bt_seq.c revision 1.20 1 1.20 christos /* $NetBSD: bt_seq.c,v 1.20 2016/09/24 21:31:25 christos Exp $ */
2 1.6 cgd
3 1.1 cgd /*-
4 1.7 cgd * Copyright (c) 1990, 1993, 1994
5 1.1 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * This code is derived from software contributed to Berkeley by
8 1.1 cgd * Mike Olson.
9 1.1 cgd *
10 1.1 cgd * Redistribution and use in source and binary forms, with or without
11 1.1 cgd * modification, are permitted provided that the following conditions
12 1.1 cgd * are met:
13 1.1 cgd * 1. Redistributions of source code must retain the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer.
15 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cgd * notice, this list of conditions and the following disclaimer in the
17 1.1 cgd * documentation and/or other materials provided with the distribution.
18 1.13 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 cgd * may be used to endorse or promote products derived from this software
20 1.1 cgd * without specific prior written permission.
21 1.1 cgd *
22 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 cgd * SUCH DAMAGE.
33 1.1 cgd */
34 1.1 cgd
35 1.17 joerg #if HAVE_NBTOOL_CONFIG_H
36 1.17 joerg #include "nbtool_config.h"
37 1.17 joerg #endif
38 1.17 joerg
39 1.9 christos #include <sys/cdefs.h>
40 1.20 christos __RCSID("$NetBSD: bt_seq.c,v 1.20 2016/09/24 21:31:25 christos Exp $");
41 1.1 cgd
42 1.10 jtc #include "namespace.h"
43 1.1 cgd #include <sys/types.h>
44 1.1 cgd
45 1.15 christos #include <assert.h>
46 1.1 cgd #include <errno.h>
47 1.1 cgd #include <stddef.h>
48 1.1 cgd #include <stdio.h>
49 1.1 cgd #include <stdlib.h>
50 1.1 cgd
51 1.1 cgd #include <db.h>
52 1.1 cgd #include "btree.h"
53 1.1 cgd
54 1.15 christos static int __bt_first(BTREE *, const DBT *, EPG *, int *);
55 1.15 christos static int __bt_seqadv(BTREE *, EPG *, int);
56 1.15 christos static int __bt_seqset(BTREE *, EPG *, DBT *, int);
57 1.19 christos static int __bt_rseq_next(BTREE *, EPG *);
58 1.19 christos static int __bt_rseq_prev(BTREE *, EPG *);
59 1.1 cgd
60 1.1 cgd /*
61 1.1 cgd * Sequential scan support.
62 1.1 cgd *
63 1.7 cgd * The tree can be scanned sequentially, starting from either end of the
64 1.7 cgd * tree or from any specific key. A scan request before any scanning is
65 1.7 cgd * done is initialized as starting from the least node.
66 1.1 cgd */
67 1.1 cgd
68 1.1 cgd /*
69 1.7 cgd * __bt_seq --
70 1.7 cgd * Btree sequential scan interface.
71 1.1 cgd *
72 1.1 cgd * Parameters:
73 1.1 cgd * dbp: pointer to access method
74 1.1 cgd * key: key for positioning and return value
75 1.1 cgd * data: data return value
76 1.19 christos * flags: R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
77 1.1 cgd *
78 1.1 cgd * Returns:
79 1.1 cgd * RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
80 1.1 cgd */
81 1.1 cgd int
82 1.15 christos __bt_seq(const DB *dbp, DBT *key, DBT *data, u_int flags)
83 1.1 cgd {
84 1.1 cgd BTREE *t;
85 1.1 cgd EPG e;
86 1.1 cgd int status;
87 1.1 cgd
88 1.4 cgd t = dbp->internal;
89 1.4 cgd
90 1.4 cgd /* Toss any page pinned across calls. */
91 1.4 cgd if (t->bt_pinned != NULL) {
92 1.4 cgd mpool_put(t->bt_mp, t->bt_pinned, 0);
93 1.4 cgd t->bt_pinned = NULL;
94 1.4 cgd }
95 1.4 cgd
96 1.1 cgd /*
97 1.18 ryoon * If scan uninitialized as yet, or starting at a specific record, set
98 1.7 cgd * the scan to a specific key. Both __bt_seqset and __bt_seqadv pin
99 1.7 cgd * the page the cursor references if they're successful.
100 1.1 cgd */
101 1.7 cgd switch (flags) {
102 1.1 cgd case R_NEXT:
103 1.1 cgd case R_PREV:
104 1.19 christos case R_RNEXT:
105 1.19 christos case R_RPREV:
106 1.7 cgd if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
107 1.11 christos status = __bt_seqadv(t, &e, (int)flags);
108 1.1 cgd break;
109 1.1 cgd }
110 1.1 cgd /* FALLTHROUGH */
111 1.1 cgd case R_FIRST:
112 1.1 cgd case R_LAST:
113 1.7 cgd case R_CURSOR:
114 1.11 christos status = __bt_seqset(t, &e, key, (int)flags);
115 1.1 cgd break;
116 1.1 cgd default:
117 1.1 cgd errno = EINVAL;
118 1.1 cgd return (RET_ERROR);
119 1.1 cgd }
120 1.1 cgd
121 1.1 cgd if (status == RET_SUCCESS) {
122 1.11 christos __bt_setcur(t, e.page->pgno, (u_int)e.index);
123 1.1 cgd
124 1.7 cgd status =
125 1.7 cgd __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
126 1.4 cgd
127 1.4 cgd /*
128 1.4 cgd * If the user is doing concurrent access, we copied the
129 1.4 cgd * key/data, toss the page.
130 1.4 cgd */
131 1.7 cgd if (F_ISSET(t, B_DB_LOCK))
132 1.4 cgd mpool_put(t->bt_mp, e.page, 0);
133 1.4 cgd else
134 1.4 cgd t->bt_pinned = e.page;
135 1.1 cgd }
136 1.1 cgd return (status);
137 1.1 cgd }
138 1.1 cgd
139 1.1 cgd /*
140 1.7 cgd * __bt_seqset --
141 1.7 cgd * Set the sequential scan to a specific key.
142 1.1 cgd *
143 1.1 cgd * Parameters:
144 1.1 cgd * t: tree
145 1.1 cgd * ep: storage for returned key
146 1.1 cgd * key: key for initial scan position
147 1.19 christos * flags: R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV, R_RNEXT, R_RPREV.
148 1.1 cgd *
149 1.1 cgd * Side effects:
150 1.1 cgd * Pins the page the cursor references.
151 1.1 cgd *
152 1.1 cgd * Returns:
153 1.1 cgd * RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
154 1.1 cgd */
155 1.1 cgd static int
156 1.15 christos __bt_seqset(BTREE *t, EPG *ep, DBT *key, int flags)
157 1.1 cgd {
158 1.1 cgd PAGE *h;
159 1.1 cgd pgno_t pg;
160 1.1 cgd int exact;
161 1.1 cgd
162 1.1 cgd /*
163 1.7 cgd * Find the first, last or specific key in the tree and point the
164 1.7 cgd * cursor at it. The cursor may not be moved until a new key has
165 1.7 cgd * been found.
166 1.1 cgd */
167 1.7 cgd switch (flags) {
168 1.1 cgd case R_CURSOR: /* Keyed scan. */
169 1.1 cgd /*
170 1.7 cgd * Find the first instance of the key or the smallest key
171 1.7 cgd * which is greater than or equal to the specified key.
172 1.1 cgd */
173 1.1 cgd if (key->data == NULL || key->size == 0) {
174 1.1 cgd errno = EINVAL;
175 1.1 cgd return (RET_ERROR);
176 1.1 cgd }
177 1.7 cgd return (__bt_first(t, key, ep, &exact));
178 1.1 cgd case R_FIRST: /* First record. */
179 1.1 cgd case R_NEXT:
180 1.19 christos case R_RNEXT:
181 1.19 christos BT_CLR(t);
182 1.1 cgd /* Walk down the left-hand side of the tree. */
183 1.1 cgd for (pg = P_ROOT;;) {
184 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
185 1.1 cgd return (RET_ERROR);
186 1.7 cgd
187 1.7 cgd /* Check for an empty tree. */
188 1.7 cgd if (NEXTINDEX(h) == 0) {
189 1.7 cgd mpool_put(t->bt_mp, h, 0);
190 1.7 cgd return (RET_SPECIAL);
191 1.7 cgd }
192 1.7 cgd
193 1.1 cgd if (h->flags & (P_BLEAF | P_RLEAF))
194 1.1 cgd break;
195 1.1 cgd pg = GETBINTERNAL(h, 0)->pgno;
196 1.19 christos BT_PUSH(t, h->pgno, 0);
197 1.1 cgd mpool_put(t->bt_mp, h, 0);
198 1.1 cgd }
199 1.1 cgd ep->page = h;
200 1.1 cgd ep->index = 0;
201 1.1 cgd break;
202 1.1 cgd case R_LAST: /* Last record. */
203 1.1 cgd case R_PREV:
204 1.19 christos case R_RPREV:
205 1.19 christos BT_CLR(t);
206 1.1 cgd /* Walk down the right-hand side of the tree. */
207 1.1 cgd for (pg = P_ROOT;;) {
208 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
209 1.1 cgd return (RET_ERROR);
210 1.7 cgd
211 1.7 cgd /* Check for an empty tree. */
212 1.7 cgd if (NEXTINDEX(h) == 0) {
213 1.7 cgd mpool_put(t->bt_mp, h, 0);
214 1.7 cgd return (RET_SPECIAL);
215 1.7 cgd }
216 1.7 cgd
217 1.1 cgd if (h->flags & (P_BLEAF | P_RLEAF))
218 1.1 cgd break;
219 1.1 cgd pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
220 1.19 christos BT_PUSH(t, h->pgno, NEXTINDEX(h) - 1);
221 1.1 cgd mpool_put(t->bt_mp, h, 0);
222 1.1 cgd }
223 1.1 cgd
224 1.1 cgd ep->page = h;
225 1.1 cgd ep->index = NEXTINDEX(h) - 1;
226 1.1 cgd break;
227 1.1 cgd }
228 1.1 cgd return (RET_SUCCESS);
229 1.1 cgd }
230 1.1 cgd
231 1.1 cgd /*
232 1.7 cgd * __bt_seqadvance --
233 1.7 cgd * Advance the sequential scan.
234 1.1 cgd *
235 1.1 cgd * Parameters:
236 1.1 cgd * t: tree
237 1.19 christos * flags: R_NEXT, R_PREV, R_RNEXT, R_RPREV
238 1.1 cgd *
239 1.1 cgd * Side effects:
240 1.1 cgd * Pins the page the new key/data record is on.
241 1.1 cgd *
242 1.1 cgd * Returns:
243 1.1 cgd * RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
244 1.1 cgd */
245 1.1 cgd static int
246 1.15 christos __bt_seqadv(BTREE *t, EPG *ep, int flags)
247 1.1 cgd {
248 1.7 cgd CURSOR *c;
249 1.1 cgd PAGE *h;
250 1.12 thorpej indx_t idx = 0; /* pacify gcc */
251 1.1 cgd pgno_t pg;
252 1.19 christos int exact, rval;
253 1.7 cgd
254 1.7 cgd /*
255 1.7 cgd * There are a couple of states that we can be in. The cursor has
256 1.7 cgd * been initialized by the time we get here, but that's all we know.
257 1.7 cgd */
258 1.7 cgd c = &t->bt_cursor;
259 1.1 cgd
260 1.7 cgd /*
261 1.19 christos * The cursor was deleted and there weren't any duplicate records,
262 1.19 christos * so the cursor's key was saved. Find out where that key would
263 1.19 christos * be in the current tree. If the returned key is an exact match,
264 1.19 christos * it means that a key/data pair was inserted into the tree after
265 1.19 christos * the delete. We could reasonably return the key, but the problem
266 1.19 christos * is that this is the access pattern we'll see if the user is
267 1.19 christos * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
268 1.19 christos * the cursor record and then replaces it, so the cursor was saved,
269 1.19 christos * and we'll simply return the same "new" record until the user
270 1.19 christos * notices and doesn't do a put() of it. Since the key is an exact
271 1.19 christos * match, we could as easily put the new record before the cursor,
272 1.19 christos * and we've made no guarantee to return it. So, move forward or
273 1.19 christos * back a record if it's an exact match.
274 1.19 christos *
275 1.19 christos * XXX
276 1.19 christos * In the current implementation, put's to the cursor are done with
277 1.19 christos * delete/add pairs. This has two consequences. First, it means
278 1.19 christos * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
279 1.19 christos * the same behavior as above. Second, you can return the same key
280 1.19 christos * twice if you have duplicate records. The scenario is that the
281 1.19 christos * cursor record is deleted, moving the cursor forward or backward
282 1.19 christos * to a duplicate. The add then inserts the new record at a location
283 1.19 christos * ahead of the cursor because duplicates aren't sorted in any way,
284 1.19 christos * and the new record is later returned. This has to be fixed at some
285 1.19 christos * point.
286 1.7 cgd */
287 1.19 christos if (F_ISSET(c, CURS_ACQUIRE)) {
288 1.19 christos if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
289 1.19 christos return RET_ERROR;
290 1.19 christos if (!exact)
291 1.19 christos return rval;
292 1.19 christos /*
293 1.19 christos * XXX
294 1.19 christos * Kluge -- get, release, get the page.
295 1.19 christos */
296 1.19 christos c->pg.pgno = ep->page->pgno;
297 1.19 christos c->pg.index = ep->index;
298 1.19 christos mpool_put(t->bt_mp, ep->page, 0);
299 1.19 christos }
300 1.1 cgd
301 1.7 cgd /* Get the page referenced by the cursor. */
302 1.20 christos if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
303 1.1 cgd return (RET_ERROR);
304 1.1 cgd
305 1.1 cgd /*
306 1.7 cgd * Find the next/previous record in the tree and point the cursor at
307 1.7 cgd * it. The cursor may not be moved until a new key has been found.
308 1.1 cgd */
309 1.7 cgd switch (flags) {
310 1.1 cgd case R_NEXT: /* Next record. */
311 1.19 christos case R_RNEXT:
312 1.7 cgd /*
313 1.7 cgd * The cursor was deleted in duplicate records, and moved
314 1.7 cgd * forward to a record that has yet to be returned. Clear
315 1.7 cgd * that flag, and return the record.
316 1.7 cgd */
317 1.7 cgd if (F_ISSET(c, CURS_AFTER))
318 1.7 cgd goto usecurrent;
319 1.12 thorpej idx = c->pg.index;
320 1.12 thorpej if (++idx == NEXTINDEX(h)) {
321 1.19 christos if (flags == R_RNEXT) {
322 1.19 christos ep->page = h;
323 1.19 christos ep->index = idx;
324 1.19 christos return __bt_rseq_next(t, ep);
325 1.19 christos }
326 1.7 cgd pg = h->nextpg;
327 1.7 cgd mpool_put(t->bt_mp, h, 0);
328 1.7 cgd if (pg == P_INVALID)
329 1.19 christos return RET_SPECIAL;
330 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
331 1.19 christos return RET_ERROR;
332 1.12 thorpej idx = 0;
333 1.1 cgd }
334 1.1 cgd break;
335 1.1 cgd case R_PREV: /* Previous record. */
336 1.19 christos case R_RPREV:
337 1.7 cgd /*
338 1.7 cgd * The cursor was deleted in duplicate records, and moved
339 1.7 cgd * backward to a record that has yet to be returned. Clear
340 1.7 cgd * that flag, and return the record.
341 1.7 cgd */
342 1.7 cgd if (F_ISSET(c, CURS_BEFORE)) {
343 1.7 cgd usecurrent: F_CLR(c, CURS_AFTER | CURS_BEFORE);
344 1.7 cgd ep->page = h;
345 1.7 cgd ep->index = c->pg.index;
346 1.7 cgd return (RET_SUCCESS);
347 1.7 cgd }
348 1.12 thorpej idx = c->pg.index;
349 1.12 thorpej if (idx == 0) {
350 1.19 christos if (flags == R_RPREV) {
351 1.19 christos ep->page = h;
352 1.19 christos ep->index = idx;
353 1.19 christos return __bt_rseq_prev(t, ep);
354 1.19 christos }
355 1.7 cgd pg = h->prevpg;
356 1.7 cgd mpool_put(t->bt_mp, h, 0);
357 1.7 cgd if (pg == P_INVALID)
358 1.19 christos return RET_SPECIAL;
359 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
360 1.19 christos return RET_ERROR;
361 1.12 thorpej idx = NEXTINDEX(h) - 1;
362 1.7 cgd } else
363 1.12 thorpej --idx;
364 1.1 cgd break;
365 1.1 cgd }
366 1.1 cgd
367 1.7 cgd ep->page = h;
368 1.12 thorpej ep->index = idx;
369 1.7 cgd return (RET_SUCCESS);
370 1.7 cgd }
371 1.19 christos /*
372 1.19 christos * Get the first item on the next page, but by going up and down the tree.
373 1.19 christos */
374 1.19 christos static int
375 1.19 christos __bt_rseq_next(BTREE *t, EPG *ep)
376 1.19 christos {
377 1.19 christos PAGE *h;
378 1.19 christos indx_t idx;
379 1.19 christos EPGNO *up;
380 1.19 christos pgno_t pg;
381 1.19 christos
382 1.19 christos h = ep->page;
383 1.19 christos idx = ep->index;
384 1.19 christos do {
385 1.19 christos /* Move up the tree. */
386 1.19 christos up = BT_POP(t);
387 1.19 christos mpool_put(t->bt_mp, h, 0);
388 1.19 christos /* Did we hit the right edge of the root? */
389 1.19 christos if (up == NULL)
390 1.19 christos return RET_SPECIAL;
391 1.20 christos if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
392 1.19 christos return RET_ERROR;
393 1.19 christos idx = up->index;
394 1.19 christos } while (++idx == NEXTINDEX(h));
395 1.19 christos
396 1.19 christos while (!(h->flags & (P_BLEAF | P_RLEAF))) {
397 1.19 christos /* Move back down the tree. */
398 1.19 christos BT_PUSH(t, h->pgno, idx);
399 1.19 christos pg = GETBINTERNAL(h, idx)->pgno;
400 1.19 christos mpool_put(t->bt_mp, h, 0);
401 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
402 1.19 christos return RET_ERROR;
403 1.19 christos idx = 0;
404 1.19 christos }
405 1.19 christos ep->page = h;
406 1.19 christos ep->index = idx;
407 1.19 christos return RET_SUCCESS;
408 1.19 christos }
409 1.19 christos
410 1.19 christos /*
411 1.19 christos * Get the last item on the previous page, but by going up and down the tree.
412 1.19 christos */
413 1.19 christos static int
414 1.19 christos __bt_rseq_prev(BTREE *t, EPG *ep)
415 1.19 christos {
416 1.19 christos PAGE *h;
417 1.19 christos indx_t idx;
418 1.19 christos EPGNO *up;
419 1.19 christos pgno_t pg;
420 1.19 christos
421 1.19 christos h = ep->page;
422 1.19 christos idx = ep->index;
423 1.19 christos do {
424 1.19 christos /* Move up the tree. */
425 1.19 christos up = BT_POP(t);
426 1.19 christos mpool_put(t->bt_mp, h, 0);
427 1.19 christos /* Did we hit the left edge of the root? */
428 1.19 christos if (up == NULL)
429 1.19 christos return RET_SPECIAL;
430 1.20 christos if ((h = mpool_get(t->bt_mp, up->pgno, 0)) == NULL)
431 1.19 christos return RET_ERROR;
432 1.19 christos idx = up->index;
433 1.19 christos } while (idx == 0);
434 1.19 christos --idx;
435 1.19 christos while (!(h->flags & (P_BLEAF | P_RLEAF))) {
436 1.19 christos /* Move back down the tree. */
437 1.19 christos BT_PUSH(t, h->pgno, idx);
438 1.19 christos pg = GETBINTERNAL(h, idx)->pgno;
439 1.19 christos mpool_put(t->bt_mp, h, 0);
440 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
441 1.19 christos return RET_ERROR;
442 1.19 christos idx = NEXTINDEX(h) - 1;
443 1.19 christos }
444 1.19 christos ep->page = h;
445 1.19 christos ep->index = idx;
446 1.19 christos return RET_SUCCESS;
447 1.19 christos }
448 1.7 cgd
449 1.7 cgd /*
450 1.7 cgd * __bt_first --
451 1.7 cgd * Find the first entry.
452 1.7 cgd *
453 1.7 cgd * Parameters:
454 1.7 cgd * t: the tree
455 1.7 cgd * key: the key
456 1.7 cgd * erval: return EPG
457 1.7 cgd * exactp: pointer to exact match flag
458 1.7 cgd *
459 1.7 cgd * Returns:
460 1.7 cgd * The first entry in the tree greater than or equal to key,
461 1.7 cgd * or RET_SPECIAL if no such key exists.
462 1.7 cgd */
463 1.7 cgd static int
464 1.15 christos __bt_first(BTREE *t, const DBT *key, EPG *erval, int *exactp)
465 1.7 cgd {
466 1.19 christos PAGE *h, *hprev;
467 1.7 cgd EPG *ep, save;
468 1.7 cgd pgno_t pg;
469 1.1 cgd
470 1.1 cgd /*
471 1.7 cgd * Find any matching record; __bt_search pins the page.
472 1.7 cgd *
473 1.7 cgd * If it's an exact match and duplicates are possible, walk backwards
474 1.7 cgd * in the tree until we find the first one. Otherwise, make sure it's
475 1.7 cgd * a valid key (__bt_search may return an index just past the end of a
476 1.7 cgd * page) and return it.
477 1.1 cgd */
478 1.7 cgd if ((ep = __bt_search(t, key, exactp)) == NULL)
479 1.19 christos return RET_SPECIAL;
480 1.7 cgd if (*exactp) {
481 1.7 cgd if (F_ISSET(t, B_NODUPS)) {
482 1.7 cgd *erval = *ep;
483 1.7 cgd return (RET_SUCCESS);
484 1.7 cgd }
485 1.19 christos
486 1.7 cgd /*
487 1.7 cgd * Walk backwards, as long as the entry matches and there are
488 1.7 cgd * keys left in the tree. Save a copy of each match in case
489 1.7 cgd * we go too far.
490 1.7 cgd */
491 1.7 cgd save = *ep;
492 1.7 cgd h = ep->page;
493 1.7 cgd do {
494 1.7 cgd if (save.page->pgno != ep->page->pgno) {
495 1.7 cgd mpool_put(t->bt_mp, save.page, 0);
496 1.7 cgd save = *ep;
497 1.7 cgd } else
498 1.7 cgd save.index = ep->index;
499 1.7 cgd
500 1.7 cgd /*
501 1.7 cgd * Don't unpin the page the last (or original) match
502 1.7 cgd * was on, but make sure it's unpinned if an error
503 1.7 cgd * occurs.
504 1.7 cgd */
505 1.7 cgd if (ep->index == 0) {
506 1.7 cgd if (h->prevpg == P_INVALID)
507 1.7 cgd break;
508 1.7 cgd if (h->pgno != save.page->pgno)
509 1.7 cgd mpool_put(t->bt_mp, h, 0);
510 1.20 christos if ((hprev = mpool_get(t->bt_mp,
511 1.19 christos h->prevpg, 0)) == NULL) {
512 1.19 christos if (h->pgno == save.page->pgno)
513 1.19 christos mpool_put(t->bt_mp,
514 1.19 christos save.page, 0);
515 1.19 christos return RET_ERROR;
516 1.19 christos }
517 1.19 christos ep->page = h = hprev;
518 1.7 cgd ep->index = NEXTINDEX(h);
519 1.7 cgd }
520 1.7 cgd --ep->index;
521 1.7 cgd } while (__bt_cmp(t, key, ep) == 0);
522 1.7 cgd
523 1.7 cgd /*
524 1.7 cgd * Reach here with the last page that was looked at pinned,
525 1.7 cgd * which may or may not be the same as the last (or original)
526 1.7 cgd * match page. If it's not useful, release it.
527 1.7 cgd */
528 1.7 cgd if (h->pgno != save.page->pgno)
529 1.7 cgd mpool_put(t->bt_mp, h, 0);
530 1.7 cgd
531 1.7 cgd *erval = save;
532 1.7 cgd return (RET_SUCCESS);
533 1.7 cgd }
534 1.7 cgd
535 1.7 cgd /* If at the end of a page, find the next entry. */
536 1.7 cgd if (ep->index == NEXTINDEX(ep->page)) {
537 1.7 cgd h = ep->page;
538 1.7 cgd pg = h->nextpg;
539 1.7 cgd mpool_put(t->bt_mp, h, 0);
540 1.7 cgd if (pg == P_INVALID)
541 1.7 cgd return (RET_SPECIAL);
542 1.20 christos if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
543 1.1 cgd return (RET_ERROR);
544 1.7 cgd ep->index = 0;
545 1.7 cgd ep->page = h;
546 1.1 cgd }
547 1.7 cgd *erval = *ep;
548 1.1 cgd return (RET_SUCCESS);
549 1.1 cgd }
550 1.1 cgd
551 1.1 cgd /*
552 1.7 cgd * __bt_setcur --
553 1.7 cgd * Set the cursor to an entry in the tree.
554 1.1 cgd *
555 1.1 cgd * Parameters:
556 1.7 cgd * t: the tree
557 1.7 cgd * pgno: page number
558 1.12 thorpej * idx: page index
559 1.1 cgd */
560 1.7 cgd void
561 1.15 christos __bt_setcur(BTREE *t, pgno_t pgno, u_int idx)
562 1.1 cgd {
563 1.7 cgd /* Lose any already deleted key. */
564 1.7 cgd if (t->bt_cursor.key.data != NULL) {
565 1.7 cgd free(t->bt_cursor.key.data);
566 1.7 cgd t->bt_cursor.key.size = 0;
567 1.7 cgd t->bt_cursor.key.data = NULL;
568 1.7 cgd }
569 1.7 cgd F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
570 1.1 cgd
571 1.7 cgd /* Update the cursor. */
572 1.7 cgd t->bt_cursor.pg.pgno = pgno;
573 1.12 thorpej t->bt_cursor.pg.index = idx;
574 1.7 cgd F_SET(&t->bt_cursor, CURS_INIT);
575 1.1 cgd }
576