Home | History | Annotate | Line # | Download | only in gen
      1 /*	$NetBSD: arc4random.c,v 1.50 2025/03/11 14:30:27 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Legacy arc4random(3) API from OpenBSD reimplemented using the
     34  * ChaCha20 PRF, with per-thread state.
     35  *
     36  * Security model:
     37  * - An attacker who sees some outputs cannot predict past or future
     38  *   outputs.
     39  * - An attacker who sees the PRNG state cannot predict past outputs.
     40  * - An attacker who sees a child's PRNG state cannot predict past or
     41  *   future outputs in the parent, or in other children.
     42  *
     43  * The arc4random(3) API may abort the process if:
     44  *
     45  * (a) the crypto self-test fails, or
     46  * (b) sysctl(KERN_ARND) fails when reseeding the PRNG.
     47  *
     48  * The crypto self-test occurs only once, on the first use of any of
     49  * the arc4random(3) API.  KERN_ARND is unlikely to fail later unless
     50  * the kernel is seriously broken.
     51  */
     52 
     53 #include <sys/cdefs.h>
     54 __RCSID("$NetBSD: arc4random.c,v 1.50 2025/03/11 14:30:27 riastradh Exp $");
     55 
     56 #include "namespace.h"
     57 #include "reentrant.h"
     58 
     59 #include <sys/bitops.h>
     60 #include <sys/endian.h>
     61 #include <sys/errno.h>
     62 #include <sys/mman.h>
     63 #include <sys/sysctl.h>
     64 
     65 #include <assert.h>
     66 #include <sha2.h>
     67 #include <stdbool.h>
     68 #include <stdint.h>
     69 #include <stdlib.h>
     70 #include <string.h>
     71 #include <unistd.h>
     72 
     73 #include "arc4random.h"
     74 #include "reentrant.h"
     75 
     76 #ifdef __weak_alias
     77 __weak_alias(arc4random,_arc4random)
     78 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
     79 __weak_alias(arc4random_buf,_arc4random_buf)
     80 __weak_alias(arc4random_stir,_arc4random_stir)
     81 __weak_alias(arc4random_uniform,_arc4random_uniform)
     82 #endif
     83 
     84 /*
     85  * For standard ChaCha, use le32dec/le32enc.  We don't need that for
     86  * the purposes of a nondeterministic random number generator -- we
     87  * don't need to be bit-for-bit compatible over any wire.
     88  */
     89 
     90 static inline uint32_t
     91 crypto_le32dec(const void *p)
     92 {
     93 	uint32_t v;
     94 
     95 	(void)memcpy(&v, p, sizeof v);
     96 
     97 	return v;
     98 }
     99 
    100 static inline void
    101 crypto_le32enc(void *p, uint32_t v)
    102 {
    103 
    104 	(void)memcpy(p, &v, sizeof v);
    105 }
    106 
    107 /* ChaCha core */
    108 
    109 #define	crypto_core_OUTPUTBYTES	64
    110 #define	crypto_core_INPUTBYTES	16
    111 #define	crypto_core_KEYBYTES	32
    112 #define	crypto_core_CONSTBYTES	16
    113 
    114 #define	crypto_core_ROUNDS	20
    115 
    116 static uint32_t
    117 rotate(uint32_t u, unsigned c)
    118 {
    119 
    120 	return (u << c) | (u >> (32 - c));
    121 }
    122 
    123 #define	QUARTERROUND(a, b, c, d) do {					      \
    124 	(a) += (b); (d) ^= (a); (d) = rotate((d), 16);			      \
    125 	(c) += (d); (b) ^= (c); (b) = rotate((b), 12);			      \
    126 	(a) += (b); (d) ^= (a); (d) = rotate((d),  8);			      \
    127 	(c) += (d); (b) ^= (c); (b) = rotate((b),  7);			      \
    128 } while (0)
    129 
    130 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
    131 
    132 static void
    133 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
    134     const uint8_t *c)
    135 {
    136 	uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
    137 	uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
    138 	int i;
    139 
    140 	j0 = x0 = crypto_le32dec(c + 0);
    141 	j1 = x1 = crypto_le32dec(c + 4);
    142 	j2 = x2 = crypto_le32dec(c + 8);
    143 	j3 = x3 = crypto_le32dec(c + 12);
    144 	j4 = x4 = crypto_le32dec(k + 0);
    145 	j5 = x5 = crypto_le32dec(k + 4);
    146 	j6 = x6 = crypto_le32dec(k + 8);
    147 	j7 = x7 = crypto_le32dec(k + 12);
    148 	j8 = x8 = crypto_le32dec(k + 16);
    149 	j9 = x9 = crypto_le32dec(k + 20);
    150 	j10 = x10 = crypto_le32dec(k + 24);
    151 	j11 = x11 = crypto_le32dec(k + 28);
    152 	j12 = x12 = crypto_le32dec(in + 0);
    153 	j13 = x13 = crypto_le32dec(in + 4);
    154 	j14 = x14 = crypto_le32dec(in + 8);
    155 	j15 = x15 = crypto_le32dec(in + 12);
    156 
    157 	for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
    158 		QUARTERROUND( x0, x4, x8,x12);
    159 		QUARTERROUND( x1, x5, x9,x13);
    160 		QUARTERROUND( x2, x6,x10,x14);
    161 		QUARTERROUND( x3, x7,x11,x15);
    162 		QUARTERROUND( x0, x5,x10,x15);
    163 		QUARTERROUND( x1, x6,x11,x12);
    164 		QUARTERROUND( x2, x7, x8,x13);
    165 		QUARTERROUND( x3, x4, x9,x14);
    166 	}
    167 
    168 	crypto_le32enc(out + 0, x0 + j0);
    169 	crypto_le32enc(out + 4, x1 + j1);
    170 	crypto_le32enc(out + 8, x2 + j2);
    171 	crypto_le32enc(out + 12, x3 + j3);
    172 	crypto_le32enc(out + 16, x4 + j4);
    173 	crypto_le32enc(out + 20, x5 + j5);
    174 	crypto_le32enc(out + 24, x6 + j6);
    175 	crypto_le32enc(out + 28, x7 + j7);
    176 	crypto_le32enc(out + 32, x8 + j8);
    177 	crypto_le32enc(out + 36, x9 + j9);
    178 	crypto_le32enc(out + 40, x10 + j10);
    179 	crypto_le32enc(out + 44, x11 + j11);
    180 	crypto_le32enc(out + 48, x12 + j12);
    181 	crypto_le32enc(out + 52, x13 + j13);
    182 	crypto_le32enc(out + 56, x14 + j14);
    183 	crypto_le32enc(out + 60, x15 + j15);
    184 }
    185 
    186 /* ChaCha self-test */
    187 
    188 /*
    189  * Test vector for ChaCha20 from
    190  * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
    191  * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
    192  * generated by the same crypto_core code with crypto_core_ROUNDS and
    193  * crypto_le32enc/dec varied.
    194  */
    195 
    196 static const uint8_t crypto_core_selftest_vector[64] = {
    197 #if _BYTE_ORDER == _LITTLE_ENDIAN
    198 #  if crypto_core_ROUNDS == 8
    199 	0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
    200 	0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
    201 	0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
    202 	0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
    203 	0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
    204 	0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
    205 	0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
    206 	0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
    207 #  elif crypto_core_ROUNDS == 12
    208 	0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
    209 	0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
    210 	0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
    211 	0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
    212 	0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
    213 	0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
    214 	0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
    215 	0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
    216 #  elif crypto_core_ROUNDS == 20
    217 	0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
    218 	0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
    219 	0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
    220 	0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
    221 	0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
    222 	0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
    223 	0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
    224 	0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
    225 #  else
    226 #    error crypto_core_ROUNDS must be 8, 12, or 20.
    227 #  endif
    228 #elif _BYTE_ORDER == _BIG_ENDIAN
    229 #  if crypto_core_ROUNDS == 8
    230 	0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
    231 	0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
    232 	0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
    233 	0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
    234 	0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
    235 	0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
    236 	0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
    237 	0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
    238 #  elif crypto_core_ROUNDS == 12
    239 	0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
    240 	0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
    241 	0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
    242 	0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
    243 	0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
    244 	0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
    245 	0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
    246 	0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
    247 #  elif crypto_core_ROUNDS == 20
    248 	0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
    249 	0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
    250 	0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
    251 	0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
    252 	0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
    253 	0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
    254 	0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
    255 	0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
    256 #  else
    257 #    error crypto_core_ROUNDS must be 8, 12, or 20.
    258 #  endif
    259 #else
    260 #  error Byte order must be little-endian or big-endian.
    261 #endif
    262 };
    263 
    264 static int
    265 crypto_core_selftest(void)
    266 {
    267 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
    268 	const uint8_t key[crypto_core_KEYBYTES] = {0};
    269 	uint8_t block[64];
    270 	unsigned i;
    271 
    272 	crypto_core(block, nonce, key, crypto_core_constant32);
    273 	for (i = 0; i < 64; i++) {
    274 		if (block[i] != crypto_core_selftest_vector[i])
    275 			return EIO;
    276 	}
    277 
    278 	return 0;
    279 }
    280 
    281 /* PRNG */
    282 
    283 /*
    284  * For a state s, rather than use ChaCha20 as a stream cipher to
    285  * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
    286  * split ChaCha20_s(0) into s' || x and yield x for the first request,
    287  * split ChaCha20_s'(0) into s'' || y and yield y for the second
    288  * request, &c.  This provides backtracking resistance: an attacker who
    289  * finds s'' can't recover s' or x.
    290  */
    291 
    292 #define	crypto_prng_SEEDBYTES		crypto_core_KEYBYTES
    293 #define	crypto_prng_MAXOUTPUTBYTES	\
    294 	(crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
    295 
    296 __CTASSERT(sizeof(struct crypto_prng) == crypto_prng_SEEDBYTES);
    297 
    298 static void
    299 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
    300 {
    301 
    302 	(void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
    303 }
    304 
    305 static void
    306 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
    307 {
    308 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
    309 	uint8_t output[crypto_core_OUTPUTBYTES];
    310 
    311 	_DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
    312 	__CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
    313 	    <= sizeof output);
    314 
    315 	crypto_core(output, nonce, prng->state, crypto_core_constant32);
    316 	(void)memcpy(prng->state, output, sizeof prng->state);
    317 	(void)memcpy(buf, output + sizeof prng->state, n);
    318 	(void)explicit_memset(output, 0, sizeof output);
    319 }
    320 
    321 static int
    322 crypto_prng_selftest(void)
    323 {
    324 	const uint8_t expected[32] = {
    325 #if _BYTE_ORDER == _LITTLE_ENDIAN
    326 #  if crypto_core_ROUNDS == 20
    327 		0x2b,	/* first call */
    328 		0x2d,0x41,0xa5,0x9c,0x90,0xe4,0x1a,0x8e, /* second call */
    329 		0x7a,0x4d,0xcc,0xaa,0x1c,0x46,0x06,0x99,
    330 		0x83,0xb1,0xa3,0x33,0xce,0x25,0x71,0x9e,
    331 		0xc3,0x43,0x77,0x68,0xab,0x57,
    332 		0x5f,	/* third call */
    333 #  else
    334 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    335 #  endif
    336 #elif _BYTE_ORDER == _BIG_ENDIAN
    337 #  if crypto_core_ROUNDS == 20
    338 		0xae,	/* first call */
    339 		0x97,0x14,0x5a,0x05,0xad,0xa8,0x48,0xf1, /* second call */
    340 		0x3a,0x81,0x84,0xd7,0x05,0xda,0x20,0x5d,
    341 		0xc0,0xef,0x86,0x65,0x98,0xbd,0xb0,0x16,
    342 		0x1b,0xfc,0xff,0xc4,0xc2,0xfd,
    343 		0xa0,	/* third call */
    344 #  else
    345 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    346 #  endif
    347 #else
    348 #  error Byte order must be little-endian or big-endian.
    349 #endif
    350 	};
    351 	uint8_t seed[crypto_prng_SEEDBYTES];
    352 	struct crypto_prng prng;
    353 	uint8_t output[32];
    354 	unsigned i;
    355 
    356 	for (i = 0; i < __arraycount(seed); i++)
    357 		seed[i] = i;
    358 	crypto_prng_seed(&prng, seed);
    359 	crypto_prng_buf(&prng, output, 1);
    360 	crypto_prng_buf(&prng, output + 1, 30);
    361 	crypto_prng_buf(&prng, output + 31, 1);
    362 	if (memcmp(output, expected, 32) != 0)
    363 		return EIO;
    364 	return 0;
    365 }
    366 
    367 /* One-time stream: expand short single-use secret into long secret */
    368 
    369 #define	crypto_onetimestream_SEEDBYTES	crypto_core_KEYBYTES
    370 
    371 static void
    372 crypto_onetimestream(const void *seed, void *buf, size_t n)
    373 {
    374 	uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
    375 	uint8_t block[crypto_core_OUTPUTBYTES];
    376 	uint8_t *p8, *p32;
    377 	const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
    378 	size_t ni, nb, nf;
    379 
    380 	/*
    381 	 * Guarantee we can generate up to n bytes.  We have
    382 	 * 2^(8*INPUTBYTES) possible inputs yielding output of
    383 	 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes.  It suffices to require
    384 	 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
    385 	 * (1/CHAR_BIT) log_2 of the total output stream length.  We
    386 	 * have
    387 	 *
    388 	 *	log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
    389 	 *	  = log_2 o + 8 i.
    390 	 */
    391 #ifndef __lint__
    392 	__CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
    393 		8 * crypto_core_INPUTBYTES));
    394 #endif
    395 
    396 	p8 = buf;
    397 	p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
    398 	ni = p32 - p8;
    399 	if (n < ni)
    400 		ni = n;
    401 	nb = (n - ni) / sizeof block;
    402 	nf = (n - ni) % sizeof block;
    403 
    404 	_DIAGASSERT(((uintptr_t)p32 & 3) == 0);
    405 	_DIAGASSERT(ni <= n);
    406 	_DIAGASSERT(nb <= (n / sizeof block));
    407 	_DIAGASSERT(nf <= n);
    408 	_DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
    409 	_DIAGASSERT(ni < 4);
    410 	_DIAGASSERT(nf < sizeof block);
    411 
    412 	if (ni) {
    413 		crypto_core(block, nonce8, seed, crypto_core_constant32);
    414 		crypto_le32enc(&nonce[0], 1 + crypto_le32dec(&nonce[0]));
    415 		(void)memcpy(p8, block, ni);
    416 	}
    417 	while (nb--) {
    418 		crypto_core(p32, nonce8, seed, crypto_core_constant32);
    419 		crypto_le32enc(&nonce[0], 1 + crypto_le32dec(&nonce[0]));
    420 		if (crypto_le32dec(&nonce[0]) == 0) {
    421 			crypto_le32enc(&nonce[1],
    422 			    1 + crypto_le32dec(&nonce[1]));
    423 		}
    424 		p32 += crypto_core_OUTPUTBYTES;
    425 	}
    426 	if (nf) {
    427 		crypto_core(block, nonce8, seed, crypto_core_constant32);
    428 		crypto_le32enc(&nonce[0], 1 + crypto_le32dec(&nonce[0]));
    429 		if (crypto_le32dec(&nonce[0]) == 0) {
    430 			crypto_le32enc(&nonce[1],
    431 			    1 + crypto_le32dec(&nonce[1]));
    432 		}
    433 		(void)memcpy(p32, block, nf);
    434 	}
    435 
    436 	if (ni | nf)
    437 		(void)explicit_memset(block, 0, sizeof block);
    438 }
    439 
    440 static int
    441 crypto_onetimestream_selftest(void)
    442 {
    443 	const uint8_t expected[70] = {
    444 		0x5a,			/* guard byte */
    445 #if _BYTE_ORDER == _LITTLE_ENDIAN
    446 #  if crypto_core_ROUNDS == 20
    447 		0x39,0xfd,0x2b,		/* initial block */
    448 		0x18,0xb8,0x42,0x31,0xad,0xe6,0xa6,0xd1,
    449 		0x13,0x61,0x5c,0x61,0xaf,0x43,0x4e,0x27,
    450 		0xf8,0xb1,0xf3,0xf5,0xe1,0xad,0x5b,0x5c,
    451 		0xec,0xf8,0xfc,0x12,0x2a,0x35,0x75,0x5c,
    452 		0x72,0x08,0x08,0x6d,0xd1,0xee,0x3c,0x5d,
    453 		0x9d,0x81,0x58,0x24,0x64,0x0e,0x00,0x3c,
    454 		0x9b,0xa0,0xf6,0x5e,0xde,0x5d,0x59,0xce,
    455 		0x0d,0x2a,0x4a,0x7f,0x31,0x95,0x5a,0xcd,
    456 		0x42,			/* final block */
    457 #  else
    458 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    459 #  endif
    460 #elif _BYTE_ORDER == _BIG_ENDIAN
    461 #  if crypto_core_ROUNDS == 20
    462 		0x20,0xf0,0x66,		/* initial block */
    463 		0x1a,0x82,0xda,0xb6,0xba,0x90,0x42,0x19,
    464 		0x39,0xc2,0x4e,0x4d,0xaf,0xbc,0x67,0xcf,
    465 		0xe3,0xe4,0xe2,0x80,0x38,0x80,0x8e,0x53,
    466 		0x19,0x25,0x37,0x67,0x66,0x57,0x7c,0x78,
    467 		0xac,0xb3,0x8b,0x97,0x54,0x20,0xc4,0x46,
    468 		0xff,0x90,0x76,0x56,0xcc,0xde,0xe5,0xb9,
    469 		0xdf,0x82,0x8c,0x05,0x9d,0xf0,0x69,0x99,
    470 		0x42,0x53,0x74,0x5e,0x80,0x81,0xdb,0x9b,
    471 		0xb1,			/* final block */
    472 #  else
    473 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    474 #  endif
    475 #else
    476 #  error Byte order must be little-endian or big-endian.
    477 #endif
    478 		0xcc,			/* guard byte */
    479 	};
    480 	uint8_t seed[crypto_prng_SEEDBYTES];
    481 	uint8_t output[70] __aligned(4);
    482 	unsigned i;
    483 
    484 	for (i = 0; i < __arraycount(seed); i++)
    485 		seed[i] = i;
    486 	output[0] = 0x5a;
    487 	output[69] = 0xcc;
    488 	crypto_onetimestream(seed, output + 1, 68);
    489 	if (memcmp(output, expected, 70) != 0)
    490 		return EIO;
    491 	return 0;
    492 }
    493 
    494 /*
    495  * entropy_epoch()
    496  *
    497  *	Return the current entropy epoch, from the sysctl node
    498  *	kern.entropy.epoch.
    499  *
    500  *	The entropy epoch is never zero.  Initially, or on error, it is
    501  *	(unsigned)-1.  It may wrap around but it skips (unsigned)-1 and
    502  *	0 when it does.  Changes happen less than once per second, so
    503  *	wraparound will only affect systems after 136 years of uptime.
    504  *
    505  *	XXX This should get it from a page shared read-only by kernel
    506  *	with userland, but until we implement such a mechanism, this
    507  *	sysctl -- incurring the cost of a syscall -- will have to
    508  *	serve.
    509  */
    510 static unsigned
    511 entropy_epoch(void)
    512 {
    513 	const int mib[] = { CTL_KERN, KERN_ENTROPY, KERN_ENTROPY_EPOCH };
    514 	unsigned epoch = (unsigned)-1;
    515 	size_t epochlen = sizeof(epoch);
    516 
    517 	if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
    518 		return (unsigned)-1;
    519 	if (epochlen != sizeof(epoch))
    520 		return (unsigned)-1;
    521 
    522 	return epoch;
    523 }
    524 
    525 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
    526 
    527 static void
    528 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
    529     size_t datalen)
    530 {
    531 	const int mib[] = { CTL_KERN, KERN_ARND };
    532 	SHA256_CTX ctx;
    533 	uint8_t buf[crypto_prng_SEEDBYTES];
    534 	size_t buflen = sizeof buf;
    535 	unsigned epoch = entropy_epoch();
    536 
    537 	__CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
    538 
    539 	SHA256_Init(&ctx);
    540 
    541 	crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
    542 	SHA256_Update(&ctx, buf, sizeof buf);
    543 
    544 	if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
    545 		abort();
    546 	if (buflen != sizeof buf)
    547 		abort();
    548 	SHA256_Update(&ctx, buf, sizeof buf);
    549 
    550 	if (data != NULL)
    551 		SHA256_Update(&ctx, data, datalen);
    552 
    553 	SHA256_Final(buf, &ctx);
    554 	(void)explicit_memset(&ctx, 0, sizeof ctx);
    555 
    556 	/* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
    557 	crypto_prng_seed(&prng->arc4_prng, buf);
    558 	(void)explicit_memset(buf, 0, sizeof buf);
    559 	prng->arc4_epoch = epoch;
    560 }
    561 
    562 #ifdef _REENTRANT
    563 static struct arc4random_prng *
    564 arc4random_prng_create(void)
    565 {
    566 	struct arc4random_prng *prng;
    567 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
    568 
    569 	prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
    570 	    0);
    571 	if (prng == MAP_FAILED)
    572 		goto fail0;
    573 	if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
    574 		goto fail1;
    575 
    576 	return prng;
    577 
    578 fail1:	(void)munmap(prng, size);
    579 fail0:	return NULL;
    580 }
    581 #endif
    582 
    583 #ifdef _REENTRANT
    584 static void
    585 arc4random_prng_destroy(struct arc4random_prng *prng)
    586 {
    587 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
    588 
    589 	(void)explicit_memset(prng, 0, sizeof(*prng));
    590 	(void)munmap(prng, size);
    591 }
    592 #endif
    593 
    594 /* Library state */
    595 
    596 struct arc4random_global_state arc4random_global = {
    597 #ifdef _REENTRANT
    598 	.lock		= MUTEX_INITIALIZER,
    599 #endif
    600 	.once		= ONCE_INITIALIZER,
    601 };
    602 
    603 static void
    604 arc4random_atfork_prepare(void)
    605 {
    606 
    607 	mutex_lock(&arc4random_global.lock);
    608 	(void)explicit_memset(&arc4random_global.prng, 0,
    609 	    sizeof arc4random_global.prng);
    610 }
    611 
    612 static void
    613 arc4random_atfork_parent(void)
    614 {
    615 
    616 	mutex_unlock(&arc4random_global.lock);
    617 }
    618 
    619 static void
    620 arc4random_atfork_child(void)
    621 {
    622 
    623 	mutex_unlock(&arc4random_global.lock);
    624 }
    625 
    626 #ifdef _REENTRANT
    627 static void
    628 arc4random_tsd_destructor(void *p)
    629 {
    630 	struct arc4random_prng *const prng = p;
    631 
    632 	arc4random_prng_destroy(prng);
    633 }
    634 #endif
    635 
    636 static void
    637 arc4random_initialize(void)
    638 {
    639 
    640 	/*
    641 	 * If the crypto software is broken, abort -- something is
    642 	 * severely wrong with this process image.
    643 	 */
    644 	if (crypto_core_selftest() != 0 ||
    645 	    crypto_prng_selftest() != 0 ||
    646 	    crypto_onetimestream_selftest() != 0)
    647 		abort();
    648 
    649 	/*
    650 	 * Set up a pthread_atfork handler to lock the global state
    651 	 * around fork so that if forked children can't use the
    652 	 * per-thread state, they can take the lock and use the global
    653 	 * state without deadlock.  If this fails, we will fall back to
    654 	 * PRNG state on the stack reinitialized from the kernel
    655 	 * entropy pool at every call.
    656 	 */
    657 	if (pthread_atfork(&arc4random_atfork_prepare,
    658 		&arc4random_atfork_parent, &arc4random_atfork_child)
    659 	    == 0)
    660 		arc4random_global.forksafe = true;
    661 
    662 	/*
    663 	 * For multithreaded builds, try to allocate a per-thread PRNG
    664 	 * state to avoid contention due to arc4random.
    665 	 */
    666 #ifdef _REENTRANT
    667 	if (thr_keycreate(&arc4random_global.thread_key,
    668 		&arc4random_tsd_destructor) == 0)
    669 		arc4random_global.per_thread = true;
    670 #endif
    671 
    672 	/*
    673 	 * Note that the arc4random library state has been initialized
    674 	 * for the sake of automatic tests.
    675 	 */
    676 	arc4random_global.initialized = true;
    677 }
    678 
    679 static struct arc4random_prng *
    680 arc4random_prng_get(struct arc4random_prng *fallback)
    681 {
    682 	struct arc4random_prng *prng = NULL;
    683 
    684 	/* Make sure the library is initialized.  */
    685 	thr_once(&arc4random_global.once, &arc4random_initialize);
    686 
    687 #ifdef _REENTRANT
    688 	/* Get or create the per-thread PRNG state.  */
    689 	prng = __predict_true(arc4random_global.per_thread)
    690 	    ? thr_getspecific(arc4random_global.thread_key)
    691 	    : NULL;
    692 	if (__predict_false(prng == NULL) && arc4random_global.per_thread) {
    693 		prng = arc4random_prng_create();
    694 		thr_setspecific(arc4random_global.thread_key, prng);
    695 	}
    696 #endif
    697 
    698 	/*
    699 	 * If we can't create it, fall back to the global PRNG -- or an
    700 	 * on-stack PRNG, in the unlikely event that pthread_atfork
    701 	 * failed, which we have to seed from scratch each time
    702 	 * (suboptimal, but unlikely, so not worth optimizing).
    703 	 */
    704 	if (__predict_false(prng == NULL)) {
    705 		if (__predict_true(arc4random_global.forksafe)) {
    706 			mutex_lock(&arc4random_global.lock);
    707 			prng = &arc4random_global.prng;
    708 		} else {
    709 			prng = fallback;
    710 			memset(prng, 0, sizeof(*prng));
    711 		}
    712 	}
    713 
    714 	/* Guarantee the PRNG is seeded.  */
    715 	if (__predict_false(prng->arc4_epoch != entropy_epoch()))
    716 		arc4random_prng_addrandom(prng, NULL, 0);
    717 
    718 	return prng;
    719 }
    720 
    721 static void
    722 arc4random_prng_put(struct arc4random_prng *prng,
    723     struct arc4random_prng *fallback)
    724 {
    725 
    726 	/*
    727 	 * If we had to use a stack fallback, zero it before we return
    728 	 * so that after we return we avoid leaving secrets on the
    729 	 * stack that could recover the parent's future outputs in an
    730 	 * unprivileged forked child (of course, we can't guarantee
    731 	 * that the compiler hasn't spilled anything; this is
    732 	 * best-effort, not a guarantee).
    733 	 */
    734 	if (__predict_false(prng == fallback))
    735 		explicit_memset(fallback, 0, sizeof(*fallback));
    736 
    737 	/* If we had fallen back to the global PRNG, unlock it.  */
    738 	if (__predict_false(prng == &arc4random_global.prng))
    739 		mutex_unlock(&arc4random_global.lock);
    740 }
    741 
    742 /* Public API */
    743 
    744 uint32_t
    745 arc4random(void)
    746 {
    747 	struct arc4random_prng *prng, fallback;
    748 	uint32_t v;
    749 
    750 	prng = arc4random_prng_get(&fallback);
    751 	crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
    752 	arc4random_prng_put(prng, &fallback);
    753 
    754 	return v;
    755 }
    756 
    757 void
    758 arc4random_buf(void *buf, size_t len)
    759 {
    760 	struct arc4random_prng *prng, fallback;
    761 
    762 	if (len <= crypto_prng_MAXOUTPUTBYTES) {
    763 		prng = arc4random_prng_get(&fallback);
    764 		crypto_prng_buf(&prng->arc4_prng, buf, len);
    765 		arc4random_prng_put(prng, &fallback);
    766 	} else {
    767 		uint8_t seed[crypto_onetimestream_SEEDBYTES];
    768 
    769 		prng = arc4random_prng_get(&fallback);
    770 		crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
    771 		arc4random_prng_put(prng, &fallback);
    772 
    773 		crypto_onetimestream(seed, buf, len);
    774 		(void)explicit_memset(seed, 0, sizeof seed);
    775 	}
    776 }
    777 
    778 uint32_t
    779 arc4random_uniform(uint32_t bound)
    780 {
    781 	struct arc4random_prng *prng, fallback;
    782 	uint32_t minimum, r;
    783 
    784 	/*
    785 	 * We want a uniform random choice in [0, n), and arc4random()
    786 	 * makes a uniform random choice in [0, 2^32).  If we reduce
    787 	 * that modulo n, values in [0, 2^32 mod n) will be represented
    788 	 * slightly more than values in [2^32 mod n, n).  Instead we
    789 	 * choose only from [2^32 mod n, 2^32) by rejecting samples in
    790 	 * [0, 2^32 mod n), to avoid counting the extra representative
    791 	 * of [0, 2^32 mod n).  To compute 2^32 mod n, note that
    792 	 *
    793 	 *	2^32 mod n = 2^32 mod n - 0
    794 	 *	  = 2^32 mod n - n mod n
    795 	 *	  = (2^32 - n) mod n,
    796 	 *
    797 	 * the last of which is what we compute in 32-bit arithmetic.
    798 	 */
    799 	minimum = (-bound % bound);
    800 
    801 	prng = arc4random_prng_get(&fallback);
    802 	do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
    803 	while (__predict_false(r < minimum));
    804 	arc4random_prng_put(prng, &fallback);
    805 
    806 	return (r % bound);
    807 }
    808 
    809 void
    810 arc4random_stir(void)
    811 {
    812 	struct arc4random_prng *prng, fallback;
    813 
    814 	prng = arc4random_prng_get(&fallback);
    815 	arc4random_prng_addrandom(prng, NULL, 0);
    816 	arc4random_prng_put(prng, &fallback);
    817 }
    818 
    819 /*
    820  * Silly signature here is for hysterical raisins.  Should instead be
    821  * const void *data and size_t datalen.
    822  */
    823 void
    824 arc4random_addrandom(u_char *data, int datalen)
    825 {
    826 	struct arc4random_prng *prng, fallback;
    827 
    828 	_DIAGASSERT(0 <= datalen);
    829 
    830 	prng = arc4random_prng_get(&fallback);
    831 	arc4random_prng_addrandom(prng, data, datalen);
    832 	arc4random_prng_put(prng, &fallback);
    833 }
    834 
    835 #ifdef _ARC4RANDOM_TEST
    836 
    837 #include <sys/wait.h>
    838 
    839 #include <err.h>
    840 #include <stdio.h>
    841 
    842 int
    843 main(int argc __unused, char **argv __unused)
    844 {
    845 	unsigned char gubbish[] = "random gubbish";
    846 	const uint8_t zero64[64] = {0};
    847 	uint8_t buf[2048];
    848 	unsigned i, a, n;
    849 
    850 	/* Test arc4random: should not be deterministic.  */
    851 	if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
    852 		err(1, "printf");
    853 
    854 	/* Test stirring: should definitely not be deterministic.  */
    855 	arc4random_stir();
    856 
    857 	/* Test small buffer.  */
    858 	arc4random_buf(buf, 8);
    859 	if (printf("arc4randombuf small:") < 0)
    860 		err(1, "printf");
    861 	for (i = 0; i < 8; i++)
    862 		if (printf(" %02x", buf[i]) < 0)
    863 			err(1, "printf");
    864 	if (printf("\n") < 0)
    865 		err(1, "printf");
    866 
    867 	/* Test addrandom: should not make the rest deterministic.  */
    868 	arc4random_addrandom(gubbish, sizeof gubbish);
    869 
    870 	/* Test large buffer.  */
    871 	arc4random_buf(buf, sizeof buf);
    872 	if (printf("arc4randombuf_large:") < 0)
    873 		err(1, "printf");
    874 	for (i = 0; i < sizeof buf; i++)
    875 		if (printf(" %02x", buf[i]) < 0)
    876 			err(1, "printf");
    877 	if (printf("\n") < 0)
    878 		err(1, "printf");
    879 
    880 	/* Test misaligned small and large.  */
    881 	for (a = 0; a < 64; a++) {
    882 		for (n = a; n < sizeof buf; n++) {
    883 			(void)memset(buf, 0, sizeof buf);
    884 			arc4random_buf(buf, n - a);
    885 			if (memcmp(buf + n - a, zero64, a) != 0)
    886 				errx(1, "arc4random buffer overflow 0");
    887 
    888 			(void)memset(buf, 0, sizeof buf);
    889 			arc4random_buf(buf + a, n - a);
    890 			if (memcmp(buf, zero64, a) != 0)
    891 				errx(1, "arc4random buffer overflow 1");
    892 
    893 			if ((2*a) <= n) {
    894 				(void)memset(buf, 0, sizeof buf);
    895 				arc4random_buf(buf + a, n - a - a);
    896 				if (memcmp(buf + n - a, zero64, a) != 0)
    897 					errx(1,
    898 					    "arc4random buffer overflow 2");
    899 			}
    900 		}
    901 	}
    902 
    903 	/* Test fork-safety.  */
    904     {
    905 	pid_t pid, rpid;
    906 	int status;
    907 
    908 	pid = fork();
    909 	switch (pid) {
    910 	case -1:
    911 		err(1, "fork");
    912 	case 0: {
    913 		/*
    914 		 * Verify the epoch has been set to zero by fork.
    915 		 */
    916 		struct arc4random_prng *prng = NULL;
    917 #ifdef _REENTRANT
    918 		prng = arc4random_global.per_thread
    919 		    ? thr_getspecific(arc4random_global.thread_key)
    920 		    : NULL;
    921 #endif
    922 		if (prng == NULL)
    923 			prng = &arc4random_global.prng;
    924 		_exit(prng->arc4_epoch != 0);
    925 	}
    926 	default:
    927 		rpid = waitpid(pid, &status, 0);
    928 		if (rpid == -1)
    929 			err(1, "waitpid");
    930 		if (rpid != pid)
    931 			errx(1, "waitpid returned wrong pid"
    932 			    ": %"PRIdMAX" != %"PRIdMAX,
    933 			    (intmax_t)rpid,
    934 			    (intmax_t)pid);
    935 		if (WIFEXITED(status)) {
    936 			if (WEXITSTATUS(status) != 0)
    937 				errx(1, "child exited with %d",
    938 				    WEXITSTATUS(status));
    939 		} else if (WIFSIGNALED(status)) {
    940 			errx(1, "child terminated on signal %d",
    941 			    WTERMSIG(status));
    942 		} else {
    943 			errx(1, "child died mysteriously: %d", status);
    944 		}
    945 	}
    946     }
    947 
    948 	/* XXX Test multithreaded fork safety...?  */
    949 
    950 	return 0;
    951 }
    952 #endif
    953