arc4random.c revision 1.33.2.1 1 /* $NetBSD: arc4random.c,v 1.33.2.1 2024/10/09 13:25:10 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
35 *
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
42 *
43 * The arc4random(3) API may abort the process if:
44 *
45 * (a) the crypto self-test fails,
46 * (b) pthread_atfork or thr_keycreate fail, or
47 * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
48 *
49 * The crypto self-test, pthread_atfork, and thr_keycreate occur only
50 * once, on the first use of any of the arc4random(3) API. KERN_ARND
51 * is unlikely to fail later unless the kernel is seriously broken.
52 */
53
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.33.2.1 2024/10/09 13:25:10 martin Exp $");
56
57 #include "namespace.h"
58 #include "reentrant.h"
59
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #include <sys/mman.h>
64 #include <sys/sysctl.h>
65
66 #include <assert.h>
67 #include <sha2.h>
68 #include <stdatomic.h>
69 #include <stdbool.h>
70 #include <stdint.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <unistd.h>
74
75 #include "arc4random.h"
76 #include "reentrant.h"
77
78 #ifdef __weak_alias
79 __weak_alias(arc4random,_arc4random)
80 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
81 __weak_alias(arc4random_buf,_arc4random_buf)
82 __weak_alias(arc4random_stir,_arc4random_stir)
83 __weak_alias(arc4random_uniform,_arc4random_uniform)
84 #endif
85
86 /*
87 * For standard ChaCha, use le32dec/le32enc. We don't need that for
88 * the purposes of a nondeterministic random number generator -- we
89 * don't need to be bit-for-bit compatible over any wire.
90 */
91
92 static inline uint32_t
93 crypto_le32dec(const void *p)
94 {
95 uint32_t v;
96
97 (void)memcpy(&v, p, sizeof v);
98
99 return v;
100 }
101
102 static inline void
103 crypto_le32enc(void *p, uint32_t v)
104 {
105
106 (void)memcpy(p, &v, sizeof v);
107 }
108
109 /* ChaCha core */
110
111 #define crypto_core_OUTPUTBYTES 64
112 #define crypto_core_INPUTBYTES 16
113 #define crypto_core_KEYBYTES 32
114 #define crypto_core_CONSTBYTES 16
115
116 #define crypto_core_ROUNDS 20
117
118 static uint32_t
119 rotate(uint32_t u, unsigned c)
120 {
121
122 return (u << c) | (u >> (32 - c));
123 }
124
125 #define QUARTERROUND(a, b, c, d) do { \
126 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
127 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
128 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
129 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
130 } while (0)
131
132 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
133
134 static void
135 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
136 const uint8_t *c)
137 {
138 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
139 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
140 int i;
141
142 j0 = x0 = crypto_le32dec(c + 0);
143 j1 = x1 = crypto_le32dec(c + 4);
144 j2 = x2 = crypto_le32dec(c + 8);
145 j3 = x3 = crypto_le32dec(c + 12);
146 j4 = x4 = crypto_le32dec(k + 0);
147 j5 = x5 = crypto_le32dec(k + 4);
148 j6 = x6 = crypto_le32dec(k + 8);
149 j7 = x7 = crypto_le32dec(k + 12);
150 j8 = x8 = crypto_le32dec(k + 16);
151 j9 = x9 = crypto_le32dec(k + 20);
152 j10 = x10 = crypto_le32dec(k + 24);
153 j11 = x11 = crypto_le32dec(k + 28);
154 j12 = x12 = crypto_le32dec(in + 0);
155 j13 = x13 = crypto_le32dec(in + 4);
156 j14 = x14 = crypto_le32dec(in + 8);
157 j15 = x15 = crypto_le32dec(in + 12);
158
159 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
160 QUARTERROUND( x0, x4, x8,x12);
161 QUARTERROUND( x1, x5, x9,x13);
162 QUARTERROUND( x2, x6,x10,x14);
163 QUARTERROUND( x3, x7,x11,x15);
164 QUARTERROUND( x0, x5,x10,x15);
165 QUARTERROUND( x1, x6,x11,x12);
166 QUARTERROUND( x2, x7, x8,x13);
167 QUARTERROUND( x3, x4, x9,x14);
168 }
169
170 crypto_le32enc(out + 0, x0 + j0);
171 crypto_le32enc(out + 4, x1 + j1);
172 crypto_le32enc(out + 8, x2 + j2);
173 crypto_le32enc(out + 12, x3 + j3);
174 crypto_le32enc(out + 16, x4 + j4);
175 crypto_le32enc(out + 20, x5 + j5);
176 crypto_le32enc(out + 24, x6 + j6);
177 crypto_le32enc(out + 28, x7 + j7);
178 crypto_le32enc(out + 32, x8 + j8);
179 crypto_le32enc(out + 36, x9 + j9);
180 crypto_le32enc(out + 40, x10 + j10);
181 crypto_le32enc(out + 44, x11 + j11);
182 crypto_le32enc(out + 48, x12 + j12);
183 crypto_le32enc(out + 52, x13 + j13);
184 crypto_le32enc(out + 56, x14 + j14);
185 crypto_le32enc(out + 60, x15 + j15);
186 }
187
188 /* ChaCha self-test */
189
190 #ifdef _DIAGNOSTIC
191
192 /*
193 * Test vector for ChaCha20 from
194 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
195 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
196 * generated by the same crypto_core code with crypto_core_ROUNDS and
197 * crypto_le32enc/dec varied.
198 */
199
200 static const uint8_t crypto_core_selftest_vector[64] = {
201 #if _BYTE_ORDER == _LITTLE_ENDIAN
202 # if crypto_core_ROUNDS == 8
203 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
204 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
205 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
206 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
207 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
208 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
209 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
210 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
211 # elif crypto_core_ROUNDS == 12
212 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
213 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
214 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
215 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
216 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
217 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
218 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
219 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
220 # elif crypto_core_ROUNDS == 20
221 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
222 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
223 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
224 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
225 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
226 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
227 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
228 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
229 # else
230 # error crypto_core_ROUNDS must be 8, 12, or 20.
231 # endif
232 #elif _BYTE_ORDER == _BIG_ENDIAN
233 # if crypto_core_ROUNDS == 8
234 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
235 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
236 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
237 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
238 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
239 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
240 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
241 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
242 # elif crypto_core_ROUNDS == 12
243 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
244 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
245 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
246 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
247 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
248 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
249 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
250 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
251 # elif crypto_core_ROUNDS == 20
252 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
253 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
254 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
255 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
256 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
257 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
258 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
259 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
260 # else
261 # error crypto_core_ROUNDS must be 8, 12, or 20.
262 # endif
263 #else
264 # error Byte order must be little-endian or big-endian.
265 #endif
266 };
267
268 static int
269 crypto_core_selftest(void)
270 {
271 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
272 const uint8_t key[crypto_core_KEYBYTES] = {0};
273 uint8_t block[64];
274 unsigned i;
275
276 crypto_core(block, nonce, key, crypto_core_constant32);
277 for (i = 0; i < 64; i++) {
278 if (block[i] != crypto_core_selftest_vector[i])
279 return EIO;
280 }
281
282 return 0;
283 }
284
285 #else /* !_DIAGNOSTIC */
286
287 static int
288 crypto_core_selftest(void)
289 {
290
291 return 0;
292 }
293
294 #endif
295
296 /* PRNG */
297
298 /*
299 * For a state s, rather than use ChaCha20 as a stream cipher to
300 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
301 * split ChaCha20_s(0) into s' || x and yield x for the first request,
302 * split ChaCha20_s'(0) into s'' || y and yield y for the second
303 * request, &c. This provides backtracking resistance: an attacker who
304 * finds s'' can't recover s' or x.
305 */
306
307 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
308 #define crypto_prng_MAXOUTPUTBYTES \
309 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
310
311 __CTASSERT(sizeof(struct crypto_prng) == crypto_prng_SEEDBYTES);
312
313 static void
314 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
315 {
316
317 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
318 }
319
320 static void
321 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
322 {
323 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
324 uint8_t output[crypto_core_OUTPUTBYTES];
325
326 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
327 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
328 <= sizeof output);
329
330 crypto_core(output, nonce, prng->state, crypto_core_constant32);
331 (void)memcpy(prng->state, output, sizeof prng->state);
332 (void)memcpy(buf, output + sizeof prng->state, n);
333 (void)explicit_memset(output, 0, sizeof output);
334 }
335
336 /* One-time stream: expand short single-use secret into long secret */
337
338 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
339
340 static void
341 crypto_onetimestream(const void *seed, void *buf, size_t n)
342 {
343 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
344 uint8_t block[crypto_core_OUTPUTBYTES];
345 uint8_t *p8, *p32;
346 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
347 size_t ni, nb, nf;
348
349 /*
350 * Guarantee we can generate up to n bytes. We have
351 * 2^(8*INPUTBYTES) possible inputs yielding output of
352 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
353 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
354 * (1/CHAR_BIT) log_2 of the total output stream length. We
355 * have
356 *
357 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
358 * = log_2 o + 8 i.
359 */
360 #ifndef __lint__
361 __CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
362 8 * crypto_core_INPUTBYTES));
363 #endif
364
365 p8 = buf;
366 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
367 ni = p32 - p8;
368 if (n < ni)
369 ni = n;
370 nb = (n - ni) / sizeof block;
371 nf = (n - ni) % sizeof block;
372
373 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
374 _DIAGASSERT(ni <= n);
375 _DIAGASSERT(nb <= (n / sizeof block));
376 _DIAGASSERT(nf <= n);
377 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
378 _DIAGASSERT(ni < 4);
379 _DIAGASSERT(nf < sizeof block);
380
381 if (ni) {
382 crypto_core(block, nonce8, seed, crypto_core_constant32);
383 nonce[0]++;
384 (void)memcpy(p8, block, ni);
385 }
386 while (nb--) {
387 crypto_core(p32, nonce8, seed, crypto_core_constant32);
388 if (++nonce[0] == 0)
389 nonce[1]++;
390 p32 += crypto_core_OUTPUTBYTES;
391 }
392 if (nf) {
393 crypto_core(block, nonce8, seed, crypto_core_constant32);
394 if (++nonce[0] == 0)
395 nonce[1]++;
396 (void)memcpy(p32, block, nf);
397 }
398
399 if (ni | nf)
400 (void)explicit_memset(block, 0, sizeof block);
401 }
402
403 /*
404 * entropy_epoch()
405 *
406 * Return the current entropy epoch, from the sysctl node
407 * kern.entropy.epoch.
408 *
409 * The entropy epoch is never zero. Initially, or on error, it is
410 * (unsigned)-1. It may wrap around but it skips (unsigned)-1 and
411 * 0 when it does. Changes happen less than once per second, so
412 * wraparound will only affect systems after 136 years of uptime.
413 *
414 * XXX This should get it from a page shared read-only by kernel
415 * with userland, but until we implement such a mechanism, this
416 * sysctl -- incurring the cost of a syscall -- will have to
417 * serve.
418 */
419 static unsigned
420 entropy_epoch(void)
421 {
422 static atomic_int mib0[3];
423 static atomic_bool initialized = false;
424 int mib[3];
425 unsigned epoch = (unsigned)-1;
426 size_t epochlen = sizeof(epoch);
427
428 /*
429 * Resolve kern.entropy.epoch if we haven't already. Cache it
430 * for the next caller. Initialization is idempotent, so it's
431 * OK if two threads do it at once.
432 */
433 if (atomic_load_explicit(&initialized, memory_order_acquire)) {
434 mib[0] = atomic_load_explicit(&mib0[0], memory_order_relaxed);
435 mib[1] = atomic_load_explicit(&mib0[1], memory_order_relaxed);
436 mib[2] = atomic_load_explicit(&mib0[2], memory_order_relaxed);
437 } else {
438 size_t nmib = __arraycount(mib);
439
440 if (sysctlnametomib("kern.entropy.epoch", mib, &nmib) == -1)
441 return (unsigned)-1;
442 if (nmib != __arraycount(mib))
443 return (unsigned)-1;
444 atomic_store_explicit(&mib0[0], mib[0], memory_order_relaxed);
445 atomic_store_explicit(&mib0[1], mib[1], memory_order_relaxed);
446 atomic_store_explicit(&mib0[2], mib[2], memory_order_relaxed);
447 atomic_store_explicit(&initialized, true,
448 memory_order_release);
449 }
450
451 if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
452 return (unsigned)-1;
453 if (epochlen != sizeof(epoch))
454 return (unsigned)-1;
455
456 return epoch;
457 }
458
459 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
460
461 static void
462 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
463 size_t datalen)
464 {
465 const int mib[] = { CTL_KERN, KERN_ARND };
466 SHA256_CTX ctx;
467 uint8_t buf[crypto_prng_SEEDBYTES];
468 size_t buflen = sizeof buf;
469 unsigned epoch = entropy_epoch();
470
471 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
472
473 SHA256_Init(&ctx);
474
475 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
476 SHA256_Update(&ctx, buf, sizeof buf);
477
478 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
479 abort();
480 if (buflen != sizeof buf)
481 abort();
482 SHA256_Update(&ctx, buf, sizeof buf);
483
484 if (data != NULL)
485 SHA256_Update(&ctx, data, datalen);
486
487 SHA256_Final(buf, &ctx);
488 (void)explicit_memset(&ctx, 0, sizeof ctx);
489
490 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
491 crypto_prng_seed(&prng->arc4_prng, buf);
492 (void)explicit_memset(buf, 0, sizeof buf);
493 prng->arc4_epoch = epoch;
494 }
495
496 #ifdef _REENTRANT
497 static struct arc4random_prng *
498 arc4random_prng_create(void)
499 {
500 struct arc4random_prng *prng;
501 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
502
503 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
504 0);
505 if (prng == MAP_FAILED)
506 goto fail0;
507 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
508 goto fail1;
509
510 return prng;
511
512 fail1: (void)munmap(prng, size);
513 fail0: return NULL;
514 }
515 #endif
516
517 #ifdef _REENTRANT
518 static void
519 arc4random_prng_destroy(struct arc4random_prng *prng)
520 {
521 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
522
523 (void)explicit_memset(prng, 0, sizeof(*prng));
524 (void)munmap(prng, size);
525 }
526 #endif
527
528 /* Library state */
529
530 struct arc4random_global_state arc4random_global = {
531 #ifdef _REENTRANT
532 .lock = MUTEX_INITIALIZER,
533 #endif
534 .initialized = false,
535 };
536
537 static void
538 arc4random_atfork_prepare(void)
539 {
540
541 mutex_lock(&arc4random_global.lock);
542 (void)explicit_memset(&arc4random_global.prng, 0,
543 sizeof arc4random_global.prng);
544 }
545
546 static void
547 arc4random_atfork_parent(void)
548 {
549
550 mutex_unlock(&arc4random_global.lock);
551 }
552
553 static void
554 arc4random_atfork_child(void)
555 {
556
557 mutex_unlock(&arc4random_global.lock);
558 }
559
560 #ifdef _REENTRANT
561 static void
562 arc4random_tsd_destructor(void *p)
563 {
564 struct arc4random_prng *const prng = p;
565
566 arc4random_prng_destroy(prng);
567 }
568 #endif
569
570 static void
571 arc4random_initialize(void)
572 {
573
574 mutex_lock(&arc4random_global.lock);
575 if (!arc4random_global.initialized) {
576 if (crypto_core_selftest() != 0)
577 abort();
578 if (pthread_atfork(&arc4random_atfork_prepare,
579 &arc4random_atfork_parent, &arc4random_atfork_child)
580 != 0)
581 abort();
582 #ifdef _REENTRANT
583 if (thr_keycreate(&arc4random_global.thread_key,
584 &arc4random_tsd_destructor) != 0)
585 abort();
586 #endif
587 arc4random_global.initialized = true;
588 }
589 mutex_unlock(&arc4random_global.lock);
590 }
591
592 static struct arc4random_prng *
593 arc4random_prng_get(void)
594 {
595 struct arc4random_prng *prng = NULL;
596
597 /* Make sure the library is initialized. */
598 if (__predict_false(!arc4random_global.initialized))
599 arc4random_initialize();
600
601 #ifdef _REENTRANT
602 /* Get or create the per-thread PRNG state. */
603 prng = thr_getspecific(arc4random_global.thread_key);
604 if (__predict_false(prng == NULL)) {
605 prng = arc4random_prng_create();
606 thr_setspecific(arc4random_global.thread_key, prng);
607 }
608 #endif
609
610 /* If we can't create it, fall back to the global PRNG. */
611 if (__predict_false(prng == NULL)) {
612 mutex_lock(&arc4random_global.lock);
613 prng = &arc4random_global.prng;
614 }
615
616 /* Guarantee the PRNG is seeded. */
617 if (__predict_false(prng->arc4_epoch != entropy_epoch()))
618 arc4random_prng_addrandom(prng, NULL, 0);
619
620 return prng;
621 }
622
623 static void
624 arc4random_prng_put(struct arc4random_prng *prng)
625 {
626
627 /* If we had fallen back to the global PRNG, unlock it. */
628 if (__predict_false(prng == &arc4random_global.prng))
629 mutex_unlock(&arc4random_global.lock);
630 }
631
632 /* Public API */
633
634 uint32_t
635 arc4random(void)
636 {
637 struct arc4random_prng *prng;
638 uint32_t v;
639
640 prng = arc4random_prng_get();
641 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
642 arc4random_prng_put(prng);
643
644 return v;
645 }
646
647 void
648 arc4random_buf(void *buf, size_t len)
649 {
650 struct arc4random_prng *prng;
651
652 if (len <= crypto_prng_MAXOUTPUTBYTES) {
653 prng = arc4random_prng_get();
654 crypto_prng_buf(&prng->arc4_prng, buf, len);
655 arc4random_prng_put(prng);
656 } else {
657 uint8_t seed[crypto_onetimestream_SEEDBYTES];
658
659 prng = arc4random_prng_get();
660 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
661 arc4random_prng_put(prng);
662
663 crypto_onetimestream(seed, buf, len);
664 (void)explicit_memset(seed, 0, sizeof seed);
665 }
666 }
667
668 uint32_t
669 arc4random_uniform(uint32_t bound)
670 {
671 struct arc4random_prng *prng;
672 uint32_t minimum, r;
673
674 /*
675 * We want a uniform random choice in [0, n), and arc4random()
676 * makes a uniform random choice in [0, 2^32). If we reduce
677 * that modulo n, values in [0, 2^32 mod n) will be represented
678 * slightly more than values in [2^32 mod n, n). Instead we
679 * choose only from [2^32 mod n, 2^32) by rejecting samples in
680 * [0, 2^32 mod n), to avoid counting the extra representative
681 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
682 *
683 * 2^32 mod n = 2^32 mod n - 0
684 * = 2^32 mod n - n mod n
685 * = (2^32 - n) mod n,
686 *
687 * the last of which is what we compute in 32-bit arithmetic.
688 */
689 minimum = (-bound % bound);
690
691 prng = arc4random_prng_get();
692 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
693 while (__predict_false(r < minimum));
694 arc4random_prng_put(prng);
695
696 return (r % bound);
697 }
698
699 void
700 arc4random_stir(void)
701 {
702 struct arc4random_prng *prng;
703
704 prng = arc4random_prng_get();
705 arc4random_prng_addrandom(prng, NULL, 0);
706 arc4random_prng_put(prng);
707 }
708
709 /*
710 * Silly signature here is for hysterical raisins. Should instead be
711 * const void *data and size_t datalen.
712 */
713 void
714 arc4random_addrandom(u_char *data, int datalen)
715 {
716 struct arc4random_prng *prng;
717
718 _DIAGASSERT(0 <= datalen);
719
720 prng = arc4random_prng_get();
721 arc4random_prng_addrandom(prng, data, datalen);
722 arc4random_prng_put(prng);
723 }
724
725 #ifdef _ARC4RANDOM_TEST
726
727 #include <sys/wait.h>
728
729 #include <err.h>
730 #include <stdio.h>
731
732 int
733 main(int argc __unused, char **argv __unused)
734 {
735 unsigned char gubbish[] = "random gubbish";
736 const uint8_t zero64[64] = {0};
737 uint8_t buf[2048];
738 unsigned i, a, n;
739
740 /* Test arc4random: should not be deterministic. */
741 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
742 err(1, "printf");
743
744 /* Test stirring: should definitely not be deterministic. */
745 arc4random_stir();
746
747 /* Test small buffer. */
748 arc4random_buf(buf, 8);
749 if (printf("arc4randombuf small:") < 0)
750 err(1, "printf");
751 for (i = 0; i < 8; i++)
752 if (printf(" %02x", buf[i]) < 0)
753 err(1, "printf");
754 if (printf("\n") < 0)
755 err(1, "printf");
756
757 /* Test addrandom: should not make the rest deterministic. */
758 arc4random_addrandom(gubbish, sizeof gubbish);
759
760 /* Test large buffer. */
761 arc4random_buf(buf, sizeof buf);
762 if (printf("arc4randombuf_large:") < 0)
763 err(1, "printf");
764 for (i = 0; i < sizeof buf; i++)
765 if (printf(" %02x", buf[i]) < 0)
766 err(1, "printf");
767 if (printf("\n") < 0)
768 err(1, "printf");
769
770 /* Test misaligned small and large. */
771 for (a = 0; a < 64; a++) {
772 for (n = a; n < sizeof buf; n++) {
773 (void)memset(buf, 0, sizeof buf);
774 arc4random_buf(buf, n - a);
775 if (memcmp(buf + n - a, zero64, a) != 0)
776 errx(1, "arc4random buffer overflow 0");
777
778 (void)memset(buf, 0, sizeof buf);
779 arc4random_buf(buf + a, n - a);
780 if (memcmp(buf, zero64, a) != 0)
781 errx(1, "arc4random buffer overflow 1");
782
783 if ((2*a) <= n) {
784 (void)memset(buf, 0, sizeof buf);
785 arc4random_buf(buf + a, n - a - a);
786 if (memcmp(buf + n - a, zero64, a) != 0)
787 errx(1,
788 "arc4random buffer overflow 2");
789 }
790 }
791 }
792
793 /* Test fork-safety. */
794 {
795 pid_t pid, rpid;
796 int status;
797
798 pid = fork();
799 switch (pid) {
800 case -1:
801 err(1, "fork");
802 case 0: {
803 /*
804 * Verify the epoch has been set to zero by fork.
805 */
806 struct arc4random_prng *prng = NULL;
807 #ifdef _REENTRANT
808 prng = thr_getspecific(arc4random_global.thread_key);
809 #endif
810 if (prng == NULL)
811 prng = &arc4random_global.prng;
812 _exit(prng->arc4_epoch != 0);
813 }
814 default:
815 rpid = waitpid(pid, &status, 0);
816 if (rpid == -1)
817 err(1, "waitpid");
818 if (rpid != pid)
819 errx(1, "waitpid returned wrong pid"
820 ": %"PRIdMAX" != %"PRIdMAX,
821 (intmax_t)rpid,
822 (intmax_t)pid);
823 if (WIFEXITED(status)) {
824 if (WEXITSTATUS(status) != 0)
825 errx(1, "child exited with %d",
826 WEXITSTATUS(status));
827 } else if (WIFSIGNALED(status)) {
828 errx(1, "child terminated on signal %d",
829 WTERMSIG(status));
830 } else {
831 errx(1, "child died mysteriously: %d", status);
832 }
833 }
834 }
835
836 /* XXX Test multithreaded fork safety...? */
837
838 return 0;
839 }
840 #endif
841