arc4random.c revision 1.27 1 /* $NetBSD: arc4random.c,v 1.27 2015/01/20 18:31:25 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
35 *
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
42 *
43 * The arc4random(3) API may abort the process if:
44 *
45 * (a) the crypto self-test fails,
46 * (b) pthread_atfork or thr_keycreate fail, or
47 * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
48 *
49 * The crypto self-test, pthread_atfork, and thr_keycreate occur only
50 * once, on the first use of any of the arc4random(3) API. KERN_ARND
51 * is unlikely to fail later unless the kernel is seriously broken.
52 */
53
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.27 2015/01/20 18:31:25 christos Exp $");
56
57 #include "namespace.h"
58 #include "reentrant.h"
59
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #include <sys/mman.h>
64 #include <sys/sysctl.h>
65
66 #include <assert.h>
67 #include <sha2.h>
68 #include <stdbool.h>
69 #include <stdint.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <unistd.h>
73
74 #ifdef __weak_alias
75 __weak_alias(arc4random,_arc4random)
76 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
77 __weak_alias(arc4random_buf,_arc4random_buf)
78 __weak_alias(arc4random_stir,_arc4random_stir)
79 __weak_alias(arc4random_uniform,_arc4random_uniform)
80 #endif
81
82 /*
83 * For standard ChaCha, use le32dec/le32enc. We don't need that for
84 * the purposes of a nondeterministic random number generator -- we
85 * don't need to be bit-for-bit compatible over any wire.
86 */
87
88 static inline uint32_t
89 crypto_le32dec(const void *p)
90 {
91 uint32_t v;
92
93 (void)memcpy(&v, p, sizeof v);
94
95 return v;
96 }
97
98 static inline void
99 crypto_le32enc(void *p, uint32_t v)
100 {
101
102 (void)memcpy(p, &v, sizeof v);
103 }
104
105 /* ChaCha core */
106
107 #define crypto_core_OUTPUTBYTES 64
108 #define crypto_core_INPUTBYTES 16
109 #define crypto_core_KEYBYTES 32
110 #define crypto_core_CONSTBYTES 16
111
112 #define crypto_core_ROUNDS 8
113
114 static uint32_t
115 rotate(uint32_t u, unsigned c)
116 {
117
118 return (u << c) | (u >> (32 - c));
119 }
120
121 #define QUARTERROUND(a, b, c, d) do { \
122 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
123 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
124 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
125 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
126 } while (/*CONSTCOND*/0)
127
128 const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
129
130 static void
131 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
132 const uint8_t *c)
133 {
134 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
135 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
136 int i;
137
138 j0 = x0 = crypto_le32dec(c + 0);
139 j1 = x1 = crypto_le32dec(c + 4);
140 j2 = x2 = crypto_le32dec(c + 8);
141 j3 = x3 = crypto_le32dec(c + 12);
142 j4 = x4 = crypto_le32dec(k + 0);
143 j5 = x5 = crypto_le32dec(k + 4);
144 j6 = x6 = crypto_le32dec(k + 8);
145 j7 = x7 = crypto_le32dec(k + 12);
146 j8 = x8 = crypto_le32dec(k + 16);
147 j9 = x9 = crypto_le32dec(k + 20);
148 j10 = x10 = crypto_le32dec(k + 24);
149 j11 = x11 = crypto_le32dec(k + 28);
150 j12 = x12 = crypto_le32dec(in + 0);
151 j13 = x13 = crypto_le32dec(in + 4);
152 j14 = x14 = crypto_le32dec(in + 8);
153 j15 = x15 = crypto_le32dec(in + 12);
154
155 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
156 QUARTERROUND( x0, x4, x8,x12);
157 QUARTERROUND( x1, x5, x9,x13);
158 QUARTERROUND( x2, x6,x10,x14);
159 QUARTERROUND( x3, x7,x11,x15);
160 QUARTERROUND( x0, x5,x10,x15);
161 QUARTERROUND( x1, x6,x11,x12);
162 QUARTERROUND( x2, x7, x8,x13);
163 QUARTERROUND( x3, x4, x9,x14);
164 }
165
166 crypto_le32enc(out + 0, x0 + j0);
167 crypto_le32enc(out + 4, x1 + j1);
168 crypto_le32enc(out + 8, x2 + j2);
169 crypto_le32enc(out + 12, x3 + j3);
170 crypto_le32enc(out + 16, x4 + j4);
171 crypto_le32enc(out + 20, x5 + j5);
172 crypto_le32enc(out + 24, x6 + j6);
173 crypto_le32enc(out + 28, x7 + j7);
174 crypto_le32enc(out + 32, x8 + j8);
175 crypto_le32enc(out + 36, x9 + j9);
176 crypto_le32enc(out + 40, x10 + j10);
177 crypto_le32enc(out + 44, x11 + j11);
178 crypto_le32enc(out + 48, x12 + j12);
179 crypto_le32enc(out + 52, x13 + j13);
180 crypto_le32enc(out + 56, x14 + j14);
181 crypto_le32enc(out + 60, x15 + j15);
182 }
183
184 /* ChaCha self-test */
185
186 #ifdef _DIAGNOSTIC
187
188 /*
189 * Test vector for ChaCha20 from
190 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
191 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
192 * generated by the same crypto_core code with crypto_core_ROUNDS and
193 * crypto_le32enc/dec varied.
194 */
195
196 static const uint8_t crypto_core_selftest_vector[64] = {
197 #if _BYTE_ORDER == _LITTLE_ENDIAN
198 # if crypto_core_ROUNDS == 8
199 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
200 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
201 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
202 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
203 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
204 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
205 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
206 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
207 # elif crypto_core_ROUNDS == 12
208 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
209 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
210 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
211 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
212 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
213 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
214 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
215 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
216 # elif crypto_core_ROUNDS == 20
217 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
218 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
219 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
220 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
221 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
222 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
223 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
224 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
225 # else
226 # error crypto_core_ROUNDS must be 8, 12, or 20.
227 # endif
228 #elif _BYTE_ORDER == _BIG_ENDIAN
229 # if crypto_core_ROUNDS == 8
230 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
231 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
232 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
233 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
234 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
235 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
236 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
237 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
238 # elif crypto_core_ROUNDS == 12
239 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
240 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
241 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
242 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
243 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
244 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
245 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
246 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
247 # elif crypto_core_ROUNDS == 20
248 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
249 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
250 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
251 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
252 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
253 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
254 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
255 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
256 # else
257 # error crypto_core_ROUNDS must be 8, 12, or 20.
258 # endif
259 #else
260 # error Byte order must be little-endian or big-endian.
261 #endif
262 };
263
264 static int
265 crypto_core_selftest(void)
266 {
267 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
268 const uint8_t key[crypto_core_KEYBYTES] = {0};
269 uint8_t block[64];
270 unsigned i;
271
272 crypto_core(block, nonce, key, crypto_core_constant32);
273 for (i = 0; i < 64; i++) {
274 if (block[i] != crypto_core_selftest_vector[i])
275 return EIO;
276 }
277
278 return 0;
279 }
280
281 #else /* !_DIAGNOSTIC */
282
283 static int
284 crypto_core_selftest(void)
285 {
286
287 return 0;
288 }
289
290 #endif
291
292 /* PRNG */
293
294 /*
295 * For a state s, rather than use ChaCha20 as a stream cipher to
296 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
297 * split ChaCha20_s(0) into s' || x and yield x for the first request,
298 * split ChaCha20_s'(0) into s'' || y and yield y for the second
299 * request, &c. This provides backtracking resistance: an attacker who
300 * finds s'' can't recover s' or x.
301 */
302
303 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
304 #define crypto_prng_MAXOUTPUTBYTES \
305 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
306
307 struct crypto_prng {
308 uint8_t state[crypto_prng_SEEDBYTES];
309 };
310
311 static void
312 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
313 {
314
315 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
316 }
317
318 static void
319 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
320 {
321 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
322 uint8_t output[crypto_core_OUTPUTBYTES];
323
324 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
325 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
326 <= sizeof output);
327
328 crypto_core(output, nonce, prng->state, crypto_core_constant32);
329 (void)memcpy(prng->state, output, sizeof prng->state);
330 (void)memcpy(buf, output + sizeof prng->state, n);
331 (void)explicit_memset(output, 0, sizeof output);
332 }
333
334 /* One-time stream: expand short single-use secret into long secret */
335
336 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
337
338 static void
339 crypto_onetimestream(const void *seed, void *buf, size_t n)
340 {
341 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
342 uint8_t block[crypto_core_OUTPUTBYTES];
343 uint8_t *p8, *p32;
344 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
345 size_t ni, nb, nf;
346
347 /*
348 * Guarantee we can generate up to n bytes. We have
349 * 2^(8*INPUTBYTES) possible inputs yielding output of
350 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
351 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
352 * (1/CHAR_BIT) log_2 of the total output stream length. We
353 * have
354 *
355 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
356 * = log_2 o + 8 i.
357 */
358 __CTASSERT(CHAR_BIT * sizeof n <=
359 (/*LINTED*/ilog2(crypto_core_OUTPUTBYTES) + 8 * crypto_core_INPUTBYTES));
360
361 p8 = buf;
362 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
363 ni = p32 - p8;
364 if (n < ni)
365 ni = n;
366 nb = (n - ni) / sizeof block;
367 nf = (n - ni) % sizeof block;
368
369 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
370 _DIAGASSERT(ni <= n);
371 _DIAGASSERT(nb <= (n / sizeof block));
372 _DIAGASSERT(nf <= n);
373 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
374 _DIAGASSERT(ni < 4);
375 _DIAGASSERT(nf < sizeof block);
376
377 if (ni) {
378 crypto_core(block, nonce8, seed, crypto_core_constant32);
379 nonce[0]++;
380 (void)memcpy(p8, block, ni);
381 }
382 while (nb--) {
383 crypto_core(p32, nonce8, seed, crypto_core_constant32);
384 if (++nonce[0] == 0)
385 nonce[1]++;
386 p32 += crypto_core_OUTPUTBYTES;
387 }
388 if (nf) {
389 crypto_core(block, nonce8, seed, crypto_core_constant32);
390 if (++nonce[0] == 0)
391 nonce[1]++;
392 (void)memcpy(p32, block, nf);
393 }
394
395 if (ni | nf)
396 (void)explicit_memset(block, 0, sizeof block);
397 }
398
399 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
400
401 struct arc4random_prng {
402 struct crypto_prng arc4_prng;
403 bool arc4_seeded;
404 };
405
406 static void
407 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
408 size_t datalen)
409 {
410 const int mib[] = { CTL_KERN, KERN_ARND };
411 SHA256_CTX ctx;
412 uint8_t buf[crypto_prng_SEEDBYTES];
413 size_t buflen = sizeof buf;
414
415 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
416
417 SHA256_Init(&ctx);
418
419 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
420 SHA256_Update(&ctx, buf, sizeof buf);
421
422 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
423 abort();
424 if (buflen != sizeof buf)
425 abort();
426 SHA256_Update(&ctx, buf, sizeof buf);
427
428 if (data != NULL)
429 SHA256_Update(&ctx, data, datalen);
430
431 SHA256_Final(buf, &ctx);
432 (void)explicit_memset(&ctx, 0, sizeof ctx);
433
434 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
435 crypto_prng_seed(&prng->arc4_prng, buf);
436 (void)explicit_memset(buf, 0, sizeof buf);
437 prng->arc4_seeded = true;
438 }
439
440 #ifdef _REENTRANT
441 static struct arc4random_prng *
442 arc4random_prng_create(void)
443 {
444 struct arc4random_prng *prng;
445 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
446
447 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
448 if (prng == MAP_FAILED)
449 goto fail0;
450 #ifdef MAP_INHERIT_ZERO
451 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
452 goto fail1;
453 #else
454 #warning This arc4random is not fork-safe!
455 #endif
456
457 return prng;
458
459 #ifdef MAP_INHERIT_ZERO
460 fail1: (void)munmap(prng, size);
461 #endif
462 fail0: return NULL;
463 }
464 #endif
465
466 #ifdef _REENTRANT
467 static void
468 arc4random_prng_destroy(struct arc4random_prng *prng)
469 {
470 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
471
472 (void)explicit_memset(prng, 0, sizeof(*prng));
473 (void)munmap(prng, size);
474 }
475 #endif
476
477 /* Library state */
478
479 static struct arc4random_global {
480 #ifdef _REENTRANT
481 mutex_t lock;
482 thread_key_t thread_key;
483 #endif
484 struct arc4random_prng prng;
485 bool initialized;
486 } arc4random_global = {
487 #ifdef _REENTRANT
488 .lock = MUTEX_INITIALIZER,
489 #endif
490 .initialized = false,
491 };
492
493 static void
494 arc4random_atfork_prepare(void)
495 {
496
497 mutex_lock(&arc4random_global.lock);
498 (void)explicit_memset(&arc4random_global.prng, 0,
499 sizeof arc4random_global.prng);
500 }
501
502 static void
503 arc4random_atfork_parent(void)
504 {
505
506 mutex_unlock(&arc4random_global.lock);
507 }
508
509 static void
510 arc4random_atfork_child(void)
511 {
512
513 mutex_unlock(&arc4random_global.lock);
514 }
515
516 #ifdef _REENTRANT
517 static void
518 arc4random_tsd_destructor(void *p)
519 {
520 struct arc4random_prng *const prng = p;
521
522 arc4random_prng_destroy(prng);
523 }
524 #endif
525
526 static void
527 arc4random_initialize(void)
528 {
529
530 mutex_lock(&arc4random_global.lock);
531 if (!arc4random_global.initialized) {
532 if (crypto_core_selftest() != 0)
533 abort();
534 if (pthread_atfork(&arc4random_atfork_prepare,
535 &arc4random_atfork_parent, &arc4random_atfork_child)
536 != 0)
537 abort();
538 #ifdef _REENTRANT
539 if (thr_keycreate(&arc4random_global.thread_key,
540 &arc4random_tsd_destructor) != 0)
541 abort();
542 #endif
543 arc4random_global.initialized = true;
544 }
545 mutex_unlock(&arc4random_global.lock);
546 }
547
548 static struct arc4random_prng *
549 arc4random_prng_get(void)
550 {
551 struct arc4random_prng *prng = NULL;
552
553 /* Make sure the library is initialized. */
554 if (__predict_false(!arc4random_global.initialized))
555 arc4random_initialize();
556
557 #ifdef _REENTRANT
558 /* Get or create the per-thread PRNG state. */
559 prng = thr_getspecific(arc4random_global.thread_key);
560 if (__predict_false(prng == NULL)) {
561 prng = arc4random_prng_create();
562 thr_setspecific(arc4random_global.thread_key, prng);
563 }
564 #endif
565
566 /* If we can't create it, fall back to the global PRNG. */
567 if (__predict_false(prng == NULL)) {
568 mutex_lock(&arc4random_global.lock);
569 prng = &arc4random_global.prng;
570 }
571
572 /* Guarantee the PRNG is seeded. */
573 if (__predict_false(!prng->arc4_seeded))
574 arc4random_prng_addrandom(prng, NULL, 0);
575
576 return prng;
577 }
578
579 static void
580 arc4random_prng_put(struct arc4random_prng *prng)
581 {
582
583 /* If we had fallen back to the global PRNG, unlock it. */
584 if (__predict_false(prng == &arc4random_global.prng))
585 mutex_unlock(&arc4random_global.lock);
586 }
587
588 /* Public API */
589
590 uint32_t
591 arc4random(void)
592 {
593 struct arc4random_prng *prng;
594 uint32_t v;
595
596 prng = arc4random_prng_get();
597 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
598 arc4random_prng_put(prng);
599
600 return v;
601 }
602
603 void
604 arc4random_buf(void *buf, size_t len)
605 {
606 struct arc4random_prng *prng;
607
608 if (len <= crypto_prng_MAXOUTPUTBYTES) {
609 prng = arc4random_prng_get();
610 crypto_prng_buf(&prng->arc4_prng, buf, len);
611 arc4random_prng_put(prng);
612 } else {
613 uint8_t seed[crypto_onetimestream_SEEDBYTES];
614
615 prng = arc4random_prng_get();
616 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
617 arc4random_prng_put(prng);
618
619 crypto_onetimestream(seed, buf, len);
620 (void)explicit_memset(seed, 0, sizeof seed);
621 }
622 }
623
624 uint32_t
625 arc4random_uniform(uint32_t bound)
626 {
627 struct arc4random_prng *prng;
628 uint32_t minimum, r;
629
630 /*
631 * We want a uniform random choice in [0, n), and arc4random()
632 * makes a uniform random choice in [0, 2^32). If we reduce
633 * that modulo n, values in [0, 2^32 mod n) will be represented
634 * slightly more than values in [2^32 mod n, n). Instead we
635 * choose only from [2^32 mod n, 2^32) by rejecting samples in
636 * [0, 2^32 mod n), to avoid counting the extra representative
637 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
638 *
639 * 2^32 mod n = 2^32 mod n - 0
640 * = 2^32 mod n - n mod n
641 * = (2^32 - n) mod n,
642 *
643 * the last of which is what we compute in 32-bit arithmetic.
644 */
645 minimum = (-bound % bound);
646
647 prng = arc4random_prng_get();
648 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
649 while (__predict_false(r < minimum));
650 arc4random_prng_put(prng);
651
652 return (r % bound);
653 }
654
655 void
656 arc4random_stir(void)
657 {
658 struct arc4random_prng *prng;
659
660 prng = arc4random_prng_get();
661 arc4random_prng_addrandom(prng, NULL, 0);
662 arc4random_prng_put(prng);
663 }
664
665 /*
666 * Silly signature here is for hysterical raisins. Should instead be
667 * const void *data and size_t datalen.
668 */
669 void
670 arc4random_addrandom(u_char *data, int datalen)
671 {
672 struct arc4random_prng *prng;
673
674 _DIAGASSERT(0 <= datalen);
675
676 prng = arc4random_prng_get();
677 arc4random_prng_addrandom(prng, data, datalen);
678 arc4random_prng_put(prng);
679 }
680
681 #ifdef _ARC4RANDOM_TEST
682
683 #include <sys/wait.h>
684
685 #include <err.h>
686 #include <stdio.h>
687
688 int
689 main(int argc __unused, char **argv __unused)
690 {
691 unsigned char gubbish[] = "random gubbish";
692 const uint8_t zero64[64] = {0};
693 uint8_t buf[2048];
694 unsigned i, a, n;
695
696 /* Test arc4random: should not be deterministic. */
697 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
698 err(1, "printf");
699
700 /* Test stirring: should definitely not be deterministic. */
701 arc4random_stir();
702
703 /* Test small buffer. */
704 arc4random_buf(buf, 8);
705 if (printf("arc4randombuf small:") < 0)
706 err(1, "printf");
707 for (i = 0; i < 8; i++)
708 if (printf(" %02x", buf[i]) < 0)
709 err(1, "printf");
710 if (printf("\n") < 0)
711 err(1, "printf");
712
713 /* Test addrandom: should not make the rest deterministic. */
714 arc4random_addrandom(gubbish, sizeof gubbish);
715
716 /* Test large buffer. */
717 arc4random_buf(buf, sizeof buf);
718 if (printf("arc4randombuf_large:") < 0)
719 err(1, "printf");
720 for (i = 0; i < sizeof buf; i++)
721 if (printf(" %02x", buf[i]) < 0)
722 err(1, "printf");
723 if (printf("\n") < 0)
724 err(1, "printf");
725
726 /* Test misaligned small and large. */
727 for (a = 0; a < 64; a++) {
728 for (n = a; n < sizeof buf; n++) {
729 (void)memset(buf, 0, sizeof buf);
730 arc4random_buf(buf, n - a);
731 if (memcmp(buf + n - a, zero64, a) != 0)
732 errx(1, "arc4random buffer overflow 0");
733
734 (void)memset(buf, 0, sizeof buf);
735 arc4random_buf(buf + a, n - a);
736 if (memcmp(buf, zero64, a) != 0)
737 errx(1, "arc4random buffer overflow 1");
738
739 if ((2*a) <= n) {
740 (void)memset(buf, 0, sizeof buf);
741 arc4random_buf(buf + a, n - a - a);
742 if (memcmp(buf + n - a, zero64, a) != 0)
743 errx(1,
744 "arc4random buffer overflow 2");
745 }
746 }
747 }
748
749 /* Test fork-safety. */
750 {
751 pid_t pid, rpid;
752 int status;
753
754 pid = fork();
755 switch (pid) {
756 case -1:
757 err(1, "fork");
758 case 0:
759 _exit(arc4random_prng_get()->arc4_seeded);
760 default:
761 rpid = waitpid(pid, &status, 0);
762 if (rpid == -1)
763 err(1, "waitpid");
764 if (rpid != pid)
765 errx(1, "waitpid returned wrong pid"
766 ": %"PRIdMAX" != %"PRIdMAX,
767 (intmax_t)rpid,
768 (intmax_t)pid);
769 if (WIFEXITED(status)) {
770 if (WEXITSTATUS(status) != 0)
771 errx(1, "child exited with %d",
772 WEXITSTATUS(status));
773 } else if (WIFSIGNALED(status)) {
774 errx(1, "child terminated on signal %d",
775 WTERMSIG(status));
776 } else {
777 errx(1, "child died mysteriously: %d", status);
778 }
779 }
780 }
781
782 /* XXX Test multithreaded fork safety...? */
783
784 return 0;
785 }
786 #endif
787