx = up->index;
    394  1.18.8.1  pgoyette 	} while (++idx == NEXTINDEX(h));
    395  1.18.8.1  pgoyette 
    396  1.18.8.1  pgoyette 	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
    397  1.18.8.1  pgoyette 		/* Move back down the tree. */
    398  1.18.8.1  pgoyette 		BT_PUSH(t, h->pgno, idx);
    399  1.18.8.1  pgoyette 		pg = GETBINTERNAL(h, idx)->pgno;
    400  1.18.8.1  pgoyette 		mpool_put(t->bt_mp, h, 0);
    401  1.18.8.1  pgoyette 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    402  1.18.8.1  pgoyette 			return RET_ERROR;
    403  1.18.8.1  pgoyette 		idx = 0;
    404  1.18.8.1  pgoyette 	}
    405  1.18.8.1  pgoyette 	ep->page = h;
    406  1.18.8.1  pgoyette 	ep->index = idx;
    407  1.18.8.1  pgoyette 	return RET_SUCCESS;
    408  1.18.8.1  pgoyette }
    409  1.18.8.1  pgoyette 
    410  1.18.8.1  pgoyette /*
    411  1.18.8.1  pgoyette  * Get the last item on the previous page, but by going up and down the tree.
    412  1.18.8.1  pgoyette  */
    413  1.18.8.1  pgoyette static int
    414  1.18.8.1  pgoyette __bt_rseq_prev(BTREE *t, EPG *ep)
    415  1.18.8.1  pgoyette {
    416  1.18.8.1  pgoyette 	PAGE *h;
    417  1.18.8.1  pgoyette 	indx_t idx;
    418  1.18.8.1  pgoyette 	EPGNO *up;
    419  1.18.8.1  pgoyette 	pgno_t pg;
    420  1.18.8.1  pgoyette 
    421  1.18.8.1  pgoyette 	h = ep->page;
    422  1.18.8.1  pgoyette 	idx = ep->index;
    423  1.18.8.1  pgoyette 	do {
    424  1.18.8.1  pgoyette 		/* Move up the tree. */
    425  1.18.8.1  pgoyette 		up = BT_POP(t);
    426  1.18.8.1  pgoyette 		mpool_put(t->bt_mp, h, 0);
    427  1.18.8.1  pgoyette 		/* Did we hit the left edge of the root? */
    428  1.18.8.1  pgoyette 		if (up == NULL)
    429  1.18.8.1  pgoyette 			return RET_SPECIAL;
    430  1.18.8.1  pgoyette 		if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
    431  1.18.8.1  pgoyette 			return RET_ERROR;
    432  1.18.8.1  pgoyette 		idx = up->index;
    433  1.18.8.1  pgoyette 	} while (idx == 0);
    434  1.18.8.1  pgoyette 	--idx;
    435  1.18.8.1  pgoyette 	while (!(h->flags & (P_BLEAF | P_RLEAF))) {
    436  1.18.8.1  pgoyette 		/* Move back down the tree. */
    437  1.18.8.1  pgoyette 		BT_PUSH(t, h->pgno, idx);
    438  1.18.8.1  pgoyette 		pg = GETBINTERNAL(h, idx)->pgno;
    439  1.18.8.1  pgoyette 		mpool_put(t->bt_mp, h, 0);
    440  1.18.8.1  pgoyette 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    441  1.18.8.1  pgoyette 			return RET_ERROR;
    442  1.18.8.1  pgoyette 		idx = NEXTINDEX(h) - 1;
    443  1.18.8.1  pgoyette 	}
    444  1.18.8.1  pgoyette 	ep->page = h;
    445  1.18.8.1  pgoyette 	ep->index = idx;
    446  1.18.8.1  pgoyette 	return RET_SUCCESS;
    447  1.18.8.1  pgoyette }
    448       1.7       cgd 
    449       1.7       cgd /*
    450       1.7       cgd  * __bt_first --
    451       1.7       cgd  *	Find the first entry.
    452       1.7       cgd  *
    453       1.7       cgd  * Parameters:
    454       1.7       cgd  *	t:	the tree
    455       1.7       cgd  *    key:	the key
    456       1.7       cgd  *  erval:	return EPG
    457       1.7       cgd  * exactp:	pointer to exact match flag
    458       1.7       cgd  *
    459       1.7       cgd  * Returns:
    460       1.7       cgd  *	The first entry in the tree greater than or equal to key,
    461       1.7       cgd  *	or RET_SPECIAL if no such key exists.
    462       1.7       cgd  */
    463       1.7       cgd static int
    464      1.15  christos __bt_first(BTREE *t, const DBT *key, EPG *erval, int *exactp)
    465       1.7       cgd {
    466  1.18.8.1  pgoyette 	PAGE *h, *hprev;
    467       1.7       cgd 	EPG *ep, save;
    468       1.7       cgd 	pgno_t pg;
    469       1.1       cgd 
    470       1.1       cgd 	/*
    471       1.7       cgd 	 * Find any matching record; __bt_search pins the page.
    472       1.7       cgd 	 *
    473       1.7       cgd 	 * If it's an exact match and duplicates are possible, walk backwards
    474       1.7       cgd 	 * in the tree until we find the first one.  Otherwise, make sure it's
    475       1.7       cgd 	 * a valid key (__bt_search may return an index just past the end of a
    476       1.7       cgd 	 * page) and return it.
    477       1.1       cgd 	 */
    478       1.7       cgd 	if ((ep = __bt_search(t, key, exactp)) == NULL)
    479  1.18.8.1  pgoyette 		return RET_SPECIAL;
    480       1.7       cgd 	if (*exactp) {
    481       1.7       cgd 		if (F_ISSET(t, B_NODUPS)) {
    482       1.7       cgd 			*erval = *ep;
    483       1.7       cgd 			return (RET_SUCCESS);
    484       1.7       cgd 		}
    485  1.18.8.1  pgoyette 
    486       1.7       cgd 		/*
    487       1.7       cgd 		 * Walk backwards, as long as the entry matches and there are
    488       1.7       cgd 		 * keys left in the tree.  Save a copy of each match in case
    489       1.7       cgd 		 * we go too far.
    490       1.7       cgd 		 */
    491       1.7       cgd 		save = *ep;
    492       1.7       cgd 		h = ep->page;
    493       1.7       cgd 		do {
    494       1.7       cgd 			if (save.page->pgno != ep->page->pgno) {
    495       1.7       cgd 				mpool_put(t->bt_mp, save.page, 0);
    496       1.7       cgd 				save = *ep;
    497       1.7       cgd 			} else
    498       1.7       cgd 				save.index = ep->index;
    499       1.7       cgd 
    500       1.7       cgd 			/*
    501       1.7       cgd 			 * Don't unpin the page the last (or original) match
    502       1.7       cgd 			 * was on, but make sure it's unpinned if an error
    503       1.7       cgd 			 * occurs.
    504       1.7       cgd 			 */
    505       1.7       cgd 			if (ep->index == 0) {
    506       1.7       cgd 				if (h->prevpg == P_INVALID)
    507       1.7       cgd 					break;
    508       1.7       cgd 				if (h->pgno != save.page->pgno)
    509       1.7       cgd 					mpool_put(t->bt_mp, h, 0);
    510  1.18.8.1  pgoyette 				if ((hprev = mpool_get(t->bt_mp,
    511  1.18.8.1  pgoyette 				    h->prevpg, 0)) == NULL) {
    512  1.18.8.1  pgoyette 					if (h->pgno == save.page->pgno)
    513  1.18.8.1  pgoyette 						mpool_put(t->bt_mp,
    514  1.18.8.1  pgoyette 						    save.page, 0);
    515  1.18.8.1  pgoyette  					return RET_ERROR;
    516  1.18.8.1  pgoyette 				}
    517  1.18.8.1  pgoyette 				ep->page = h = hprev;
    518       1.7       cgd 				ep->index = NEXTINDEX(h);
    519       1.7       cgd 			}
    520       1.7       cgd 			--ep->index;
    521       1.7       cgd 		} while (__bt_cmp(t, key, ep) == 0);
    522       1.7       cgd 
    523       1.7       cgd 		/*
    524       1.7       cgd 		 * Reach here with the last page that was looked at pinned,
    525       1.7       cgd 		 * which may or may not be the same as the last (or original)
    526       1.7       cgd 		 * match page.  If it's not useful, release it.
    527       1.7       cgd 		 */
    528       1.7       cgd 		if (h->pgno != save.page->pgno)
    529       1.7       cgd 			mpool_put(t->bt_mp, h, 0);
    530       1.7       cgd 
    531       1.7       cgd 		*erval = save;
    532       1.7       cgd 		return (RET_SUCCESS);
    533       1.7       cgd 	}
    534       1.7       cgd 
    535       1.7       cgd 	/* If at the end of a page, find the next entry. */
    536       1.7       cgd 	if (ep->index == NEXTINDEX(ep->page)) {
    537       1.7       cgd 		h = ep->page;
    538       1.7       cgd 		pg = h->nextpg;
    539       1.7       cgd 		mpool_put(t->bt_mp, h, 0);
    540       1.7       cgd 		if (pg == P_INVALID)
    541       1.7       cgd 			return (RET_SPECIAL);
    542       1.7       cgd 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    543       1.1       cgd 			return (RET_ERROR);
    544       1.7       cgd 		ep->index = 0;
    545       1.7       cgd 		ep->page = h;
    546       1.1       cgd 	}
    547       1.7       cgd 	*erval = *ep;
    548       1.1       cgd 	return (RET_SUCCESS);
    549       1.1       cgd }
    550       1.1       cgd 
    551       1.1       cgd /*
    552       1.7       cgd  * __bt_setcur --
    553       1.7       cgd  *	Set the cursor to an entry in the tree.
    554       1.1       cgd  *
    555       1.1       cgd  * Parameters:
    556       1.7       cgd  *	t:	the tree
    557       1.7       cgd  *   pgno:	page number
    558      1.12   thorpej  *    idx:	page index
    559       1.1       cgd  */
    560       1.7       cgd void
    561      1.15  christos __bt_setcur(BTREE *t, pgno_t pgno, u_int idx)
    562       1.1       cgd {
    563       1.7       cgd 	/* Lose any already deleted key. */
    564       1.7       cgd 	if (t->bt_cursor.key.data != NULL) {
    565       1.7       cgd 		free(t->bt_cursor.key.data);
    566       1.7       cgd 		t->bt_cursor.key.size = 0;
    567       1.7       cgd 		t->bt_cursor.key.data = NULL;
    568       1.7       cgd 	}
    569       1.7       cgd 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
    570       1.1       cgd 
    571       1.7       cgd 	/* Update the cursor. */
    572       1.7       cgd 	t->bt_cursor.pg.pgno = pgno;
    573      1.12   thorpej 	t->bt_cursor.pg.index = idx;
    574       1.7       cgd 	F_SET(&t->bt_cursor, CURS_INIT);
    575       1.1       cgd }
    576