Home | History | Annotate | Line # | Download | only in gen
arc4random.c revision 1.33.2.1
      1 /*	$NetBSD: arc4random.c,v 1.33.2.1 2024/10/09 13:25:10 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Legacy arc4random(3) API from OpenBSD reimplemented using the
     34  * ChaCha20 PRF, with per-thread state.
     35  *
     36  * Security model:
     37  * - An attacker who sees some outputs cannot predict past or future
     38  *   outputs.
     39  * - An attacker who sees the PRNG state cannot predict past outputs.
     40  * - An attacker who sees a child's PRNG state cannot predict past or
     41  *   future outputs in the parent, or in other children.
     42  *
     43  * The arc4random(3) API may abort the process if:
     44  *
     45  * (a) the crypto self-test fails,
     46  * (b) pthread_atfork or thr_keycreate fail, or
     47  * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
     48  *
     49  * The crypto self-test, pthread_atfork, and thr_keycreate occur only
     50  * once, on the first use of any of the arc4random(3) API.  KERN_ARND
     51  * is unlikely to fail later unless the kernel is seriously broken.
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __RCSID("$NetBSD: arc4random.c,v 1.33.2.1 2024/10/09 13:25:10 martin Exp $");
     56 
     57 #include "namespace.h"
     58 #include "reentrant.h"
     59 
     60 #include <sys/bitops.h>
     61 #include <sys/endian.h>
     62 #include <sys/errno.h>
     63 #include <sys/mman.h>
     64 #include <sys/sysctl.h>
     65 
     66 #include <assert.h>
     67 #include <sha2.h>
     68 #include <stdatomic.h>
     69 #include <stdbool.h>
     70 #include <stdint.h>
     71 #include <stdlib.h>
     72 #include <string.h>
     73 #include <unistd.h>
     74 
     75 #include "arc4random.h"
     76 #include "reentrant.h"
     77 
     78 #ifdef __weak_alias
     79 __weak_alias(arc4random,_arc4random)
     80 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
     81 __weak_alias(arc4random_buf,_arc4random_buf)
     82 __weak_alias(arc4random_stir,_arc4random_stir)
     83 __weak_alias(arc4random_uniform,_arc4random_uniform)
     84 #endif
     85 
     86 /*
     87  * For standard ChaCha, use le32dec/le32enc.  We don't need that for
     88  * the purposes of a nondeterministic random number generator -- we
     89  * don't need to be bit-for-bit compatible over any wire.
     90  */
     91 
     92 static inline uint32_t
     93 crypto_le32dec(const void *p)
     94 {
     95 	uint32_t v;
     96 
     97 	(void)memcpy(&v, p, sizeof v);
     98 
     99 	return v;
    100 }
    101 
    102 static inline void
    103 crypto_le32enc(void *p, uint32_t v)
    104 {
    105 
    106 	(void)memcpy(p, &v, sizeof v);
    107 }
    108 
    109 /* ChaCha core */
    110 
    111 #define	crypto_core_OUTPUTBYTES	64
    112 #define	crypto_core_INPUTBYTES	16
    113 #define	crypto_core_KEYBYTES	32
    114 #define	crypto_core_CONSTBYTES	16
    115 
    116 #define	crypto_core_ROUNDS	20
    117 
    118 static uint32_t
    119 rotate(uint32_t u, unsigned c)
    120 {
    121 
    122 	return (u << c) | (u >> (32 - c));
    123 }
    124 
    125 #define	QUARTERROUND(a, b, c, d) do {					      \
    126 	(a) += (b); (d) ^= (a); (d) = rotate((d), 16);			      \
    127 	(c) += (d); (b) ^= (c); (b) = rotate((b), 12);			      \
    128 	(a) += (b); (d) ^= (a); (d) = rotate((d),  8);			      \
    129 	(c) += (d); (b) ^= (c); (b) = rotate((b),  7);			      \
    130 } while (0)
    131 
    132 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
    133 
    134 static void
    135 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
    136     const uint8_t *c)
    137 {
    138 	uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
    139 	uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
    140 	int i;
    141 
    142 	j0 = x0 = crypto_le32dec(c + 0);
    143 	j1 = x1 = crypto_le32dec(c + 4);
    144 	j2 = x2 = crypto_le32dec(c + 8);
    145 	j3 = x3 = crypto_le32dec(c + 12);
    146 	j4 = x4 = crypto_le32dec(k + 0);
    147 	j5 = x5 = crypto_le32dec(k + 4);
    148 	j6 = x6 = crypto_le32dec(k + 8);
    149 	j7 = x7 = crypto_le32dec(k + 12);
    150 	j8 = x8 = crypto_le32dec(k + 16);
    151 	j9 = x9 = crypto_le32dec(k + 20);
    152 	j10 = x10 = crypto_le32dec(k + 24);
    153 	j11 = x11 = crypto_le32dec(k + 28);
    154 	j12 = x12 = crypto_le32dec(in + 0);
    155 	j13 = x13 = crypto_le32dec(in + 4);
    156 	j14 = x14 = crypto_le32dec(in + 8);
    157 	j15 = x15 = crypto_le32dec(in + 12);
    158 
    159 	for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
    160 		QUARTERROUND( x0, x4, x8,x12);
    161 		QUARTERROUND( x1, x5, x9,x13);
    162 		QUARTERROUND( x2, x6,x10,x14);
    163 		QUARTERROUND( x3, x7,x11,x15);
    164 		QUARTERROUND( x0, x5,x10,x15);
    165 		QUARTERROUND( x1, x6,x11,x12);
    166 		QUARTERROUND( x2, x7, x8,x13);
    167 		QUARTERROUND( x3, x4, x9,x14);
    168 	}
    169 
    170 	crypto_le32enc(out + 0, x0 + j0);
    171 	crypto_le32enc(out + 4, x1 + j1);
    172 	crypto_le32enc(out + 8, x2 + j2);
    173 	crypto_le32enc(out + 12, x3 + j3);
    174 	crypto_le32enc(out + 16, x4 + j4);
    175 	crypto_le32enc(out + 20, x5 + j5);
    176 	crypto_le32enc(out + 24, x6 + j6);
    177 	crypto_le32enc(out + 28, x7 + j7);
    178 	crypto_le32enc(out + 32, x8 + j8);
    179 	crypto_le32enc(out + 36, x9 + j9);
    180 	crypto_le32enc(out + 40, x10 + j10);
    181 	crypto_le32enc(out + 44, x11 + j11);
    182 	crypto_le32enc(out + 48, x12 + j12);
    183 	crypto_le32enc(out + 52, x13 + j13);
    184 	crypto_le32enc(out + 56, x14 + j14);
    185 	crypto_le32enc(out + 60, x15 + j15);
    186 }
    187 
    188 /* ChaCha self-test */
    189 
    190 #ifdef _DIAGNOSTIC
    191 
    192 /*
    193  * Test vector for ChaCha20 from
    194  * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
    195  * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
    196  * generated by the same crypto_core code with crypto_core_ROUNDS and
    197  * crypto_le32enc/dec varied.
    198  */
    199 
    200 static const uint8_t crypto_core_selftest_vector[64] = {
    201 #if _BYTE_ORDER == _LITTLE_ENDIAN
    202 #  if crypto_core_ROUNDS == 8
    203 	0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
    204 	0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
    205 	0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
    206 	0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
    207 	0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
    208 	0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
    209 	0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
    210 	0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
    211 #  elif crypto_core_ROUNDS == 12
    212 	0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
    213 	0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
    214 	0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
    215 	0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
    216 	0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
    217 	0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
    218 	0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
    219 	0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
    220 #  elif crypto_core_ROUNDS == 20
    221 	0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
    222 	0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
    223 	0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
    224 	0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
    225 	0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
    226 	0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
    227 	0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
    228 	0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
    229 #  else
    230 #    error crypto_core_ROUNDS must be 8, 12, or 20.
    231 #  endif
    232 #elif _BYTE_ORDER == _BIG_ENDIAN
    233 #  if crypto_core_ROUNDS == 8
    234 	0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
    235 	0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
    236 	0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
    237 	0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
    238 	0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
    239 	0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
    240 	0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
    241 	0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
    242 #  elif crypto_core_ROUNDS == 12
    243 	0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
    244 	0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
    245 	0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
    246 	0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
    247 	0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
    248 	0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
    249 	0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
    250 	0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
    251 #  elif crypto_core_ROUNDS == 20
    252 	0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
    253 	0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
    254 	0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
    255 	0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
    256 	0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
    257 	0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
    258 	0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
    259 	0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
    260 #  else
    261 #    error crypto_core_ROUNDS must be 8, 12, or 20.
    262 #  endif
    263 #else
    264 #  error Byte order must be little-endian or big-endian.
    265 #endif
    266 };
    267 
    268 static int
    269 crypto_core_selftest(void)
    270 {
    271 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
    272 	const uint8_t key[crypto_core_KEYBYTES] = {0};
    273 	uint8_t block[64];
    274 	unsigned i;
    275 
    276 	crypto_core(block, nonce, key, crypto_core_constant32);
    277 	for (i = 0; i < 64; i++) {
    278 		if (block[i] != crypto_core_selftest_vector[i])
    279 			return EIO;
    280 	}
    281 
    282 	return 0;
    283 }
    284 
    285 #else  /* !_DIAGNOSTIC */
    286 
    287 static int
    288 crypto_core_selftest(void)
    289 {
    290 
    291 	return 0;
    292 }
    293 
    294 #endif
    295 
    296 /* PRNG */
    297 
    298 /*
    299  * For a state s, rather than use ChaCha20 as a stream cipher to
    300  * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
    301  * split ChaCha20_s(0) into s' || x and yield x for the first request,
    302  * split ChaCha20_s'(0) into s'' || y and yield y for the second
    303  * request, &c.  This provides backtracking resistance: an attacker who
    304  * finds s'' can't recover s' or x.
    305  */
    306 
    307 #define	crypto_prng_SEEDBYTES		crypto_core_KEYBYTES
    308 #define	crypto_prng_MAXOUTPUTBYTES	\
    309 	(crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
    310 
    311 __CTASSERT(sizeof(struct crypto_prng) == crypto_prng_SEEDBYTES);
    312 
    313 static void
    314 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
    315 {
    316 
    317 	(void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
    318 }
    319 
    320 static void
    321 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
    322 {
    323 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
    324 	uint8_t output[crypto_core_OUTPUTBYTES];
    325 
    326 	_DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
    327 	__CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
    328 	    <= sizeof output);
    329 
    330 	crypto_core(output, nonce, prng->state, crypto_core_constant32);
    331 	(void)memcpy(prng->state, output, sizeof prng->state);
    332 	(void)memcpy(buf, output + sizeof prng->state, n);
    333 	(void)explicit_memset(output, 0, sizeof output);
    334 }
    335 
    336 /* One-time stream: expand short single-use secret into long secret */
    337 
    338 #define	crypto_onetimestream_SEEDBYTES	crypto_core_KEYBYTES
    339 
    340 static void
    341 crypto_onetimestream(const void *seed, void *buf, size_t n)
    342 {
    343 	uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
    344 	uint8_t block[crypto_core_OUTPUTBYTES];
    345 	uint8_t *p8, *p32;
    346 	const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
    347 	size_t ni, nb, nf;
    348 
    349 	/*
    350 	 * Guarantee we can generate up to n bytes.  We have
    351 	 * 2^(8*INPUTBYTES) possible inputs yielding output of
    352 	 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes.  It suffices to require
    353 	 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
    354 	 * (1/CHAR_BIT) log_2 of the total output stream length.  We
    355 	 * have
    356 	 *
    357 	 *	log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
    358 	 *	  = log_2 o + 8 i.
    359 	 */
    360 #ifndef __lint__
    361 	__CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
    362 		8 * crypto_core_INPUTBYTES));
    363 #endif
    364 
    365 	p8 = buf;
    366 	p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
    367 	ni = p32 - p8;
    368 	if (n < ni)
    369 		ni = n;
    370 	nb = (n - ni) / sizeof block;
    371 	nf = (n - ni) % sizeof block;
    372 
    373 	_DIAGASSERT(((uintptr_t)p32 & 3) == 0);
    374 	_DIAGASSERT(ni <= n);
    375 	_DIAGASSERT(nb <= (n / sizeof block));
    376 	_DIAGASSERT(nf <= n);
    377 	_DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
    378 	_DIAGASSERT(ni < 4);
    379 	_DIAGASSERT(nf < sizeof block);
    380 
    381 	if (ni) {
    382 		crypto_core(block, nonce8, seed, crypto_core_constant32);
    383 		nonce[0]++;
    384 		(void)memcpy(p8, block, ni);
    385 	}
    386 	while (nb--) {
    387 		crypto_core(p32, nonce8, seed, crypto_core_constant32);
    388 		if (++nonce[0] == 0)
    389 			nonce[1]++;
    390 		p32 += crypto_core_OUTPUTBYTES;
    391 	}
    392 	if (nf) {
    393 		crypto_core(block, nonce8, seed, crypto_core_constant32);
    394 		if (++nonce[0] == 0)
    395 			nonce[1]++;
    396 		(void)memcpy(p32, block, nf);
    397 	}
    398 
    399 	if (ni | nf)
    400 		(void)explicit_memset(block, 0, sizeof block);
    401 }
    402 
    403 /*
    404  * entropy_epoch()
    405  *
    406  *	Return the current entropy epoch, from the sysctl node
    407  *	kern.entropy.epoch.
    408  *
    409  *	The entropy epoch is never zero.  Initially, or on error, it is
    410  *	(unsigned)-1.  It may wrap around but it skips (unsigned)-1 and
    411  *	0 when it does.  Changes happen less than once per second, so
    412  *	wraparound will only affect systems after 136 years of uptime.
    413  *
    414  *	XXX This should get it from a page shared read-only by kernel
    415  *	with userland, but until we implement such a mechanism, this
    416  *	sysctl -- incurring the cost of a syscall -- will have to
    417  *	serve.
    418  */
    419 static unsigned
    420 entropy_epoch(void)
    421 {
    422 	static atomic_int mib0[3];
    423 	static atomic_bool initialized = false;
    424 	int mib[3];
    425 	unsigned epoch = (unsigned)-1;
    426 	size_t epochlen = sizeof(epoch);
    427 
    428 	/*
    429 	 * Resolve kern.entropy.epoch if we haven't already.  Cache it
    430 	 * for the next caller.  Initialization is idempotent, so it's
    431 	 * OK if two threads do it at once.
    432 	 */
    433 	if (atomic_load_explicit(&initialized, memory_order_acquire)) {
    434 		mib[0] = atomic_load_explicit(&mib0[0], memory_order_relaxed);
    435 		mib[1] = atomic_load_explicit(&mib0[1], memory_order_relaxed);
    436 		mib[2] = atomic_load_explicit(&mib0[2], memory_order_relaxed);
    437 	} else {
    438 		size_t nmib = __arraycount(mib);
    439 
    440 		if (sysctlnametomib("kern.entropy.epoch", mib, &nmib) == -1)
    441 			return (unsigned)-1;
    442 		if (nmib != __arraycount(mib))
    443 			return (unsigned)-1;
    444 		atomic_store_explicit(&mib0[0], mib[0], memory_order_relaxed);
    445 		atomic_store_explicit(&mib0[1], mib[1], memory_order_relaxed);
    446 		atomic_store_explicit(&mib0[2], mib[2], memory_order_relaxed);
    447 		atomic_store_explicit(&initialized, true,
    448 		    memory_order_release);
    449 	}
    450 
    451 	if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
    452 		return (unsigned)-1;
    453 	if (epochlen != sizeof(epoch))
    454 		return (unsigned)-1;
    455 
    456 	return epoch;
    457 }
    458 
    459 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
    460 
    461 static void
    462 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
    463     size_t datalen)
    464 {
    465 	const int mib[] = { CTL_KERN, KERN_ARND };
    466 	SHA256_CTX ctx;
    467 	uint8_t buf[crypto_prng_SEEDBYTES];
    468 	size_t buflen = sizeof buf;
    469 	unsigned epoch = entropy_epoch();
    470 
    471 	__CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
    472 
    473 	SHA256_Init(&ctx);
    474 
    475 	crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
    476 	SHA256_Update(&ctx, buf, sizeof buf);
    477 
    478 	if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
    479 		abort();
    480 	if (buflen != sizeof buf)
    481 		abort();
    482 	SHA256_Update(&ctx, buf, sizeof buf);
    483 
    484 	if (data != NULL)
    485 		SHA256_Update(&ctx, data, datalen);
    486 
    487 	SHA256_Final(buf, &ctx);
    488 	(void)explicit_memset(&ctx, 0, sizeof ctx);
    489 
    490 	/* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
    491 	crypto_prng_seed(&prng->arc4_prng, buf);
    492 	(void)explicit_memset(buf, 0, sizeof buf);
    493 	prng->arc4_epoch = epoch;
    494 }
    495 
    496 #ifdef _REENTRANT
    497 static struct arc4random_prng *
    498 arc4random_prng_create(void)
    499 {
    500 	struct arc4random_prng *prng;
    501 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
    502 
    503 	prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
    504 	    0);
    505 	if (prng == MAP_FAILED)
    506 		goto fail0;
    507 	if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
    508 		goto fail1;
    509 
    510 	return prng;
    511 
    512 fail1:	(void)munmap(prng, size);
    513 fail0:	return NULL;
    514 }
    515 #endif
    516 
    517 #ifdef _REENTRANT
    518 static void
    519 arc4random_prng_destroy(struct arc4random_prng *prng)
    520 {
    521 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
    522 
    523 	(void)explicit_memset(prng, 0, sizeof(*prng));
    524 	(void)munmap(prng, size);
    525 }
    526 #endif
    527 
    528 /* Library state */
    529 
    530 struct arc4random_global_state arc4random_global = {
    531 #ifdef _REENTRANT
    532 	.lock		= MUTEX_INITIALIZER,
    533 #endif
    534 	.initialized	= false,
    535 };
    536 
    537 static void
    538 arc4random_atfork_prepare(void)
    539 {
    540 
    541 	mutex_lock(&arc4random_global.lock);
    542 	(void)explicit_memset(&arc4random_global.prng, 0,
    543 	    sizeof arc4random_global.prng);
    544 }
    545 
    546 static void
    547 arc4random_atfork_parent(void)
    548 {
    549 
    550 	mutex_unlock(&arc4random_global.lock);
    551 }
    552 
    553 static void
    554 arc4random_atfork_child(void)
    555 {
    556 
    557 	mutex_unlock(&arc4random_global.lock);
    558 }
    559 
    560 #ifdef _REENTRANT
    561 static void
    562 arc4random_tsd_destructor(void *p)
    563 {
    564 	struct arc4random_prng *const prng = p;
    565 
    566 	arc4random_prng_destroy(prng);
    567 }
    568 #endif
    569 
    570 static void
    571 arc4random_initialize(void)
    572 {
    573 
    574 	mutex_lock(&arc4random_global.lock);
    575 	if (!arc4random_global.initialized) {
    576 		if (crypto_core_selftest() != 0)
    577 			abort();
    578 		if (pthread_atfork(&arc4random_atfork_prepare,
    579 			&arc4random_atfork_parent, &arc4random_atfork_child)
    580 		    != 0)
    581 			abort();
    582 #ifdef _REENTRANT
    583 		if (thr_keycreate(&arc4random_global.thread_key,
    584 			&arc4random_tsd_destructor) != 0)
    585 			abort();
    586 #endif
    587 		arc4random_global.initialized = true;
    588 	}
    589 	mutex_unlock(&arc4random_global.lock);
    590 }
    591 
    592 static struct arc4random_prng *
    593 arc4random_prng_get(void)
    594 {
    595 	struct arc4random_prng *prng = NULL;
    596 
    597 	/* Make sure the library is initialized.  */
    598 	if (__predict_false(!arc4random_global.initialized))
    599 		arc4random_initialize();
    600 
    601 #ifdef _REENTRANT
    602 	/* Get or create the per-thread PRNG state.  */
    603 	prng = thr_getspecific(arc4random_global.thread_key);
    604 	if (__predict_false(prng == NULL)) {
    605 		prng = arc4random_prng_create();
    606 		thr_setspecific(arc4random_global.thread_key, prng);
    607 	}
    608 #endif
    609 
    610 	/* If we can't create it, fall back to the global PRNG.  */
    611 	if (__predict_false(prng == NULL)) {
    612 		mutex_lock(&arc4random_global.lock);
    613 		prng = &arc4random_global.prng;
    614 	}
    615 
    616 	/* Guarantee the PRNG is seeded.  */
    617 	if (__predict_false(prng->arc4_epoch != entropy_epoch()))
    618 		arc4random_prng_addrandom(prng, NULL, 0);
    619 
    620 	return prng;
    621 }
    622 
    623 static void
    624 arc4random_prng_put(struct arc4random_prng *prng)
    625 {
    626 
    627 	/* If we had fallen back to the global PRNG, unlock it.  */
    628 	if (__predict_false(prng == &arc4random_global.prng))
    629 		mutex_unlock(&arc4random_global.lock);
    630 }
    631 
    632 /* Public API */
    633 
    634 uint32_t
    635 arc4random(void)
    636 {
    637 	struct arc4random_prng *prng;
    638 	uint32_t v;
    639 
    640 	prng = arc4random_prng_get();
    641 	crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
    642 	arc4random_prng_put(prng);
    643 
    644 	return v;
    645 }
    646 
    647 void
    648 arc4random_buf(void *buf, size_t len)
    649 {
    650 	struct arc4random_prng *prng;
    651 
    652 	if (len <= crypto_prng_MAXOUTPUTBYTES) {
    653 		prng = arc4random_prng_get();
    654 		crypto_prng_buf(&prng->arc4_prng, buf, len);
    655 		arc4random_prng_put(prng);
    656 	} else {
    657 		uint8_t seed[crypto_onetimestream_SEEDBYTES];
    658 
    659 		prng = arc4random_prng_get();
    660 		crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
    661 		arc4random_prng_put(prng);
    662 
    663 		crypto_onetimestream(seed, buf, len);
    664 		(void)explicit_memset(seed, 0, sizeof seed);
    665 	}
    666 }
    667 
    668 uint32_t
    669 arc4random_uniform(uint32_t bound)
    670 {
    671 	struct arc4random_prng *prng;
    672 	uint32_t minimum, r;
    673 
    674 	/*
    675 	 * We want a uniform random choice in [0, n), and arc4random()
    676 	 * makes a uniform random choice in [0, 2^32).  If we reduce
    677 	 * that modulo n, values in [0, 2^32 mod n) will be represented
    678 	 * slightly more than values in [2^32 mod n, n).  Instead we
    679 	 * choose only from [2^32 mod n, 2^32) by rejecting samples in
    680 	 * [0, 2^32 mod n), to avoid counting the extra representative
    681 	 * of [0, 2^32 mod n).  To compute 2^32 mod n, note that
    682 	 *
    683 	 *	2^32 mod n = 2^32 mod n - 0
    684 	 *	  = 2^32 mod n - n mod n
    685 	 *	  = (2^32 - n) mod n,
    686 	 *
    687 	 * the last of which is what we compute in 32-bit arithmetic.
    688 	 */
    689 	minimum = (-bound % bound);
    690 
    691 	prng = arc4random_prng_get();
    692 	do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
    693 	while (__predict_false(r < minimum));
    694 	arc4random_prng_put(prng);
    695 
    696 	return (r % bound);
    697 }
    698 
    699 void
    700 arc4random_stir(void)
    701 {
    702 	struct arc4random_prng *prng;
    703 
    704 	prng = arc4random_prng_get();
    705 	arc4random_prng_addrandom(prng, NULL, 0);
    706 	arc4random_prng_put(prng);
    707 }
    708 
    709 /*
    710  * Silly signature here is for hysterical raisins.  Should instead be
    711  * const void *data and size_t datalen.
    712  */
    713 void
    714 arc4random_addrandom(u_char *data, int datalen)
    715 {
    716 	struct arc4random_prng *prng;
    717 
    718 	_DIAGASSERT(0 <= datalen);
    719 
    720 	prng = arc4random_prng_get();
    721 	arc4random_prng_addrandom(prng, data, datalen);
    722 	arc4random_prng_put(prng);
    723 }
    724 
    725 #ifdef _ARC4RANDOM_TEST
    726 
    727 #include <sys/wait.h>
    728 
    729 #include <err.h>
    730 #include <stdio.h>
    731 
    732 int
    733 main(int argc __unused, char **argv __unused)
    734 {
    735 	unsigned char gubbish[] = "random gubbish";
    736 	const uint8_t zero64[64] = {0};
    737 	uint8_t buf[2048];
    738 	unsigned i, a, n;
    739 
    740 	/* Test arc4random: should not be deterministic.  */
    741 	if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
    742 		err(1, "printf");
    743 
    744 	/* Test stirring: should definitely not be deterministic.  */
    745 	arc4random_stir();
    746 
    747 	/* Test small buffer.  */
    748 	arc4random_buf(buf, 8);
    749 	if (printf("arc4randombuf small:") < 0)
    750 		err(1, "printf");
    751 	for (i = 0; i < 8; i++)
    752 		if (printf(" %02x", buf[i]) < 0)
    753 			err(1, "printf");
    754 	if (printf("\n") < 0)
    755 		err(1, "printf");
    756 
    757 	/* Test addrandom: should not make the rest deterministic.  */
    758 	arc4random_addrandom(gubbish, sizeof gubbish);
    759 
    760 	/* Test large buffer.  */
    761 	arc4random_buf(buf, sizeof buf);
    762 	if (printf("arc4randombuf_large:") < 0)
    763 		err(1, "printf");
    764 	for (i = 0; i < sizeof buf; i++)
    765 		if (printf(" %02x", buf[i]) < 0)
    766 			err(1, "printf");
    767 	if (printf("\n") < 0)
    768 		err(1, "printf");
    769 
    770 	/* Test misaligned small and large.  */
    771 	for (a = 0; a < 64; a++) {
    772 		for (n = a; n < sizeof buf; n++) {
    773 			(void)memset(buf, 0, sizeof buf);
    774 			arc4random_buf(buf, n - a);
    775 			if (memcmp(buf + n - a, zero64, a) != 0)
    776 				errx(1, "arc4random buffer overflow 0");
    777 
    778 			(void)memset(buf, 0, sizeof buf);
    779 			arc4random_buf(buf + a, n - a);
    780 			if (memcmp(buf, zero64, a) != 0)
    781 				errx(1, "arc4random buffer overflow 1");
    782 
    783 			if ((2*a) <= n) {
    784 				(void)memset(buf, 0, sizeof buf);
    785 				arc4random_buf(buf + a, n - a - a);
    786 				if (memcmp(buf + n - a, zero64, a) != 0)
    787 					errx(1,
    788 					    "arc4random buffer overflow 2");
    789 			}
    790 		}
    791 	}
    792 
    793 	/* Test fork-safety.  */
    794     {
    795 	pid_t pid, rpid;
    796 	int status;
    797 
    798 	pid = fork();
    799 	switch (pid) {
    800 	case -1:
    801 		err(1, "fork");
    802 	case 0: {
    803 		/*
    804 		 * Verify the epoch has been set to zero by fork.
    805 		 */
    806 		struct arc4random_prng *prng = NULL;
    807 #ifdef _REENTRANT
    808 		prng = thr_getspecific(arc4random_global.thread_key);
    809 #endif
    810 		if (prng == NULL)
    811 			prng = &arc4random_global.prng;
    812 		_exit(prng->arc4_epoch != 0);
    813 	}
    814 	default:
    815 		rpid = waitpid(pid, &status, 0);
    816 		if (rpid == -1)
    817 			err(1, "waitpid");
    818 		if (rpid != pid)
    819 			errx(1, "waitpid returned wrong pid"
    820 			    ": %"PRIdMAX" != %"PRIdMAX,
    821 			    (intmax_t)rpid,
    822 			    (intmax_t)pid);
    823 		if (WIFEXITED(status)) {
    824 			if (WEXITSTATUS(status) != 0)
    825 				errx(1, "child exited with %d",
    826 				    WEXITSTATUS(status));
    827 		} else if (WIFSIGNALED(status)) {
    828 			errx(1, "child terminated on signal %d",
    829 			    WTERMSIG(status));
    830 		} else {
    831 			errx(1, "child died mysteriously: %d", status);
    832 		}
    833 	}
    834     }
    835 
    836 	/* XXX Test multithreaded fork safety...?  */
    837 
    838 	return 0;
    839 }
    840 #endif
    841