arc4random.c revision 1.34 1 /* $NetBSD: arc4random.c,v 1.34 2024/01/20 14:52:47 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
35 *
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
42 *
43 * The arc4random(3) API may abort the process if:
44 *
45 * (a) the crypto self-test fails,
46 * (b) pthread_atfork or thr_keycreate fail, or
47 * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
48 *
49 * The crypto self-test, pthread_atfork, and thr_keycreate occur only
50 * once, on the first use of any of the arc4random(3) API. KERN_ARND
51 * is unlikely to fail later unless the kernel is seriously broken.
52 */
53
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.34 2024/01/20 14:52:47 christos Exp $");
56
57 #include "namespace.h"
58 #include "reentrant.h"
59
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #include <sys/mman.h>
64 #include <sys/sysctl.h>
65
66 #include <assert.h>
67 #include <sha2.h>
68 #include <stdbool.h>
69 #include <stdint.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <unistd.h>
73
74 #ifdef __weak_alias
75 __weak_alias(arc4random,_arc4random)
76 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
77 __weak_alias(arc4random_buf,_arc4random_buf)
78 __weak_alias(arc4random_stir,_arc4random_stir)
79 __weak_alias(arc4random_uniform,_arc4random_uniform)
80 #endif
81
82 /*
83 * For standard ChaCha, use le32dec/le32enc. We don't need that for
84 * the purposes of a nondeterministic random number generator -- we
85 * don't need to be bit-for-bit compatible over any wire.
86 */
87
88 static inline uint32_t
89 crypto_le32dec(const void *p)
90 {
91 uint32_t v;
92
93 (void)memcpy(&v, p, sizeof v);
94
95 return v;
96 }
97
98 static inline void
99 crypto_le32enc(void *p, uint32_t v)
100 {
101
102 (void)memcpy(p, &v, sizeof v);
103 }
104
105 /* ChaCha core */
106
107 #define crypto_core_OUTPUTBYTES 64
108 #define crypto_core_INPUTBYTES 16
109 #define crypto_core_KEYBYTES 32
110 #define crypto_core_CONSTBYTES 16
111
112 #define crypto_core_ROUNDS 20
113
114 static uint32_t
115 rotate(uint32_t u, unsigned c)
116 {
117
118 return (u << c) | (u >> (32 - c));
119 }
120
121 #define QUARTERROUND(a, b, c, d) do { \
122 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
123 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
124 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
125 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
126 } while (0)
127
128 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
129
130 static void
131 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
132 const uint8_t *c)
133 {
134 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
135 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
136 int i;
137
138 j0 = x0 = crypto_le32dec(c + 0);
139 j1 = x1 = crypto_le32dec(c + 4);
140 j2 = x2 = crypto_le32dec(c + 8);
141 j3 = x3 = crypto_le32dec(c + 12);
142 j4 = x4 = crypto_le32dec(k + 0);
143 j5 = x5 = crypto_le32dec(k + 4);
144 j6 = x6 = crypto_le32dec(k + 8);
145 j7 = x7 = crypto_le32dec(k + 12);
146 j8 = x8 = crypto_le32dec(k + 16);
147 j9 = x9 = crypto_le32dec(k + 20);
148 j10 = x10 = crypto_le32dec(k + 24);
149 j11 = x11 = crypto_le32dec(k + 28);
150 j12 = x12 = crypto_le32dec(in + 0);
151 j13 = x13 = crypto_le32dec(in + 4);
152 j14 = x14 = crypto_le32dec(in + 8);
153 j15 = x15 = crypto_le32dec(in + 12);
154
155 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
156 QUARTERROUND( x0, x4, x8,x12);
157 QUARTERROUND( x1, x5, x9,x13);
158 QUARTERROUND( x2, x6,x10,x14);
159 QUARTERROUND( x3, x7,x11,x15);
160 QUARTERROUND( x0, x5,x10,x15);
161 QUARTERROUND( x1, x6,x11,x12);
162 QUARTERROUND( x2, x7, x8,x13);
163 QUARTERROUND( x3, x4, x9,x14);
164 }
165
166 crypto_le32enc(out + 0, x0 + j0);
167 crypto_le32enc(out + 4, x1 + j1);
168 crypto_le32enc(out + 8, x2 + j2);
169 crypto_le32enc(out + 12, x3 + j3);
170 crypto_le32enc(out + 16, x4 + j4);
171 crypto_le32enc(out + 20, x5 + j5);
172 crypto_le32enc(out + 24, x6 + j6);
173 crypto_le32enc(out + 28, x7 + j7);
174 crypto_le32enc(out + 32, x8 + j8);
175 crypto_le32enc(out + 36, x9 + j9);
176 crypto_le32enc(out + 40, x10 + j10);
177 crypto_le32enc(out + 44, x11 + j11);
178 crypto_le32enc(out + 48, x12 + j12);
179 crypto_le32enc(out + 52, x13 + j13);
180 crypto_le32enc(out + 56, x14 + j14);
181 crypto_le32enc(out + 60, x15 + j15);
182 }
183
184 /* ChaCha self-test */
185
186 #ifdef _DIAGNOSTIC
187
188 /*
189 * Test vector for ChaCha20 from
190 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
191 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
192 * generated by the same crypto_core code with crypto_core_ROUNDS and
193 * crypto_le32enc/dec varied.
194 */
195
196 static const uint8_t crypto_core_selftest_vector[64] = {
197 #if _BYTE_ORDER == _LITTLE_ENDIAN
198 # if crypto_core_ROUNDS == 8
199 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
200 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
201 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
202 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
203 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
204 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
205 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
206 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
207 # elif crypto_core_ROUNDS == 12
208 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
209 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
210 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
211 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
212 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
213 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
214 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
215 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
216 # elif crypto_core_ROUNDS == 20
217 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
218 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
219 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
220 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
221 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
222 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
223 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
224 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
225 # else
226 # error crypto_core_ROUNDS must be 8, 12, or 20.
227 # endif
228 #elif _BYTE_ORDER == _BIG_ENDIAN
229 # if crypto_core_ROUNDS == 8
230 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
231 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
232 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
233 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
234 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
235 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
236 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
237 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
238 # elif crypto_core_ROUNDS == 12
239 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
240 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
241 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
242 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
243 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
244 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
245 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
246 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
247 # elif crypto_core_ROUNDS == 20
248 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
249 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
250 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
251 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
252 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
253 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
254 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
255 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
256 # else
257 # error crypto_core_ROUNDS must be 8, 12, or 20.
258 # endif
259 #else
260 # error Byte order must be little-endian or big-endian.
261 #endif
262 };
263
264 static int
265 crypto_core_selftest(void)
266 {
267 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
268 const uint8_t key[crypto_core_KEYBYTES] = {0};
269 uint8_t block[64];
270 unsigned i;
271
272 crypto_core(block, nonce, key, crypto_core_constant32);
273 for (i = 0; i < 64; i++) {
274 if (block[i] != crypto_core_selftest_vector[i])
275 return EIO;
276 }
277
278 return 0;
279 }
280
281 #else /* !_DIAGNOSTIC */
282
283 static int
284 crypto_core_selftest(void)
285 {
286
287 return 0;
288 }
289
290 #endif
291
292 /* PRNG */
293
294 /*
295 * For a state s, rather than use ChaCha20 as a stream cipher to
296 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
297 * split ChaCha20_s(0) into s' || x and yield x for the first request,
298 * split ChaCha20_s'(0) into s'' || y and yield y for the second
299 * request, &c. This provides backtracking resistance: an attacker who
300 * finds s'' can't recover s' or x.
301 */
302
303 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
304 #define crypto_prng_MAXOUTPUTBYTES \
305 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
306
307 struct crypto_prng {
308 uint8_t state[crypto_prng_SEEDBYTES];
309 };
310
311 static void
312 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
313 {
314
315 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
316 }
317
318 static void
319 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
320 {
321 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
322 uint8_t output[crypto_core_OUTPUTBYTES];
323
324 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
325 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
326 <= sizeof output);
327
328 crypto_core(output, nonce, prng->state, crypto_core_constant32);
329 (void)memcpy(prng->state, output, sizeof prng->state);
330 (void)memcpy(buf, output + sizeof prng->state, n);
331 (void)explicit_memset(output, 0, sizeof output);
332 }
333
334 /* One-time stream: expand short single-use secret into long secret */
335
336 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
337
338 static void
339 crypto_onetimestream(const void *seed, void *buf, size_t n)
340 {
341 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
342 uint8_t block[crypto_core_OUTPUTBYTES];
343 uint8_t *p8, *p32;
344 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
345 size_t ni, nb, nf;
346
347 /*
348 * Guarantee we can generate up to n bytes. We have
349 * 2^(8*INPUTBYTES) possible inputs yielding output of
350 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
351 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
352 * (1/CHAR_BIT) log_2 of the total output stream length. We
353 * have
354 *
355 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
356 * = log_2 o + 8 i.
357 */
358 #ifndef __lint__
359 __CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
360 8 * crypto_core_INPUTBYTES));
361 #endif
362
363 p8 = buf;
364 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
365 ni = p32 - p8;
366 if (n < ni)
367 ni = n;
368 nb = (n - ni) / sizeof block;
369 nf = (n - ni) % sizeof block;
370
371 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
372 _DIAGASSERT(ni <= n);
373 _DIAGASSERT(nb <= (n / sizeof block));
374 _DIAGASSERT(nf <= n);
375 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
376 _DIAGASSERT(ni < 4);
377 _DIAGASSERT(nf < sizeof block);
378
379 if (ni) {
380 crypto_core(block, nonce8, seed, crypto_core_constant32);
381 nonce[0]++;
382 (void)memcpy(p8, block, ni);
383 }
384 while (nb--) {
385 crypto_core(p32, nonce8, seed, crypto_core_constant32);
386 if (++nonce[0] == 0)
387 nonce[1]++;
388 p32 += crypto_core_OUTPUTBYTES;
389 }
390 if (nf) {
391 crypto_core(block, nonce8, seed, crypto_core_constant32);
392 if (++nonce[0] == 0)
393 nonce[1]++;
394 (void)memcpy(p32, block, nf);
395 }
396
397 if (ni | nf)
398 (void)explicit_memset(block, 0, sizeof block);
399 }
400
401 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
402
403 struct arc4random_prng {
404 struct crypto_prng arc4_prng;
405 bool arc4_seeded;
406 };
407
408 static void
409 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
410 size_t datalen)
411 {
412 const int mib[] = { CTL_KERN, KERN_ARND };
413 SHA256_CTX ctx;
414 uint8_t buf[crypto_prng_SEEDBYTES];
415 size_t buflen = sizeof buf;
416
417 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
418
419 SHA256_Init(&ctx);
420
421 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
422 SHA256_Update(&ctx, buf, sizeof buf);
423
424 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
425 abort();
426 if (buflen != sizeof buf)
427 abort();
428 SHA256_Update(&ctx, buf, sizeof buf);
429
430 if (data != NULL)
431 SHA256_Update(&ctx, data, datalen);
432
433 SHA256_Final(buf, &ctx);
434 (void)explicit_memset(&ctx, 0, sizeof ctx);
435
436 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
437 crypto_prng_seed(&prng->arc4_prng, buf);
438 (void)explicit_memset(buf, 0, sizeof buf);
439 prng->arc4_seeded = true;
440 }
441
442 #ifdef _REENTRANT
443 static struct arc4random_prng *
444 arc4random_prng_create(void)
445 {
446 struct arc4random_prng *prng;
447 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
448
449 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
450 0);
451 if (prng == MAP_FAILED)
452 goto fail0;
453 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
454 goto fail1;
455
456 return prng;
457
458 fail1: (void)munmap(prng, size);
459 fail0: return NULL;
460 }
461 #endif
462
463 #ifdef _REENTRANT
464 static void
465 arc4random_prng_destroy(struct arc4random_prng *prng)
466 {
467 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
468
469 (void)explicit_memset(prng, 0, sizeof(*prng));
470 (void)munmap(prng, size);
471 }
472 #endif
473
474 /* Library state */
475
476 static struct arc4random_global {
477 #ifdef _REENTRANT
478 mutex_t lock;
479 thread_key_t thread_key;
480 #endif
481 struct arc4random_prng prng;
482 bool initialized;
483 } arc4random_global = {
484 #ifdef _REENTRANT
485 .lock = MUTEX_INITIALIZER,
486 #endif
487 .initialized = false,
488 };
489
490 static void
491 arc4random_atfork_prepare(void)
492 {
493
494 mutex_lock(&arc4random_global.lock);
495 (void)explicit_memset(&arc4random_global.prng, 0,
496 sizeof arc4random_global.prng);
497 }
498
499 static void
500 arc4random_atfork_parent(void)
501 {
502
503 mutex_unlock(&arc4random_global.lock);
504 }
505
506 static void
507 arc4random_atfork_child(void)
508 {
509
510 mutex_unlock(&arc4random_global.lock);
511 }
512
513 #ifdef _REENTRANT
514 static void
515 arc4random_tsd_destructor(void *p)
516 {
517 struct arc4random_prng *const prng = p;
518
519 arc4random_prng_destroy(prng);
520 }
521 #endif
522
523 static void
524 arc4random_initialize(void)
525 {
526
527 mutex_lock(&arc4random_global.lock);
528 if (!arc4random_global.initialized) {
529 if (crypto_core_selftest() != 0)
530 abort();
531 if (pthread_atfork(&arc4random_atfork_prepare,
532 &arc4random_atfork_parent, &arc4random_atfork_child)
533 != 0)
534 abort();
535 #ifdef _REENTRANT
536 if (thr_keycreate(&arc4random_global.thread_key,
537 &arc4random_tsd_destructor) != 0)
538 abort();
539 #endif
540 arc4random_global.initialized = true;
541 }
542 mutex_unlock(&arc4random_global.lock);
543 }
544
545 static struct arc4random_prng *
546 arc4random_prng_get(void)
547 {
548 struct arc4random_prng *prng = NULL;
549
550 /* Make sure the library is initialized. */
551 if (__predict_false(!arc4random_global.initialized))
552 arc4random_initialize();
553
554 #ifdef _REENTRANT
555 /* Get or create the per-thread PRNG state. */
556 prng = thr_getspecific(arc4random_global.thread_key);
557 if (__predict_false(prng == NULL)) {
558 prng = arc4random_prng_create();
559 thr_setspecific(arc4random_global.thread_key, prng);
560 }
561 #endif
562
563 /* If we can't create it, fall back to the global PRNG. */
564 if (__predict_false(prng == NULL)) {
565 mutex_lock(&arc4random_global.lock);
566 prng = &arc4random_global.prng;
567 }
568
569 /* Guarantee the PRNG is seeded. */
570 if (__predict_false(!prng->arc4_seeded))
571 arc4random_prng_addrandom(prng, NULL, 0);
572
573 return prng;
574 }
575
576 static void
577 arc4random_prng_put(struct arc4random_prng *prng)
578 {
579
580 /* If we had fallen back to the global PRNG, unlock it. */
581 if (__predict_false(prng == &arc4random_global.prng))
582 mutex_unlock(&arc4random_global.lock);
583 }
584
585 /* Public API */
586
587 uint32_t
588 arc4random(void)
589 {
590 struct arc4random_prng *prng;
591 uint32_t v;
592
593 prng = arc4random_prng_get();
594 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
595 arc4random_prng_put(prng);
596
597 return v;
598 }
599
600 void
601 arc4random_buf(void *buf, size_t len)
602 {
603 struct arc4random_prng *prng;
604
605 if (len <= crypto_prng_MAXOUTPUTBYTES) {
606 prng = arc4random_prng_get();
607 crypto_prng_buf(&prng->arc4_prng, buf, len);
608 arc4random_prng_put(prng);
609 } else {
610 uint8_t seed[crypto_onetimestream_SEEDBYTES];
611
612 prng = arc4random_prng_get();
613 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
614 arc4random_prng_put(prng);
615
616 crypto_onetimestream(seed, buf, len);
617 (void)explicit_memset(seed, 0, sizeof seed);
618 }
619 }
620
621 uint32_t
622 arc4random_uniform(uint32_t bound)
623 {
624 struct arc4random_prng *prng;
625 uint32_t minimum, r;
626
627 /*
628 * We want a uniform random choice in [0, n), and arc4random()
629 * makes a uniform random choice in [0, 2^32). If we reduce
630 * that modulo n, values in [0, 2^32 mod n) will be represented
631 * slightly more than values in [2^32 mod n, n). Instead we
632 * choose only from [2^32 mod n, 2^32) by rejecting samples in
633 * [0, 2^32 mod n), to avoid counting the extra representative
634 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
635 *
636 * 2^32 mod n = 2^32 mod n - 0
637 * = 2^32 mod n - n mod n
638 * = (2^32 - n) mod n,
639 *
640 * the last of which is what we compute in 32-bit arithmetic.
641 */
642 minimum = (-bound % bound);
643
644 prng = arc4random_prng_get();
645 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
646 while (__predict_false(r < minimum));
647 arc4random_prng_put(prng);
648
649 return (r % bound);
650 }
651
652 void
653 arc4random_stir(void)
654 {
655 struct arc4random_prng *prng;
656
657 prng = arc4random_prng_get();
658 arc4random_prng_addrandom(prng, NULL, 0);
659 arc4random_prng_put(prng);
660 }
661
662 /*
663 * Silly signature here is for hysterical raisins. Should instead be
664 * const void *data and size_t datalen.
665 */
666 void
667 arc4random_addrandom(u_char *data, int datalen)
668 {
669 struct arc4random_prng *prng;
670
671 _DIAGASSERT(0 <= datalen);
672
673 prng = arc4random_prng_get();
674 arc4random_prng_addrandom(prng, data, datalen);
675 arc4random_prng_put(prng);
676 }
677
678 #ifdef _ARC4RANDOM_TEST
679
680 #include <sys/wait.h>
681
682 #include <err.h>
683 #include <stdio.h>
684
685 int
686 main(int argc __unused, char **argv __unused)
687 {
688 unsigned char gubbish[] = "random gubbish";
689 const uint8_t zero64[64] = {0};
690 uint8_t buf[2048];
691 unsigned i, a, n;
692
693 /* Test arc4random: should not be deterministic. */
694 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
695 err(1, "printf");
696
697 /* Test stirring: should definitely not be deterministic. */
698 arc4random_stir();
699
700 /* Test small buffer. */
701 arc4random_buf(buf, 8);
702 if (printf("arc4randombuf small:") < 0)
703 err(1, "printf");
704 for (i = 0; i < 8; i++)
705 if (printf(" %02x", buf[i]) < 0)
706 err(1, "printf");
707 if (printf("\n") < 0)
708 err(1, "printf");
709
710 /* Test addrandom: should not make the rest deterministic. */
711 arc4random_addrandom(gubbish, sizeof gubbish);
712
713 /* Test large buffer. */
714 arc4random_buf(buf, sizeof buf);
715 if (printf("arc4randombuf_large:") < 0)
716 err(1, "printf");
717 for (i = 0; i < sizeof buf; i++)
718 if (printf(" %02x", buf[i]) < 0)
719 err(1, "printf");
720 if (printf("\n") < 0)
721 err(1, "printf");
722
723 /* Test misaligned small and large. */
724 for (a = 0; a < 64; a++) {
725 for (n = a; n < sizeof buf; n++) {
726 (void)memset(buf, 0, sizeof buf);
727 arc4random_buf(buf, n - a);
728 if (memcmp(buf + n - a, zero64, a) != 0)
729 errx(1, "arc4random buffer overflow 0");
730
731 (void)memset(buf, 0, sizeof buf);
732 arc4random_buf(buf + a, n - a);
733 if (memcmp(buf, zero64, a) != 0)
734 errx(1, "arc4random buffer overflow 1");
735
736 if ((2*a) <= n) {
737 (void)memset(buf, 0, sizeof buf);
738 arc4random_buf(buf + a, n - a - a);
739 if (memcmp(buf + n - a, zero64, a) != 0)
740 errx(1,
741 "arc4random buffer overflow 2");
742 }
743 }
744 }
745
746 /* Test fork-safety. */
747 {
748 pid_t pid, rpid;
749 int status;
750
751 pid = fork();
752 switch (pid) {
753 case -1:
754 err(1, "fork");
755 case 0:
756 _exit(arc4random_prng_get()->arc4_seeded);
757 default:
758 rpid = waitpid(pid, &status, 0);
759 if (rpid == -1)
760 err(1, "waitpid");
761 if (rpid != pid)
762 errx(1, "waitpid returned wrong pid"
763 ": %"PRIdMAX" != %"PRIdMAX,
764 (intmax_t)rpid,
765 (intmax_t)pid);
766 if (WIFEXITED(status)) {
767 if (WEXITSTATUS(status) != 0)
768 errx(1, "child exited with %d",
769 WEXITSTATUS(status));
770 } else if (WIFSIGNALED(status)) {
771 errx(1, "child terminated on signal %d",
772 WTERMSIG(status));
773 } else {
774 errx(1, "child died mysteriously: %d", status);
775 }
776 }
777 }
778
779 /* XXX Test multithreaded fork safety...? */
780
781 return 0;
782 }
783 #endif
784