arc4random.c revision 1.17 1 /* $NetBSD: arc4random.c,v 1.17 2012/08/18 15:55:07 dsl Exp $ */
2 /* $OpenBSD: arc4random.c,v 1.6 2001/06/05 05:05:38 pvalchev Exp $ */
3
4 /*
5 * Arc4 random number generator for OpenBSD.
6 * Copyright 1996 David Mazieres <dm (at) lcs.mit.edu>.
7 *
8 * Modification and redistribution in source and binary forms is
9 * permitted provided that due credit is given to the author and the
10 * OpenBSD project by leaving this copyright notice intact.
11 */
12
13 /*
14 * This code is derived from section 17.1 of Applied Cryptography,
15 * second edition, which describes a stream cipher allegedly
16 * compatible with RSA Labs "RC4" cipher (the actual description of
17 * which is a trade secret). The same algorithm is used as a stream
18 * cipher called "arcfour" in Tatu Ylonen's ssh package.
19 *
20 * Here the stream cipher has been modified always to include the time
21 * when initializing the state. That makes it impossible to
22 * regenerate the same random sequence twice, so this can't be used
23 * for encryption, but will generate good random numbers.
24 *
25 * RC4 is a registered trademark of RSA Laboratories.
26 */
27
28 #include <sys/cdefs.h>
29 #if defined(LIBC_SCCS) && !defined(lint)
30 __RCSID("$NetBSD: arc4random.c,v 1.17 2012/08/18 15:55:07 dsl Exp $");
31 #endif /* LIBC_SCCS and not lint */
32
33 #include "namespace.h"
34 #include "reentrant.h"
35 #include <fcntl.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/sysctl.h>
42
43 #ifdef __weak_alias
44 __weak_alias(arc4random,_arc4random)
45 #endif
46
47 #define RSIZE 256
48 struct arc4_stream {
49 mutex_t mtx;
50 int initialized;
51 uint8_t i;
52 uint8_t j;
53 uint8_t s[RSIZE];
54 };
55
56 #ifdef _REENTRANT
57 #define LOCK(rs) { \
58 int isthreaded = __isthreaded; \
59 if (isthreaded) \
60 mutex_lock(&(rs)->mtx);
61 #define UNLOCK(rs) \
62 if (isthreaded) \
63 mutex_unlock(&(rs)->mtx); \
64 }
65 #else
66 #define LOCK(rs)
67 #define UNLOCK(rs)
68 #endif
69
70
71 /* XXX lint explodes with an internal error if only mtx is initialized! */
72 static struct arc4_stream rs = { .i = 0, .mtx = MUTEX_INITIALIZER };
73
74 static inline void arc4_addrandom(struct arc4_stream *, u_char *, int);
75 static void arc4_stir(struct arc4_stream *);
76 static inline uint8_t arc4_getbyte(struct arc4_stream *);
77 static inline uint32_t arc4_getword(struct arc4_stream *);
78
79 static __noinline void
80 arc4_init(struct arc4_stream *as)
81 {
82 int n;
83 for (n = 0; n < RSIZE; n++)
84 as->s[n] = n;
85 as->i = 0;
86 as->j = 0;
87
88 as->initialized = 1;
89 arc4_stir(as);
90 }
91
92 static inline int
93 arc4_check_init(struct arc4_stream *as)
94 {
95 if (__predict_true(rs.initialized))
96 return 0;
97
98 arc4_init(as);
99 return 1;
100 }
101
102 static inline void
103 arc4_addrandom(struct arc4_stream *as, u_char *dat, int datlen)
104 {
105 uint8_t si;
106 int n;
107
108 as->i--;
109 for (n = 0; n < RSIZE; n++) {
110 as->i = (as->i + 1);
111 si = as->s[as->i];
112 as->j = (as->j + si + dat[n % datlen]);
113 as->s[as->i] = as->s[as->j];
114 as->s[as->j] = si;
115 }
116 as->j = as->i;
117 }
118
119 static void
120 arc4_stir(struct arc4_stream *as)
121 {
122 int rdat[32];
123 int mib[] = { CTL_KERN, KERN_URND };
124 size_t len;
125 size_t i, j;
126
127 /*
128 * This code once opened and read /dev/urandom on each
129 * call. That causes repeated rekeying of the kernel stream
130 * generator, which is very wasteful. Because of application
131 * behavior, caching the fd doesn't really help. So we just
132 * fill up the tank from sysctl, which is a tiny bit slower
133 * for us but much friendlier to other entropy consumers.
134 */
135
136 for (i = 0; i < __arraycount(rdat); i++) {
137 len = sizeof(rdat[i]);
138 if (sysctl(mib, 2, &rdat[i], &len, NULL, 0) == -1)
139 abort();
140 }
141
142 arc4_addrandom(as, (void *) &rdat, (int)sizeof(rdat));
143
144 /*
145 * Throw away the first N words of output, as suggested in the
146 * paper "Weaknesses in the Key Scheduling Algorithm of RC4"
147 * by Fluher, Mantin, and Shamir. (N = 256 in our case.)
148 */
149 for (j = 0; j < RSIZE * 4; j++)
150 arc4_getbyte(as);
151 }
152
153 static __always_inline uint8_t
154 arc4_getbyte_ij(struct arc4_stream *as, uint8_t *i, uint8_t *j)
155 {
156 uint8_t si, sj;
157
158 *i = *i + 1;
159 si = as->s[*i];
160 *j = *j + si;
161 sj = as->s[*j];
162 as->s[*i] = sj;
163 as->s[*j] = si;
164 return (as->s[(si + sj) & 0xff]);
165 }
166
167 static inline uint8_t
168 arc4_getbyte(struct arc4_stream *as)
169 {
170 return arc4_getbyte_ij(as, &as->i, &as->j);
171 }
172
173 static inline uint32_t
174 arc4_getword(struct arc4_stream *as)
175 {
176 uint32_t val;
177 val = arc4_getbyte(as) << 24;
178 val |= arc4_getbyte(as) << 16;
179 val |= arc4_getbyte(as) << 8;
180 val |= arc4_getbyte(as);
181 return val;
182 }
183
184 void
185 arc4random_stir(void)
186 {
187 LOCK(&rs);
188 if (__predict_false(!arc4_check_init(&rs))) /* init() stirs */
189 arc4_stir(&rs);
190 UNLOCK(&rs);
191 }
192
193 void
194 arc4random_addrandom(u_char *dat, int datlen)
195 {
196 LOCK(&rs);
197 arc4_check_init(&rs);
198 arc4_addrandom(&rs, dat, datlen);
199 UNLOCK(&rs);
200 }
201
202 uint32_t
203 arc4random(void)
204 {
205 uint32_t v;
206
207 LOCK(&rs);
208 arc4_check_init(&rs);
209 v = arc4_getword(&rs);
210 UNLOCK(&rs);
211 return v;
212 }
213
214 void
215 arc4random_buf(void *buf, size_t len)
216 {
217 uint8_t *bp = buf;
218 uint8_t *ep = bp + len;
219 uint8_t i, j;
220 int skip;
221
222 LOCK(&rs);
223 arc4_check_init(&rs);
224
225 /* cache i and j - compiler can't know 'buf' doesn't alias them */
226 i = rs.i;
227 j = rs.j;
228
229 skip = arc4_getbyte_ij(&rs, &i, &j) % 3;
230 while (skip--)
231 (void)arc4_getbyte_ij(&rs, &i, &j);
232
233 while (bp < ep)
234 *bp++ = arc4_getbyte_ij(&rs, &i, &j);
235 rs.i = i;
236 rs.j = j;
237
238 UNLOCK(&rs);
239 }
240
241 /*-
242 * Written by Damien Miller.
243 * With simplifications by Jinmei Tatuya.
244 */
245
246 /*
247 * Calculate a uniformly distributed random number less than
248 * upper_bound avoiding "modulo bias".
249 *
250 * Uniformity is achieved by generating new random numbers
251 * until the one returned is outside the range
252 * [0, 2^32 % upper_bound[. This guarantees the selected
253 * random number will be inside the range
254 * [2^32 % upper_bound, 2^32[ which maps back to
255 * [0, upper_bound[ after reduction modulo upper_bound.
256 */
257 uint32_t
258 arc4random_uniform(uint32_t upper_bound)
259 {
260 uint32_t r, min;
261
262 if (upper_bound < 2)
263 return 0;
264
265 /* calculate (2^32 % upper_bound) avoiding 64-bit math */
266 /* ((2^32 - x) % x) == (2^32 % x) when x <= 2^31 */
267 min = (0xFFFFFFFFU - upper_bound + 1) % upper_bound;
268
269 LOCK(&rs);
270 arc4_check_init(&rs);
271
272 if (arc4_getbyte(&rs) & 1)
273 (void)arc4_getbyte(&rs);
274
275 /*
276 * This could theoretically loop forever but each retry has
277 * p > 0.5 (worst case, usually far better) of selecting a
278 * number inside the range we need, so it should rarely need
279 * to re-roll (at all).
280 */
281 do
282 r = arc4_getword(&rs);
283 while (r < min);
284 UNLOCK(&rs);
285
286 return r % upper_bound;
287 }
288