arc4random.c revision 1.35 1 /* $NetBSD: arc4random.c,v 1.35 2024/08/26 15:19:22 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
35 *
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
42 *
43 * The arc4random(3) API may abort the process if:
44 *
45 * (a) the crypto self-test fails,
46 * (b) pthread_atfork or thr_keycreate fail, or
47 * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
48 *
49 * The crypto self-test, pthread_atfork, and thr_keycreate occur only
50 * once, on the first use of any of the arc4random(3) API. KERN_ARND
51 * is unlikely to fail later unless the kernel is seriously broken.
52 */
53
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.35 2024/08/26 15:19:22 riastradh Exp $");
56
57 #include "namespace.h"
58 #include "reentrant.h"
59
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #include <sys/mman.h>
64 #include <sys/sysctl.h>
65
66 #include <assert.h>
67 #include <sha2.h>
68 #include <stdatomic.h>
69 #include <stdbool.h>
70 #include <stdint.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <unistd.h>
74
75 #ifdef __weak_alias
76 __weak_alias(arc4random,_arc4random)
77 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
78 __weak_alias(arc4random_buf,_arc4random_buf)
79 __weak_alias(arc4random_stir,_arc4random_stir)
80 __weak_alias(arc4random_uniform,_arc4random_uniform)
81 #endif
82
83 /*
84 * For standard ChaCha, use le32dec/le32enc. We don't need that for
85 * the purposes of a nondeterministic random number generator -- we
86 * don't need to be bit-for-bit compatible over any wire.
87 */
88
89 static inline uint32_t
90 crypto_le32dec(const void *p)
91 {
92 uint32_t v;
93
94 (void)memcpy(&v, p, sizeof v);
95
96 return v;
97 }
98
99 static inline void
100 crypto_le32enc(void *p, uint32_t v)
101 {
102
103 (void)memcpy(p, &v, sizeof v);
104 }
105
106 /* ChaCha core */
107
108 #define crypto_core_OUTPUTBYTES 64
109 #define crypto_core_INPUTBYTES 16
110 #define crypto_core_KEYBYTES 32
111 #define crypto_core_CONSTBYTES 16
112
113 #define crypto_core_ROUNDS 20
114
115 static uint32_t
116 rotate(uint32_t u, unsigned c)
117 {
118
119 return (u << c) | (u >> (32 - c));
120 }
121
122 #define QUARTERROUND(a, b, c, d) do { \
123 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
124 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
125 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
126 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
127 } while (0)
128
129 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
130
131 static void
132 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
133 const uint8_t *c)
134 {
135 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
136 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
137 int i;
138
139 j0 = x0 = crypto_le32dec(c + 0);
140 j1 = x1 = crypto_le32dec(c + 4);
141 j2 = x2 = crypto_le32dec(c + 8);
142 j3 = x3 = crypto_le32dec(c + 12);
143 j4 = x4 = crypto_le32dec(k + 0);
144 j5 = x5 = crypto_le32dec(k + 4);
145 j6 = x6 = crypto_le32dec(k + 8);
146 j7 = x7 = crypto_le32dec(k + 12);
147 j8 = x8 = crypto_le32dec(k + 16);
148 j9 = x9 = crypto_le32dec(k + 20);
149 j10 = x10 = crypto_le32dec(k + 24);
150 j11 = x11 = crypto_le32dec(k + 28);
151 j12 = x12 = crypto_le32dec(in + 0);
152 j13 = x13 = crypto_le32dec(in + 4);
153 j14 = x14 = crypto_le32dec(in + 8);
154 j15 = x15 = crypto_le32dec(in + 12);
155
156 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
157 QUARTERROUND( x0, x4, x8,x12);
158 QUARTERROUND( x1, x5, x9,x13);
159 QUARTERROUND( x2, x6,x10,x14);
160 QUARTERROUND( x3, x7,x11,x15);
161 QUARTERROUND( x0, x5,x10,x15);
162 QUARTERROUND( x1, x6,x11,x12);
163 QUARTERROUND( x2, x7, x8,x13);
164 QUARTERROUND( x3, x4, x9,x14);
165 }
166
167 crypto_le32enc(out + 0, x0 + j0);
168 crypto_le32enc(out + 4, x1 + j1);
169 crypto_le32enc(out + 8, x2 + j2);
170 crypto_le32enc(out + 12, x3 + j3);
171 crypto_le32enc(out + 16, x4 + j4);
172 crypto_le32enc(out + 20, x5 + j5);
173 crypto_le32enc(out + 24, x6 + j6);
174 crypto_le32enc(out + 28, x7 + j7);
175 crypto_le32enc(out + 32, x8 + j8);
176 crypto_le32enc(out + 36, x9 + j9);
177 crypto_le32enc(out + 40, x10 + j10);
178 crypto_le32enc(out + 44, x11 + j11);
179 crypto_le32enc(out + 48, x12 + j12);
180 crypto_le32enc(out + 52, x13 + j13);
181 crypto_le32enc(out + 56, x14 + j14);
182 crypto_le32enc(out + 60, x15 + j15);
183 }
184
185 /* ChaCha self-test */
186
187 #ifdef _DIAGNOSTIC
188
189 /*
190 * Test vector for ChaCha20 from
191 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
192 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
193 * generated by the same crypto_core code with crypto_core_ROUNDS and
194 * crypto_le32enc/dec varied.
195 */
196
197 static const uint8_t crypto_core_selftest_vector[64] = {
198 #if _BYTE_ORDER == _LITTLE_ENDIAN
199 # if crypto_core_ROUNDS == 8
200 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
201 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
202 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
203 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
204 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
205 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
206 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
207 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
208 # elif crypto_core_ROUNDS == 12
209 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
210 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
211 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
212 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
213 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
214 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
215 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
216 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
217 # elif crypto_core_ROUNDS == 20
218 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
219 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
220 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
221 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
222 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
223 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
224 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
225 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
226 # else
227 # error crypto_core_ROUNDS must be 8, 12, or 20.
228 # endif
229 #elif _BYTE_ORDER == _BIG_ENDIAN
230 # if crypto_core_ROUNDS == 8
231 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
232 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
233 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
234 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
235 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
236 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
237 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
238 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
239 # elif crypto_core_ROUNDS == 12
240 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
241 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
242 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
243 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
244 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
245 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
246 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
247 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
248 # elif crypto_core_ROUNDS == 20
249 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
250 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
251 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
252 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
253 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
254 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
255 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
256 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
257 # else
258 # error crypto_core_ROUNDS must be 8, 12, or 20.
259 # endif
260 #else
261 # error Byte order must be little-endian or big-endian.
262 #endif
263 };
264
265 static int
266 crypto_core_selftest(void)
267 {
268 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
269 const uint8_t key[crypto_core_KEYBYTES] = {0};
270 uint8_t block[64];
271 unsigned i;
272
273 crypto_core(block, nonce, key, crypto_core_constant32);
274 for (i = 0; i < 64; i++) {
275 if (block[i] != crypto_core_selftest_vector[i])
276 return EIO;
277 }
278
279 return 0;
280 }
281
282 #else /* !_DIAGNOSTIC */
283
284 static int
285 crypto_core_selftest(void)
286 {
287
288 return 0;
289 }
290
291 #endif
292
293 /* PRNG */
294
295 /*
296 * For a state s, rather than use ChaCha20 as a stream cipher to
297 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
298 * split ChaCha20_s(0) into s' || x and yield x for the first request,
299 * split ChaCha20_s'(0) into s'' || y and yield y for the second
300 * request, &c. This provides backtracking resistance: an attacker who
301 * finds s'' can't recover s' or x.
302 */
303
304 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
305 #define crypto_prng_MAXOUTPUTBYTES \
306 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
307
308 struct crypto_prng {
309 uint8_t state[crypto_prng_SEEDBYTES];
310 };
311
312 static void
313 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
314 {
315
316 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
317 }
318
319 static void
320 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
321 {
322 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
323 uint8_t output[crypto_core_OUTPUTBYTES];
324
325 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
326 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
327 <= sizeof output);
328
329 crypto_core(output, nonce, prng->state, crypto_core_constant32);
330 (void)memcpy(prng->state, output, sizeof prng->state);
331 (void)memcpy(buf, output + sizeof prng->state, n);
332 (void)explicit_memset(output, 0, sizeof output);
333 }
334
335 /* One-time stream: expand short single-use secret into long secret */
336
337 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
338
339 static void
340 crypto_onetimestream(const void *seed, void *buf, size_t n)
341 {
342 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
343 uint8_t block[crypto_core_OUTPUTBYTES];
344 uint8_t *p8, *p32;
345 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
346 size_t ni, nb, nf;
347
348 /*
349 * Guarantee we can generate up to n bytes. We have
350 * 2^(8*INPUTBYTES) possible inputs yielding output of
351 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
352 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
353 * (1/CHAR_BIT) log_2 of the total output stream length. We
354 * have
355 *
356 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
357 * = log_2 o + 8 i.
358 */
359 #ifndef __lint__
360 __CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
361 8 * crypto_core_INPUTBYTES));
362 #endif
363
364 p8 = buf;
365 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
366 ni = p32 - p8;
367 if (n < ni)
368 ni = n;
369 nb = (n - ni) / sizeof block;
370 nf = (n - ni) % sizeof block;
371
372 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
373 _DIAGASSERT(ni <= n);
374 _DIAGASSERT(nb <= (n / sizeof block));
375 _DIAGASSERT(nf <= n);
376 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
377 _DIAGASSERT(ni < 4);
378 _DIAGASSERT(nf < sizeof block);
379
380 if (ni) {
381 crypto_core(block, nonce8, seed, crypto_core_constant32);
382 nonce[0]++;
383 (void)memcpy(p8, block, ni);
384 }
385 while (nb--) {
386 crypto_core(p32, nonce8, seed, crypto_core_constant32);
387 if (++nonce[0] == 0)
388 nonce[1]++;
389 p32 += crypto_core_OUTPUTBYTES;
390 }
391 if (nf) {
392 crypto_core(block, nonce8, seed, crypto_core_constant32);
393 if (++nonce[0] == 0)
394 nonce[1]++;
395 (void)memcpy(p32, block, nf);
396 }
397
398 if (ni | nf)
399 (void)explicit_memset(block, 0, sizeof block);
400 }
401
402 /*
403 * entropy_epoch()
404 *
405 * Return the current entropy epoch, from the sysctl node
406 * kern.entropy.epoch.
407 *
408 * The entropy epoch is never zero. Initially, or on error, it is
409 * (unsigned)-1. It may wrap around but it skips (unsigned)-1 and
410 * 0 when it does. Changes happen less than once per second, so
411 * wraparound will only affect systems after 136 years of uptime.
412 *
413 * XXX This should get it from a page shared read-only by kernel
414 * with userland, but until we implement such a mechanism, this
415 * sysctl -- incurring the cost of a syscall -- will have to
416 * serve.
417 */
418 static unsigned
419 entropy_epoch(void)
420 {
421 static atomic_int mib0[3];
422 static atomic_bool initialized = false;
423 int mib[3];
424 unsigned epoch = -1;
425 size_t epochlen = sizeof(epoch);
426
427 /*
428 * Resolve kern.entropy.epoch if we haven't already. Cache it
429 * for the next caller. Initialization is idempotent, so it's
430 * OK if two threads do it at once.
431 */
432 if (atomic_load_explicit(&initialized, memory_order_acquire)) {
433 mib[0] = atomic_load_explicit(&mib0[0], memory_order_relaxed);
434 mib[1] = atomic_load_explicit(&mib0[1], memory_order_relaxed);
435 mib[2] = atomic_load_explicit(&mib0[2], memory_order_relaxed);
436 } else {
437 size_t nmib = __arraycount(mib);
438
439 if (sysctlnametomib("kern.entropy.epoch", mib, &nmib) == -1)
440 return -1;
441 if (nmib != __arraycount(mib))
442 return -1;
443 atomic_store_explicit(&mib0[0], mib[0], memory_order_relaxed);
444 atomic_store_explicit(&mib0[1], mib[1], memory_order_relaxed);
445 atomic_store_explicit(&mib0[2], mib[2], memory_order_relaxed);
446 atomic_store_explicit(&initialized, true,
447 memory_order_release);
448 }
449
450 if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
451 return -1;
452 if (epochlen != sizeof(epoch))
453 return -1;
454
455 return epoch;
456 }
457
458 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
459
460 struct arc4random_prng {
461 struct crypto_prng arc4_prng;
462 unsigned arc4_epoch;
463 };
464
465 static void
466 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
467 size_t datalen)
468 {
469 const int mib[] = { CTL_KERN, KERN_ARND };
470 SHA256_CTX ctx;
471 uint8_t buf[crypto_prng_SEEDBYTES];
472 size_t buflen = sizeof buf;
473 unsigned epoch = entropy_epoch();
474
475 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
476
477 SHA256_Init(&ctx);
478
479 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
480 SHA256_Update(&ctx, buf, sizeof buf);
481
482 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
483 abort();
484 if (buflen != sizeof buf)
485 abort();
486 SHA256_Update(&ctx, buf, sizeof buf);
487
488 if (data != NULL)
489 SHA256_Update(&ctx, data, datalen);
490
491 SHA256_Final(buf, &ctx);
492 (void)explicit_memset(&ctx, 0, sizeof ctx);
493
494 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
495 crypto_prng_seed(&prng->arc4_prng, buf);
496 (void)explicit_memset(buf, 0, sizeof buf);
497 prng->arc4_epoch = epoch;
498 }
499
500 #ifdef _REENTRANT
501 static struct arc4random_prng *
502 arc4random_prng_create(void)
503 {
504 struct arc4random_prng *prng;
505 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
506
507 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
508 0);
509 if (prng == MAP_FAILED)
510 goto fail0;
511 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
512 goto fail1;
513
514 return prng;
515
516 fail1: (void)munmap(prng, size);
517 fail0: return NULL;
518 }
519 #endif
520
521 #ifdef _REENTRANT
522 static void
523 arc4random_prng_destroy(struct arc4random_prng *prng)
524 {
525 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
526
527 (void)explicit_memset(prng, 0, sizeof(*prng));
528 (void)munmap(prng, size);
529 }
530 #endif
531
532 /* Library state */
533
534 static struct arc4random_global {
535 #ifdef _REENTRANT
536 mutex_t lock;
537 thread_key_t thread_key;
538 #endif
539 struct arc4random_prng prng;
540 bool initialized;
541 } arc4random_global = {
542 #ifdef _REENTRANT
543 .lock = MUTEX_INITIALIZER,
544 #endif
545 .initialized = false,
546 };
547
548 static void
549 arc4random_atfork_prepare(void)
550 {
551
552 mutex_lock(&arc4random_global.lock);
553 (void)explicit_memset(&arc4random_global.prng, 0,
554 sizeof arc4random_global.prng);
555 }
556
557 static void
558 arc4random_atfork_parent(void)
559 {
560
561 mutex_unlock(&arc4random_global.lock);
562 }
563
564 static void
565 arc4random_atfork_child(void)
566 {
567
568 mutex_unlock(&arc4random_global.lock);
569 }
570
571 #ifdef _REENTRANT
572 static void
573 arc4random_tsd_destructor(void *p)
574 {
575 struct arc4random_prng *const prng = p;
576
577 arc4random_prng_destroy(prng);
578 }
579 #endif
580
581 static void
582 arc4random_initialize(void)
583 {
584
585 mutex_lock(&arc4random_global.lock);
586 if (!arc4random_global.initialized) {
587 if (crypto_core_selftest() != 0)
588 abort();
589 if (pthread_atfork(&arc4random_atfork_prepare,
590 &arc4random_atfork_parent, &arc4random_atfork_child)
591 != 0)
592 abort();
593 #ifdef _REENTRANT
594 if (thr_keycreate(&arc4random_global.thread_key,
595 &arc4random_tsd_destructor) != 0)
596 abort();
597 #endif
598 arc4random_global.initialized = true;
599 }
600 mutex_unlock(&arc4random_global.lock);
601 }
602
603 static struct arc4random_prng *
604 arc4random_prng_get(void)
605 {
606 struct arc4random_prng *prng = NULL;
607
608 /* Make sure the library is initialized. */
609 if (__predict_false(!arc4random_global.initialized))
610 arc4random_initialize();
611
612 #ifdef _REENTRANT
613 /* Get or create the per-thread PRNG state. */
614 prng = thr_getspecific(arc4random_global.thread_key);
615 if (__predict_false(prng == NULL)) {
616 prng = arc4random_prng_create();
617 thr_setspecific(arc4random_global.thread_key, prng);
618 }
619 #endif
620
621 /* If we can't create it, fall back to the global PRNG. */
622 if (__predict_false(prng == NULL)) {
623 mutex_lock(&arc4random_global.lock);
624 prng = &arc4random_global.prng;
625 }
626
627 /* Guarantee the PRNG is seeded. */
628 if (__predict_false(prng->arc4_epoch != entropy_epoch()))
629 arc4random_prng_addrandom(prng, NULL, 0);
630
631 return prng;
632 }
633
634 static void
635 arc4random_prng_put(struct arc4random_prng *prng)
636 {
637
638 /* If we had fallen back to the global PRNG, unlock it. */
639 if (__predict_false(prng == &arc4random_global.prng))
640 mutex_unlock(&arc4random_global.lock);
641 }
642
643 /* Public API */
644
645 uint32_t
646 arc4random(void)
647 {
648 struct arc4random_prng *prng;
649 uint32_t v;
650
651 prng = arc4random_prng_get();
652 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
653 arc4random_prng_put(prng);
654
655 return v;
656 }
657
658 void
659 arc4random_buf(void *buf, size_t len)
660 {
661 struct arc4random_prng *prng;
662
663 if (len <= crypto_prng_MAXOUTPUTBYTES) {
664 prng = arc4random_prng_get();
665 crypto_prng_buf(&prng->arc4_prng, buf, len);
666 arc4random_prng_put(prng);
667 } else {
668 uint8_t seed[crypto_onetimestream_SEEDBYTES];
669
670 prng = arc4random_prng_get();
671 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
672 arc4random_prng_put(prng);
673
674 crypto_onetimestream(seed, buf, len);
675 (void)explicit_memset(seed, 0, sizeof seed);
676 }
677 }
678
679 uint32_t
680 arc4random_uniform(uint32_t bound)
681 {
682 struct arc4random_prng *prng;
683 uint32_t minimum, r;
684
685 /*
686 * We want a uniform random choice in [0, n), and arc4random()
687 * makes a uniform random choice in [0, 2^32). If we reduce
688 * that modulo n, values in [0, 2^32 mod n) will be represented
689 * slightly more than values in [2^32 mod n, n). Instead we
690 * choose only from [2^32 mod n, 2^32) by rejecting samples in
691 * [0, 2^32 mod n), to avoid counting the extra representative
692 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
693 *
694 * 2^32 mod n = 2^32 mod n - 0
695 * = 2^32 mod n - n mod n
696 * = (2^32 - n) mod n,
697 *
698 * the last of which is what we compute in 32-bit arithmetic.
699 */
700 minimum = (-bound % bound);
701
702 prng = arc4random_prng_get();
703 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
704 while (__predict_false(r < minimum));
705 arc4random_prng_put(prng);
706
707 return (r % bound);
708 }
709
710 void
711 arc4random_stir(void)
712 {
713 struct arc4random_prng *prng;
714
715 prng = arc4random_prng_get();
716 arc4random_prng_addrandom(prng, NULL, 0);
717 arc4random_prng_put(prng);
718 }
719
720 /*
721 * Silly signature here is for hysterical raisins. Should instead be
722 * const void *data and size_t datalen.
723 */
724 void
725 arc4random_addrandom(u_char *data, int datalen)
726 {
727 struct arc4random_prng *prng;
728
729 _DIAGASSERT(0 <= datalen);
730
731 prng = arc4random_prng_get();
732 arc4random_prng_addrandom(prng, data, datalen);
733 arc4random_prng_put(prng);
734 }
735
736 #ifdef _ARC4RANDOM_TEST
737
738 #include <sys/wait.h>
739
740 #include <err.h>
741 #include <stdio.h>
742
743 int
744 main(int argc __unused, char **argv __unused)
745 {
746 unsigned char gubbish[] = "random gubbish";
747 const uint8_t zero64[64] = {0};
748 uint8_t buf[2048];
749 unsigned i, a, n;
750
751 /* Test arc4random: should not be deterministic. */
752 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
753 err(1, "printf");
754
755 /* Test stirring: should definitely not be deterministic. */
756 arc4random_stir();
757
758 /* Test small buffer. */
759 arc4random_buf(buf, 8);
760 if (printf("arc4randombuf small:") < 0)
761 err(1, "printf");
762 for (i = 0; i < 8; i++)
763 if (printf(" %02x", buf[i]) < 0)
764 err(1, "printf");
765 if (printf("\n") < 0)
766 err(1, "printf");
767
768 /* Test addrandom: should not make the rest deterministic. */
769 arc4random_addrandom(gubbish, sizeof gubbish);
770
771 /* Test large buffer. */
772 arc4random_buf(buf, sizeof buf);
773 if (printf("arc4randombuf_large:") < 0)
774 err(1, "printf");
775 for (i = 0; i < sizeof buf; i++)
776 if (printf(" %02x", buf[i]) < 0)
777 err(1, "printf");
778 if (printf("\n") < 0)
779 err(1, "printf");
780
781 /* Test misaligned small and large. */
782 for (a = 0; a < 64; a++) {
783 for (n = a; n < sizeof buf; n++) {
784 (void)memset(buf, 0, sizeof buf);
785 arc4random_buf(buf, n - a);
786 if (memcmp(buf + n - a, zero64, a) != 0)
787 errx(1, "arc4random buffer overflow 0");
788
789 (void)memset(buf, 0, sizeof buf);
790 arc4random_buf(buf + a, n - a);
791 if (memcmp(buf, zero64, a) != 0)
792 errx(1, "arc4random buffer overflow 1");
793
794 if ((2*a) <= n) {
795 (void)memset(buf, 0, sizeof buf);
796 arc4random_buf(buf + a, n - a - a);
797 if (memcmp(buf + n - a, zero64, a) != 0)
798 errx(1,
799 "arc4random buffer overflow 2");
800 }
801 }
802 }
803
804 /* Test fork-safety. */
805 {
806 pid_t pid, rpid;
807 int status;
808
809 pid = fork();
810 switch (pid) {
811 case -1:
812 err(1, "fork");
813 case 0:
814 _exit(arc4random_prng_get()->arc4_seeded);
815 default:
816 rpid = waitpid(pid, &status, 0);
817 if (rpid == -1)
818 err(1, "waitpid");
819 if (rpid != pid)
820 errx(1, "waitpid returned wrong pid"
821 ": %"PRIdMAX" != %"PRIdMAX,
822 (intmax_t)rpid,
823 (intmax_t)pid);
824 if (WIFEXITED(status)) {
825 if (WEXITSTATUS(status) != 0)
826 errx(1, "child exited with %d",
827 WEXITSTATUS(status));
828 } else if (WIFSIGNALED(status)) {
829 errx(1, "child terminated on signal %d",
830 WTERMSIG(status));
831 } else {
832 errx(1, "child died mysteriously: %d", status);
833 }
834 }
835 }
836
837 /* XXX Test multithreaded fork safety...? */
838
839 return 0;
840 }
841 #endif
842