Home | History | Annotate | Line # | Download | only in btree
bt_seq.c revision 1.7
      1  1.6  cgd /*	$NetBSD: bt_seq.c,v 1.7 1996/05/03 21:50:54 cgd Exp $	*/
      2  1.6  cgd 
      3  1.1  cgd /*-
      4  1.7  cgd  * Copyright (c) 1990, 1993, 1994
      5  1.1  cgd  *	The Regents of the University of California.  All rights reserved.
      6  1.1  cgd  *
      7  1.1  cgd  * This code is derived from software contributed to Berkeley by
      8  1.1  cgd  * Mike Olson.
      9  1.1  cgd  *
     10  1.1  cgd  * Redistribution and use in source and binary forms, with or without
     11  1.1  cgd  * modification, are permitted provided that the following conditions
     12  1.1  cgd  * are met:
     13  1.1  cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  cgd  *    documentation and/or other materials provided with the distribution.
     18  1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     19  1.1  cgd  *    must display the following acknowledgement:
     20  1.1  cgd  *	This product includes software developed by the University of
     21  1.1  cgd  *	California, Berkeley and its contributors.
     22  1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     23  1.1  cgd  *    may be used to endorse or promote products derived from this software
     24  1.1  cgd  *    without specific prior written permission.
     25  1.1  cgd  *
     26  1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1  cgd  * SUCH DAMAGE.
     37  1.1  cgd  */
     38  1.1  cgd 
     39  1.1  cgd #if defined(LIBC_SCCS) && !defined(lint)
     40  1.6  cgd #if 0
     41  1.7  cgd static char sccsid[] = "@(#)bt_seq.c	8.7 (Berkeley) 7/20/94";
     42  1.6  cgd #else
     43  1.6  cgd static char rcsid[] = "$NetBSD: bt_seq.c,v 1.7 1996/05/03 21:50:54 cgd Exp $";
     44  1.6  cgd #endif
     45  1.1  cgd #endif /* LIBC_SCCS and not lint */
     46  1.1  cgd 
     47  1.1  cgd #include <sys/types.h>
     48  1.1  cgd 
     49  1.1  cgd #include <errno.h>
     50  1.1  cgd #include <stddef.h>
     51  1.1  cgd #include <stdio.h>
     52  1.1  cgd #include <stdlib.h>
     53  1.1  cgd 
     54  1.1  cgd #include <db.h>
     55  1.1  cgd #include "btree.h"
     56  1.1  cgd 
     57  1.7  cgd static int __bt_first __P((BTREE *, const DBT *, EPG *, int *));
     58  1.7  cgd static int __bt_seqadv __P((BTREE *, EPG *, int));
     59  1.7  cgd static int __bt_seqset __P((BTREE *, EPG *, DBT *, int));
     60  1.1  cgd 
     61  1.1  cgd /*
     62  1.1  cgd  * Sequential scan support.
     63  1.1  cgd  *
     64  1.7  cgd  * The tree can be scanned sequentially, starting from either end of the
     65  1.7  cgd  * tree or from any specific key.  A scan request before any scanning is
     66  1.7  cgd  * done is initialized as starting from the least node.
     67  1.1  cgd  */
     68  1.1  cgd 
     69  1.1  cgd /*
     70  1.7  cgd  * __bt_seq --
     71  1.7  cgd  *	Btree sequential scan interface.
     72  1.1  cgd  *
     73  1.1  cgd  * Parameters:
     74  1.1  cgd  *	dbp:	pointer to access method
     75  1.1  cgd  *	key:	key for positioning and return value
     76  1.1  cgd  *	data:	data return value
     77  1.1  cgd  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
     78  1.1  cgd  *
     79  1.1  cgd  * Returns:
     80  1.1  cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
     81  1.1  cgd  */
     82  1.1  cgd int
     83  1.1  cgd __bt_seq(dbp, key, data, flags)
     84  1.1  cgd 	const DB *dbp;
     85  1.1  cgd 	DBT *key, *data;
     86  1.1  cgd 	u_int flags;
     87  1.1  cgd {
     88  1.1  cgd 	BTREE *t;
     89  1.1  cgd 	EPG e;
     90  1.1  cgd 	int status;
     91  1.1  cgd 
     92  1.4  cgd 	t = dbp->internal;
     93  1.4  cgd 
     94  1.4  cgd 	/* Toss any page pinned across calls. */
     95  1.4  cgd 	if (t->bt_pinned != NULL) {
     96  1.4  cgd 		mpool_put(t->bt_mp, t->bt_pinned, 0);
     97  1.4  cgd 		t->bt_pinned = NULL;
     98  1.4  cgd 	}
     99  1.4  cgd 
    100  1.1  cgd 	/*
    101  1.1  cgd 	 * If scan unitialized as yet, or starting at a specific record, set
    102  1.7  cgd 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
    103  1.7  cgd 	 * the page the cursor references if they're successful.
    104  1.1  cgd 	 */
    105  1.7  cgd 	switch (flags) {
    106  1.1  cgd 	case R_NEXT:
    107  1.1  cgd 	case R_PREV:
    108  1.7  cgd 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
    109  1.7  cgd 			status = __bt_seqadv(t, &e, flags);
    110  1.1  cgd 			break;
    111  1.1  cgd 		}
    112  1.1  cgd 		/* FALLTHROUGH */
    113  1.1  cgd 	case R_FIRST:
    114  1.1  cgd 	case R_LAST:
    115  1.7  cgd 	case R_CURSOR:
    116  1.7  cgd 		status = __bt_seqset(t, &e, key, flags);
    117  1.1  cgd 		break;
    118  1.1  cgd 	default:
    119  1.1  cgd 		errno = EINVAL;
    120  1.1  cgd 		return (RET_ERROR);
    121  1.1  cgd 	}
    122  1.1  cgd 
    123  1.1  cgd 	if (status == RET_SUCCESS) {
    124  1.7  cgd 		__bt_setcur(t, e.page->pgno, e.index);
    125  1.1  cgd 
    126  1.7  cgd 		status =
    127  1.7  cgd 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
    128  1.4  cgd 
    129  1.4  cgd 		/*
    130  1.4  cgd 		 * If the user is doing concurrent access, we copied the
    131  1.4  cgd 		 * key/data, toss the page.
    132  1.4  cgd 		 */
    133  1.7  cgd 		if (F_ISSET(t, B_DB_LOCK))
    134  1.4  cgd 			mpool_put(t->bt_mp, e.page, 0);
    135  1.4  cgd 		else
    136  1.4  cgd 			t->bt_pinned = e.page;
    137  1.1  cgd 	}
    138  1.1  cgd 	return (status);
    139  1.1  cgd }
    140  1.1  cgd 
    141  1.1  cgd /*
    142  1.7  cgd  * __bt_seqset --
    143  1.7  cgd  *	Set the sequential scan to a specific key.
    144  1.1  cgd  *
    145  1.1  cgd  * Parameters:
    146  1.1  cgd  *	t:	tree
    147  1.1  cgd  *	ep:	storage for returned key
    148  1.1  cgd  *	key:	key for initial scan position
    149  1.1  cgd  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
    150  1.1  cgd  *
    151  1.1  cgd  * Side effects:
    152  1.1  cgd  *	Pins the page the cursor references.
    153  1.1  cgd  *
    154  1.1  cgd  * Returns:
    155  1.1  cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    156  1.1  cgd  */
    157  1.1  cgd static int
    158  1.7  cgd __bt_seqset(t, ep, key, flags)
    159  1.1  cgd 	BTREE *t;
    160  1.1  cgd 	EPG *ep;
    161  1.1  cgd 	DBT *key;
    162  1.1  cgd 	int flags;
    163  1.1  cgd {
    164  1.1  cgd 	PAGE *h;
    165  1.1  cgd 	pgno_t pg;
    166  1.1  cgd 	int exact;
    167  1.1  cgd 
    168  1.1  cgd 	/*
    169  1.7  cgd 	 * Find the first, last or specific key in the tree and point the
    170  1.7  cgd 	 * cursor at it.  The cursor may not be moved until a new key has
    171  1.7  cgd 	 * been found.
    172  1.1  cgd 	 */
    173  1.7  cgd 	switch (flags) {
    174  1.1  cgd 	case R_CURSOR:				/* Keyed scan. */
    175  1.1  cgd 		/*
    176  1.7  cgd 		 * Find the first instance of the key or the smallest key
    177  1.7  cgd 		 * which is greater than or equal to the specified key.
    178  1.1  cgd 		 */
    179  1.1  cgd 		if (key->data == NULL || key->size == 0) {
    180  1.1  cgd 			errno = EINVAL;
    181  1.1  cgd 			return (RET_ERROR);
    182  1.1  cgd 		}
    183  1.7  cgd 		return (__bt_first(t, key, ep, &exact));
    184  1.1  cgd 	case R_FIRST:				/* First record. */
    185  1.1  cgd 	case R_NEXT:
    186  1.1  cgd 		/* Walk down the left-hand side of the tree. */
    187  1.1  cgd 		for (pg = P_ROOT;;) {
    188  1.1  cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    189  1.1  cgd 				return (RET_ERROR);
    190  1.7  cgd 
    191  1.7  cgd 			/* Check for an empty tree. */
    192  1.7  cgd 			if (NEXTINDEX(h) == 0) {
    193  1.7  cgd 				mpool_put(t->bt_mp, h, 0);
    194  1.7  cgd 				return (RET_SPECIAL);
    195  1.7  cgd 			}
    196  1.7  cgd 
    197  1.1  cgd 			if (h->flags & (P_BLEAF | P_RLEAF))
    198  1.1  cgd 				break;
    199  1.1  cgd 			pg = GETBINTERNAL(h, 0)->pgno;
    200  1.1  cgd 			mpool_put(t->bt_mp, h, 0);
    201  1.1  cgd 		}
    202  1.1  cgd 		ep->page = h;
    203  1.1  cgd 		ep->index = 0;
    204  1.1  cgd 		break;
    205  1.1  cgd 	case R_LAST:				/* Last record. */
    206  1.1  cgd 	case R_PREV:
    207  1.1  cgd 		/* Walk down the right-hand side of the tree. */
    208  1.1  cgd 		for (pg = P_ROOT;;) {
    209  1.1  cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    210  1.1  cgd 				return (RET_ERROR);
    211  1.7  cgd 
    212  1.7  cgd 			/* Check for an empty tree. */
    213  1.7  cgd 			if (NEXTINDEX(h) == 0) {
    214  1.7  cgd 				mpool_put(t->bt_mp, h, 0);
    215  1.7  cgd 				return (RET_SPECIAL);
    216  1.7  cgd 			}
    217  1.7  cgd 
    218  1.1  cgd 			if (h->flags & (P_BLEAF | P_RLEAF))
    219  1.1  cgd 				break;
    220  1.1  cgd 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
    221  1.1  cgd 			mpool_put(t->bt_mp, h, 0);
    222  1.1  cgd 		}
    223  1.1  cgd 
    224  1.1  cgd 		ep->page = h;
    225  1.1  cgd 		ep->index = NEXTINDEX(h) - 1;
    226  1.1  cgd 		break;
    227  1.1  cgd 	}
    228  1.1  cgd 	return (RET_SUCCESS);
    229  1.1  cgd }
    230  1.1  cgd 
    231  1.1  cgd /*
    232  1.7  cgd  * __bt_seqadvance --
    233  1.7  cgd  *	Advance the sequential scan.
    234  1.1  cgd  *
    235  1.1  cgd  * Parameters:
    236  1.1  cgd  *	t:	tree
    237  1.1  cgd  *	flags:	R_NEXT, R_PREV
    238  1.1  cgd  *
    239  1.1  cgd  * Side effects:
    240  1.1  cgd  *	Pins the page the new key/data record is on.
    241  1.1  cgd  *
    242  1.1  cgd  * Returns:
    243  1.1  cgd  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
    244  1.1  cgd  */
    245  1.1  cgd static int
    246  1.7  cgd __bt_seqadv(t, ep, flags)
    247  1.1  cgd 	BTREE *t;
    248  1.7  cgd 	EPG *ep;
    249  1.1  cgd 	int flags;
    250  1.1  cgd {
    251  1.7  cgd 	CURSOR *c;
    252  1.1  cgd 	PAGE *h;
    253  1.1  cgd 	indx_t index;
    254  1.1  cgd 	pgno_t pg;
    255  1.7  cgd 	int exact;
    256  1.7  cgd 
    257  1.7  cgd 	/*
    258  1.7  cgd 	 * There are a couple of states that we can be in.  The cursor has
    259  1.7  cgd 	 * been initialized by the time we get here, but that's all we know.
    260  1.7  cgd 	 */
    261  1.7  cgd 	c = &t->bt_cursor;
    262  1.1  cgd 
    263  1.7  cgd 	/*
    264  1.7  cgd 	 * The cursor was deleted where there weren't any duplicate records,
    265  1.7  cgd 	 * so the key was saved.  Find out where that key would go in the
    266  1.7  cgd 	 * current tree.  It doesn't matter if the returned key is an exact
    267  1.7  cgd 	 * match or not -- if it's an exact match, the record was added after
    268  1.7  cgd 	 * the delete so we can just return it.  If not, as long as there's
    269  1.7  cgd 	 * a record there, return it.
    270  1.7  cgd 	 */
    271  1.7  cgd 	if (F_ISSET(c, CURS_ACQUIRE))
    272  1.7  cgd 		return (__bt_first(t, &c->key, ep, &exact));
    273  1.1  cgd 
    274  1.7  cgd 	/* Get the page referenced by the cursor. */
    275  1.7  cgd 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
    276  1.1  cgd 		return (RET_ERROR);
    277  1.1  cgd 
    278  1.1  cgd 	/*
    279  1.7  cgd  	 * Find the next/previous record in the tree and point the cursor at
    280  1.7  cgd 	 * it.  The cursor may not be moved until a new key has been found.
    281  1.1  cgd 	 */
    282  1.7  cgd 	switch (flags) {
    283  1.1  cgd 	case R_NEXT:			/* Next record. */
    284  1.7  cgd 		/*
    285  1.7  cgd 		 * The cursor was deleted in duplicate records, and moved
    286  1.7  cgd 		 * forward to a record that has yet to be returned.  Clear
    287  1.7  cgd 		 * that flag, and return the record.
    288  1.7  cgd 		 */
    289  1.7  cgd 		if (F_ISSET(c, CURS_AFTER))
    290  1.7  cgd 			goto usecurrent;
    291  1.7  cgd 		index = c->pg.index;
    292  1.1  cgd 		if (++index == NEXTINDEX(h)) {
    293  1.7  cgd 			pg = h->nextpg;
    294  1.7  cgd 			mpool_put(t->bt_mp, h, 0);
    295  1.7  cgd 			if (pg == P_INVALID)
    296  1.7  cgd 				return (RET_SPECIAL);
    297  1.7  cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    298  1.7  cgd 				return (RET_ERROR);
    299  1.1  cgd 			index = 0;
    300  1.1  cgd 		}
    301  1.1  cgd 		break;
    302  1.1  cgd 	case R_PREV:			/* Previous record. */
    303  1.7  cgd 		/*
    304  1.7  cgd 		 * The cursor was deleted in duplicate records, and moved
    305  1.7  cgd 		 * backward to a record that has yet to be returned.  Clear
    306  1.7  cgd 		 * that flag, and return the record.
    307  1.7  cgd 		 */
    308  1.7  cgd 		if (F_ISSET(c, CURS_BEFORE)) {
    309  1.7  cgd usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
    310  1.7  cgd 			ep->page = h;
    311  1.7  cgd 			ep->index = c->pg.index;
    312  1.7  cgd 			return (RET_SUCCESS);
    313  1.7  cgd 		}
    314  1.7  cgd 		index = c->pg.index;
    315  1.7  cgd 		if (index == 0) {
    316  1.7  cgd 			pg = h->prevpg;
    317  1.7  cgd 			mpool_put(t->bt_mp, h, 0);
    318  1.7  cgd 			if (pg == P_INVALID)
    319  1.7  cgd 				return (RET_SPECIAL);
    320  1.7  cgd 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    321  1.7  cgd 				return (RET_ERROR);
    322  1.1  cgd 			index = NEXTINDEX(h) - 1;
    323  1.7  cgd 		} else
    324  1.7  cgd 			--index;
    325  1.1  cgd 		break;
    326  1.1  cgd 	}
    327  1.1  cgd 
    328  1.7  cgd 	ep->page = h;
    329  1.7  cgd 	ep->index = index;
    330  1.7  cgd 	return (RET_SUCCESS);
    331  1.7  cgd }
    332  1.7  cgd 
    333  1.7  cgd /*
    334  1.7  cgd  * __bt_first --
    335  1.7  cgd  *	Find the first entry.
    336  1.7  cgd  *
    337  1.7  cgd  * Parameters:
    338  1.7  cgd  *	t:	the tree
    339  1.7  cgd  *    key:	the key
    340  1.7  cgd  *  erval:	return EPG
    341  1.7  cgd  * exactp:	pointer to exact match flag
    342  1.7  cgd  *
    343  1.7  cgd  * Returns:
    344  1.7  cgd  *	The first entry in the tree greater than or equal to key,
    345  1.7  cgd  *	or RET_SPECIAL if no such key exists.
    346  1.7  cgd  */
    347  1.7  cgd static int
    348  1.7  cgd __bt_first(t, key, erval, exactp)
    349  1.7  cgd 	BTREE *t;
    350  1.7  cgd 	const DBT *key;
    351  1.7  cgd 	EPG *erval;
    352  1.7  cgd 	int *exactp;
    353  1.7  cgd {
    354  1.7  cgd 	PAGE *h;
    355  1.7  cgd 	EPG *ep, save;
    356  1.7  cgd 	pgno_t pg;
    357  1.1  cgd 
    358  1.1  cgd 	/*
    359  1.7  cgd 	 * Find any matching record; __bt_search pins the page.
    360  1.7  cgd 	 *
    361  1.7  cgd 	 * If it's an exact match and duplicates are possible, walk backwards
    362  1.7  cgd 	 * in the tree until we find the first one.  Otherwise, make sure it's
    363  1.7  cgd 	 * a valid key (__bt_search may return an index just past the end of a
    364  1.7  cgd 	 * page) and return it.
    365  1.1  cgd 	 */
    366  1.7  cgd 	if ((ep = __bt_search(t, key, exactp)) == NULL)
    367  1.7  cgd 		return (NULL);
    368  1.7  cgd 	if (*exactp) {
    369  1.7  cgd 		if (F_ISSET(t, B_NODUPS)) {
    370  1.7  cgd 			*erval = *ep;
    371  1.7  cgd 			return (RET_SUCCESS);
    372  1.7  cgd 		}
    373  1.7  cgd 
    374  1.7  cgd 		/*
    375  1.7  cgd 		 * Walk backwards, as long as the entry matches and there are
    376  1.7  cgd 		 * keys left in the tree.  Save a copy of each match in case
    377  1.7  cgd 		 * we go too far.
    378  1.7  cgd 		 */
    379  1.7  cgd 		save = *ep;
    380  1.7  cgd 		h = ep->page;
    381  1.7  cgd 		do {
    382  1.7  cgd 			if (save.page->pgno != ep->page->pgno) {
    383  1.7  cgd 				mpool_put(t->bt_mp, save.page, 0);
    384  1.7  cgd 				save = *ep;
    385  1.7  cgd 			} else
    386  1.7  cgd 				save.index = ep->index;
    387  1.7  cgd 
    388  1.7  cgd 			/*
    389  1.7  cgd 			 * Don't unpin the page the last (or original) match
    390  1.7  cgd 			 * was on, but make sure it's unpinned if an error
    391  1.7  cgd 			 * occurs.
    392  1.7  cgd 			 */
    393  1.7  cgd 			if (ep->index == 0) {
    394  1.7  cgd 				if (h->prevpg == P_INVALID)
    395  1.7  cgd 					break;
    396  1.7  cgd 				if (h->pgno != save.page->pgno)
    397  1.7  cgd 					mpool_put(t->bt_mp, h, 0);
    398  1.7  cgd 				if ((h = mpool_get(t->bt_mp,
    399  1.7  cgd 				    h->prevpg, 0)) == NULL) {
    400  1.7  cgd 					if (h->pgno == save.page->pgno)
    401  1.7  cgd 						mpool_put(t->bt_mp,
    402  1.7  cgd 						    save.page, 0);
    403  1.7  cgd 					return (RET_ERROR);
    404  1.7  cgd 				}
    405  1.7  cgd 				ep->page = h;
    406  1.7  cgd 				ep->index = NEXTINDEX(h);
    407  1.7  cgd 			}
    408  1.7  cgd 			--ep->index;
    409  1.7  cgd 		} while (__bt_cmp(t, key, ep) == 0);
    410  1.7  cgd 
    411  1.7  cgd 		/*
    412  1.7  cgd 		 * Reach here with the last page that was looked at pinned,
    413  1.7  cgd 		 * which may or may not be the same as the last (or original)
    414  1.7  cgd 		 * match page.  If it's not useful, release it.
    415  1.7  cgd 		 */
    416  1.7  cgd 		if (h->pgno != save.page->pgno)
    417  1.7  cgd 			mpool_put(t->bt_mp, h, 0);
    418  1.7  cgd 
    419  1.7  cgd 		*erval = save;
    420  1.7  cgd 		return (RET_SUCCESS);
    421  1.7  cgd 	}
    422  1.7  cgd 
    423  1.7  cgd 	/* If at the end of a page, find the next entry. */
    424  1.7  cgd 	if (ep->index == NEXTINDEX(ep->page)) {
    425  1.7  cgd 		h = ep->page;
    426  1.7  cgd 		pg = h->nextpg;
    427  1.7  cgd 		mpool_put(t->bt_mp, h, 0);
    428  1.7  cgd 		if (pg == P_INVALID)
    429  1.7  cgd 			return (RET_SPECIAL);
    430  1.7  cgd 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
    431  1.1  cgd 			return (RET_ERROR);
    432  1.7  cgd 		ep->index = 0;
    433  1.7  cgd 		ep->page = h;
    434  1.1  cgd 	}
    435  1.7  cgd 	*erval = *ep;
    436  1.1  cgd 	return (RET_SUCCESS);
    437  1.1  cgd }
    438  1.1  cgd 
    439  1.1  cgd /*
    440  1.7  cgd  * __bt_setcur --
    441  1.7  cgd  *	Set the cursor to an entry in the tree.
    442  1.1  cgd  *
    443  1.1  cgd  * Parameters:
    444  1.7  cgd  *	t:	the tree
    445  1.7  cgd  *   pgno:	page number
    446  1.7  cgd  *  index:	page index
    447  1.1  cgd  */
    448  1.7  cgd void
    449  1.7  cgd __bt_setcur(t, pgno, index)
    450  1.1  cgd 	BTREE *t;
    451  1.7  cgd 	pgno_t pgno;
    452  1.7  cgd 	u_int index;
    453  1.1  cgd {
    454  1.7  cgd 	/* Lose any already deleted key. */
    455  1.7  cgd 	if (t->bt_cursor.key.data != NULL) {
    456  1.7  cgd 		free(t->bt_cursor.key.data);
    457  1.7  cgd 		t->bt_cursor.key.size = 0;
    458  1.7  cgd 		t->bt_cursor.key.data = NULL;
    459  1.7  cgd 	}
    460  1.7  cgd 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
    461  1.1  cgd 
    462  1.7  cgd 	/* Update the cursor. */
    463  1.7  cgd 	t->bt_cursor.pg.pgno = pgno;
    464  1.7  cgd 	t->bt_cursor.pg.index = index;
    465  1.7  cgd 	F_SET(&t->bt_cursor, CURS_INIT);
    466  1.1  cgd }
    467