arc4random.c revision 1.43 1 /* $NetBSD: arc4random.c,v 1.43 2025/03/04 00:33:01 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
35 *
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
42 *
43 * The arc4random(3) API may abort the process if:
44 *
45 * (a) the crypto self-test fails,
46 * (b) pthread_atfork fails, or
47 * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
48 *
49 * The crypto self-test and pthread_atfork occur only once, on the
50 * first use of any of the arc4random(3) API. KERN_ARND is unlikely to
51 * fail later unless the kernel is seriously broken.
52 */
53
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.43 2025/03/04 00:33:01 riastradh Exp $");
56
57 #include "namespace.h"
58 #include "reentrant.h"
59
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #include <sys/mman.h>
64 #include <sys/sysctl.h>
65
66 #include <assert.h>
67 #include <sha2.h>
68 #include <stdatomic.h>
69 #include <stdbool.h>
70 #include <stdint.h>
71 #include <stdlib.h>
72 #include <string.h>
73 #include <unistd.h>
74
75 #include "arc4random.h"
76 #include "reentrant.h"
77
78 #ifdef __weak_alias
79 __weak_alias(arc4random,_arc4random)
80 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
81 __weak_alias(arc4random_buf,_arc4random_buf)
82 __weak_alias(arc4random_stir,_arc4random_stir)
83 __weak_alias(arc4random_uniform,_arc4random_uniform)
84 #endif
85
86 /*
87 * For standard ChaCha, use le32dec/le32enc. We don't need that for
88 * the purposes of a nondeterministic random number generator -- we
89 * don't need to be bit-for-bit compatible over any wire.
90 */
91
92 static inline uint32_t
93 crypto_le32dec(const void *p)
94 {
95 uint32_t v;
96
97 (void)memcpy(&v, p, sizeof v);
98
99 return v;
100 }
101
102 static inline void
103 crypto_le32enc(void *p, uint32_t v)
104 {
105
106 (void)memcpy(p, &v, sizeof v);
107 }
108
109 /* ChaCha core */
110
111 #define crypto_core_OUTPUTBYTES 64
112 #define crypto_core_INPUTBYTES 16
113 #define crypto_core_KEYBYTES 32
114 #define crypto_core_CONSTBYTES 16
115
116 #define crypto_core_ROUNDS 20
117
118 static uint32_t
119 rotate(uint32_t u, unsigned c)
120 {
121
122 return (u << c) | (u >> (32 - c));
123 }
124
125 #define QUARTERROUND(a, b, c, d) do { \
126 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
127 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
128 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
129 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
130 } while (0)
131
132 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
133
134 static void
135 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
136 const uint8_t *c)
137 {
138 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
139 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
140 int i;
141
142 j0 = x0 = crypto_le32dec(c + 0);
143 j1 = x1 = crypto_le32dec(c + 4);
144 j2 = x2 = crypto_le32dec(c + 8);
145 j3 = x3 = crypto_le32dec(c + 12);
146 j4 = x4 = crypto_le32dec(k + 0);
147 j5 = x5 = crypto_le32dec(k + 4);
148 j6 = x6 = crypto_le32dec(k + 8);
149 j7 = x7 = crypto_le32dec(k + 12);
150 j8 = x8 = crypto_le32dec(k + 16);
151 j9 = x9 = crypto_le32dec(k + 20);
152 j10 = x10 = crypto_le32dec(k + 24);
153 j11 = x11 = crypto_le32dec(k + 28);
154 j12 = x12 = crypto_le32dec(in + 0);
155 j13 = x13 = crypto_le32dec(in + 4);
156 j14 = x14 = crypto_le32dec(in + 8);
157 j15 = x15 = crypto_le32dec(in + 12);
158
159 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
160 QUARTERROUND( x0, x4, x8,x12);
161 QUARTERROUND( x1, x5, x9,x13);
162 QUARTERROUND( x2, x6,x10,x14);
163 QUARTERROUND( x3, x7,x11,x15);
164 QUARTERROUND( x0, x5,x10,x15);
165 QUARTERROUND( x1, x6,x11,x12);
166 QUARTERROUND( x2, x7, x8,x13);
167 QUARTERROUND( x3, x4, x9,x14);
168 }
169
170 crypto_le32enc(out + 0, x0 + j0);
171 crypto_le32enc(out + 4, x1 + j1);
172 crypto_le32enc(out + 8, x2 + j2);
173 crypto_le32enc(out + 12, x3 + j3);
174 crypto_le32enc(out + 16, x4 + j4);
175 crypto_le32enc(out + 20, x5 + j5);
176 crypto_le32enc(out + 24, x6 + j6);
177 crypto_le32enc(out + 28, x7 + j7);
178 crypto_le32enc(out + 32, x8 + j8);
179 crypto_le32enc(out + 36, x9 + j9);
180 crypto_le32enc(out + 40, x10 + j10);
181 crypto_le32enc(out + 44, x11 + j11);
182 crypto_le32enc(out + 48, x12 + j12);
183 crypto_le32enc(out + 52, x13 + j13);
184 crypto_le32enc(out + 56, x14 + j14);
185 crypto_le32enc(out + 60, x15 + j15);
186 }
187
188 /* ChaCha self-test */
189
190 /*
191 * Test vector for ChaCha20 from
192 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
193 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
194 * generated by the same crypto_core code with crypto_core_ROUNDS and
195 * crypto_le32enc/dec varied.
196 */
197
198 static const uint8_t crypto_core_selftest_vector[64] = {
199 #if _BYTE_ORDER == _LITTLE_ENDIAN
200 # if crypto_core_ROUNDS == 8
201 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
202 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
203 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
204 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
205 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
206 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
207 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
208 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
209 # elif crypto_core_ROUNDS == 12
210 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
211 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
212 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
213 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
214 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
215 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
216 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
217 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
218 # elif crypto_core_ROUNDS == 20
219 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
220 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
221 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
222 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
223 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
224 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
225 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
226 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
227 # else
228 # error crypto_core_ROUNDS must be 8, 12, or 20.
229 # endif
230 #elif _BYTE_ORDER == _BIG_ENDIAN
231 # if crypto_core_ROUNDS == 8
232 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
233 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
234 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
235 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
236 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
237 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
238 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
239 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
240 # elif crypto_core_ROUNDS == 12
241 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
242 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
243 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
244 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
245 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
246 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
247 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
248 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
249 # elif crypto_core_ROUNDS == 20
250 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
251 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
252 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
253 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
254 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
255 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
256 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
257 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
258 # else
259 # error crypto_core_ROUNDS must be 8, 12, or 20.
260 # endif
261 #else
262 # error Byte order must be little-endian or big-endian.
263 #endif
264 };
265
266 static int
267 crypto_core_selftest(void)
268 {
269 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
270 const uint8_t key[crypto_core_KEYBYTES] = {0};
271 uint8_t block[64];
272 unsigned i;
273
274 crypto_core(block, nonce, key, crypto_core_constant32);
275 for (i = 0; i < 64; i++) {
276 if (block[i] != crypto_core_selftest_vector[i])
277 return EIO;
278 }
279
280 return 0;
281 }
282
283 /* PRNG */
284
285 /*
286 * For a state s, rather than use ChaCha20 as a stream cipher to
287 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
288 * split ChaCha20_s(0) into s' || x and yield x for the first request,
289 * split ChaCha20_s'(0) into s'' || y and yield y for the second
290 * request, &c. This provides backtracking resistance: an attacker who
291 * finds s'' can't recover s' or x.
292 */
293
294 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
295 #define crypto_prng_MAXOUTPUTBYTES \
296 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
297
298 __CTASSERT(sizeof(struct crypto_prng) == crypto_prng_SEEDBYTES);
299
300 static void
301 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
302 {
303
304 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
305 }
306
307 static void
308 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
309 {
310 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
311 uint8_t output[crypto_core_OUTPUTBYTES];
312
313 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
314 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
315 <= sizeof output);
316
317 crypto_core(output, nonce, prng->state, crypto_core_constant32);
318 (void)memcpy(prng->state, output, sizeof prng->state);
319 (void)memcpy(buf, output + sizeof prng->state, n);
320 (void)explicit_memset(output, 0, sizeof output);
321 }
322
323 /* One-time stream: expand short single-use secret into long secret */
324
325 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
326
327 static void
328 crypto_onetimestream(const void *seed, void *buf, size_t n)
329 {
330 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
331 uint8_t block[crypto_core_OUTPUTBYTES];
332 uint8_t *p8, *p32;
333 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
334 size_t ni, nb, nf;
335
336 /*
337 * Guarantee we can generate up to n bytes. We have
338 * 2^(8*INPUTBYTES) possible inputs yielding output of
339 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
340 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
341 * (1/CHAR_BIT) log_2 of the total output stream length. We
342 * have
343 *
344 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
345 * = log_2 o + 8 i.
346 */
347 #ifndef __lint__
348 __CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
349 8 * crypto_core_INPUTBYTES));
350 #endif
351
352 p8 = buf;
353 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
354 ni = p32 - p8;
355 if (n < ni)
356 ni = n;
357 nb = (n - ni) / sizeof block;
358 nf = (n - ni) % sizeof block;
359
360 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
361 _DIAGASSERT(ni <= n);
362 _DIAGASSERT(nb <= (n / sizeof block));
363 _DIAGASSERT(nf <= n);
364 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
365 _DIAGASSERT(ni < 4);
366 _DIAGASSERT(nf < sizeof block);
367
368 if (ni) {
369 crypto_core(block, nonce8, seed, crypto_core_constant32);
370 nonce[0]++;
371 (void)memcpy(p8, block, ni);
372 }
373 while (nb--) {
374 crypto_core(p32, nonce8, seed, crypto_core_constant32);
375 if (++nonce[0] == 0)
376 nonce[1]++;
377 p32 += crypto_core_OUTPUTBYTES;
378 }
379 if (nf) {
380 crypto_core(block, nonce8, seed, crypto_core_constant32);
381 if (++nonce[0] == 0)
382 nonce[1]++;
383 (void)memcpy(p32, block, nf);
384 }
385
386 if (ni | nf)
387 (void)explicit_memset(block, 0, sizeof block);
388 }
389
390 /*
391 * entropy_epoch()
392 *
393 * Return the current entropy epoch, from the sysctl node
394 * kern.entropy.epoch.
395 *
396 * The entropy epoch is never zero. Initially, or on error, it is
397 * (unsigned)-1. It may wrap around but it skips (unsigned)-1 and
398 * 0 when it does. Changes happen less than once per second, so
399 * wraparound will only affect systems after 136 years of uptime.
400 *
401 * XXX This should get it from a page shared read-only by kernel
402 * with userland, but until we implement such a mechanism, this
403 * sysctl -- incurring the cost of a syscall -- will have to
404 * serve.
405 */
406 static unsigned
407 entropy_epoch(void)
408 {
409 static atomic_int mib0[3];
410 static atomic_bool initialized = false;
411 int mib[3];
412 unsigned epoch = (unsigned)-1;
413 size_t epochlen = sizeof(epoch);
414
415 /*
416 * Resolve kern.entropy.epoch if we haven't already. Cache it
417 * for the next caller. Initialization is idempotent, so it's
418 * OK if two threads do it at once.
419 */
420 if (atomic_load_explicit(&initialized, memory_order_acquire)) {
421 mib[0] = atomic_load_explicit(&mib0[0], memory_order_relaxed);
422 mib[1] = atomic_load_explicit(&mib0[1], memory_order_relaxed);
423 mib[2] = atomic_load_explicit(&mib0[2], memory_order_relaxed);
424 } else {
425 size_t nmib = __arraycount(mib);
426
427 if (sysctlnametomib("kern.entropy.epoch", mib, &nmib) == -1)
428 return (unsigned)-1;
429 if (nmib != __arraycount(mib))
430 return (unsigned)-1;
431 atomic_store_explicit(&mib0[0], mib[0], memory_order_relaxed);
432 atomic_store_explicit(&mib0[1], mib[1], memory_order_relaxed);
433 atomic_store_explicit(&mib0[2], mib[2], memory_order_relaxed);
434 atomic_store_explicit(&initialized, true,
435 memory_order_release);
436 }
437
438 if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
439 return (unsigned)-1;
440 if (epochlen != sizeof(epoch))
441 return (unsigned)-1;
442
443 return epoch;
444 }
445
446 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
447
448 static void
449 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
450 size_t datalen)
451 {
452 const int mib[] = { CTL_KERN, KERN_ARND };
453 SHA256_CTX ctx;
454 uint8_t buf[crypto_prng_SEEDBYTES];
455 size_t buflen = sizeof buf;
456 unsigned epoch = entropy_epoch();
457
458 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
459
460 SHA256_Init(&ctx);
461
462 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
463 SHA256_Update(&ctx, buf, sizeof buf);
464
465 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
466 abort();
467 if (buflen != sizeof buf)
468 abort();
469 SHA256_Update(&ctx, buf, sizeof buf);
470
471 if (data != NULL)
472 SHA256_Update(&ctx, data, datalen);
473
474 SHA256_Final(buf, &ctx);
475 (void)explicit_memset(&ctx, 0, sizeof ctx);
476
477 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
478 crypto_prng_seed(&prng->arc4_prng, buf);
479 (void)explicit_memset(buf, 0, sizeof buf);
480 prng->arc4_epoch = epoch;
481 }
482
483 #ifdef _REENTRANT
484 static struct arc4random_prng *
485 arc4random_prng_create(void)
486 {
487 struct arc4random_prng *prng;
488 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
489
490 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
491 0);
492 if (prng == MAP_FAILED)
493 goto fail0;
494 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
495 goto fail1;
496
497 return prng;
498
499 fail1: (void)munmap(prng, size);
500 fail0: return NULL;
501 }
502 #endif
503
504 #ifdef _REENTRANT
505 static void
506 arc4random_prng_destroy(struct arc4random_prng *prng)
507 {
508 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
509
510 (void)explicit_memset(prng, 0, sizeof(*prng));
511 (void)munmap(prng, size);
512 }
513 #endif
514
515 /* Library state */
516
517 struct arc4random_global_state arc4random_global = {
518 #ifdef _REENTRANT
519 .lock = MUTEX_INITIALIZER,
520 #endif
521 .initialized = false,
522 };
523
524 static void
525 arc4random_atfork_prepare(void)
526 {
527
528 mutex_lock(&arc4random_global.lock);
529 (void)explicit_memset(&arc4random_global.prng, 0,
530 sizeof arc4random_global.prng);
531 }
532
533 static void
534 arc4random_atfork_parent(void)
535 {
536
537 mutex_unlock(&arc4random_global.lock);
538 }
539
540 static void
541 arc4random_atfork_child(void)
542 {
543
544 mutex_unlock(&arc4random_global.lock);
545 }
546
547 #ifdef _REENTRANT
548 static void
549 arc4random_tsd_destructor(void *p)
550 {
551 struct arc4random_prng *const prng = p;
552
553 arc4random_prng_destroy(prng);
554 }
555 #endif
556
557 static void
558 arc4random_initialize(void)
559 {
560
561 mutex_lock(&arc4random_global.lock);
562 if (!arc4random_global.initialized) {
563 if (crypto_core_selftest() != 0)
564 abort();
565 if (pthread_atfork(&arc4random_atfork_prepare,
566 &arc4random_atfork_parent, &arc4random_atfork_child)
567 != 0)
568 abort();
569 #ifdef _REENTRANT
570 if (thr_keycreate(&arc4random_global.thread_key,
571 &arc4random_tsd_destructor) == 0)
572 arc4random_global.per_thread = true;
573 #endif
574 arc4random_global.initialized = true;
575 }
576 mutex_unlock(&arc4random_global.lock);
577 }
578
579 static struct arc4random_prng *
580 arc4random_prng_get(void)
581 {
582 struct arc4random_prng *prng = NULL;
583
584 /* Make sure the library is initialized. */
585 if (__predict_false(!arc4random_global.initialized))
586 arc4random_initialize();
587
588 #ifdef _REENTRANT
589 /* Get or create the per-thread PRNG state. */
590 prng = __predict_true(arc4random_global.per_thread)
591 ? thr_getspecific(arc4random_global.thread_key)
592 : NULL;
593 if (__predict_false(prng == NULL) && arc4random_global.per_thread) {
594 prng = arc4random_prng_create();
595 thr_setspecific(arc4random_global.thread_key, prng);
596 }
597 #endif
598
599 /* If we can't create it, fall back to the global PRNG. */
600 if (__predict_false(prng == NULL)) {
601 mutex_lock(&arc4random_global.lock);
602 prng = &arc4random_global.prng;
603 }
604
605 /* Guarantee the PRNG is seeded. */
606 if (__predict_false(prng->arc4_epoch != entropy_epoch()))
607 arc4random_prng_addrandom(prng, NULL, 0);
608
609 return prng;
610 }
611
612 static void
613 arc4random_prng_put(struct arc4random_prng *prng)
614 {
615
616 /* If we had fallen back to the global PRNG, unlock it. */
617 if (__predict_false(prng == &arc4random_global.prng))
618 mutex_unlock(&arc4random_global.lock);
619 }
620
621 /* Public API */
622
623 uint32_t
624 arc4random(void)
625 {
626 struct arc4random_prng *prng;
627 uint32_t v;
628
629 prng = arc4random_prng_get();
630 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
631 arc4random_prng_put(prng);
632
633 return v;
634 }
635
636 void
637 arc4random_buf(void *buf, size_t len)
638 {
639 struct arc4random_prng *prng;
640
641 if (len <= crypto_prng_MAXOUTPUTBYTES) {
642 prng = arc4random_prng_get();
643 crypto_prng_buf(&prng->arc4_prng, buf, len);
644 arc4random_prng_put(prng);
645 } else {
646 uint8_t seed[crypto_onetimestream_SEEDBYTES];
647
648 prng = arc4random_prng_get();
649 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
650 arc4random_prng_put(prng);
651
652 crypto_onetimestream(seed, buf, len);
653 (void)explicit_memset(seed, 0, sizeof seed);
654 }
655 }
656
657 uint32_t
658 arc4random_uniform(uint32_t bound)
659 {
660 struct arc4random_prng *prng;
661 uint32_t minimum, r;
662
663 /*
664 * We want a uniform random choice in [0, n), and arc4random()
665 * makes a uniform random choice in [0, 2^32). If we reduce
666 * that modulo n, values in [0, 2^32 mod n) will be represented
667 * slightly more than values in [2^32 mod n, n). Instead we
668 * choose only from [2^32 mod n, 2^32) by rejecting samples in
669 * [0, 2^32 mod n), to avoid counting the extra representative
670 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
671 *
672 * 2^32 mod n = 2^32 mod n - 0
673 * = 2^32 mod n - n mod n
674 * = (2^32 - n) mod n,
675 *
676 * the last of which is what we compute in 32-bit arithmetic.
677 */
678 minimum = (-bound % bound);
679
680 prng = arc4random_prng_get();
681 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
682 while (__predict_false(r < minimum));
683 arc4random_prng_put(prng);
684
685 return (r % bound);
686 }
687
688 void
689 arc4random_stir(void)
690 {
691 struct arc4random_prng *prng;
692
693 prng = arc4random_prng_get();
694 arc4random_prng_addrandom(prng, NULL, 0);
695 arc4random_prng_put(prng);
696 }
697
698 /*
699 * Silly signature here is for hysterical raisins. Should instead be
700 * const void *data and size_t datalen.
701 */
702 void
703 arc4random_addrandom(u_char *data, int datalen)
704 {
705 struct arc4random_prng *prng;
706
707 _DIAGASSERT(0 <= datalen);
708
709 prng = arc4random_prng_get();
710 arc4random_prng_addrandom(prng, data, datalen);
711 arc4random_prng_put(prng);
712 }
713
714 #ifdef _ARC4RANDOM_TEST
715
716 #include <sys/wait.h>
717
718 #include <err.h>
719 #include <stdio.h>
720
721 int
722 main(int argc __unused, char **argv __unused)
723 {
724 unsigned char gubbish[] = "random gubbish";
725 const uint8_t zero64[64] = {0};
726 uint8_t buf[2048];
727 unsigned i, a, n;
728
729 /* Test arc4random: should not be deterministic. */
730 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
731 err(1, "printf");
732
733 /* Test stirring: should definitely not be deterministic. */
734 arc4random_stir();
735
736 /* Test small buffer. */
737 arc4random_buf(buf, 8);
738 if (printf("arc4randombuf small:") < 0)
739 err(1, "printf");
740 for (i = 0; i < 8; i++)
741 if (printf(" %02x", buf[i]) < 0)
742 err(1, "printf");
743 if (printf("\n") < 0)
744 err(1, "printf");
745
746 /* Test addrandom: should not make the rest deterministic. */
747 arc4random_addrandom(gubbish, sizeof gubbish);
748
749 /* Test large buffer. */
750 arc4random_buf(buf, sizeof buf);
751 if (printf("arc4randombuf_large:") < 0)
752 err(1, "printf");
753 for (i = 0; i < sizeof buf; i++)
754 if (printf(" %02x", buf[i]) < 0)
755 err(1, "printf");
756 if (printf("\n") < 0)
757 err(1, "printf");
758
759 /* Test misaligned small and large. */
760 for (a = 0; a < 64; a++) {
761 for (n = a; n < sizeof buf; n++) {
762 (void)memset(buf, 0, sizeof buf);
763 arc4random_buf(buf, n - a);
764 if (memcmp(buf + n - a, zero64, a) != 0)
765 errx(1, "arc4random buffer overflow 0");
766
767 (void)memset(buf, 0, sizeof buf);
768 arc4random_buf(buf + a, n - a);
769 if (memcmp(buf, zero64, a) != 0)
770 errx(1, "arc4random buffer overflow 1");
771
772 if ((2*a) <= n) {
773 (void)memset(buf, 0, sizeof buf);
774 arc4random_buf(buf + a, n - a - a);
775 if (memcmp(buf + n - a, zero64, a) != 0)
776 errx(1,
777 "arc4random buffer overflow 2");
778 }
779 }
780 }
781
782 /* Test fork-safety. */
783 {
784 pid_t pid, rpid;
785 int status;
786
787 pid = fork();
788 switch (pid) {
789 case -1:
790 err(1, "fork");
791 case 0: {
792 /*
793 * Verify the epoch has been set to zero by fork.
794 */
795 struct arc4random_prng *prng = NULL;
796 #ifdef _REENTRANT
797 prng = thr_getspecific(arc4random_global.thread_key);
798 #endif
799 if (prng == NULL)
800 prng = &arc4random_global.prng;
801 _exit(prng->arc4_epoch != 0);
802 }
803 default:
804 rpid = waitpid(pid, &status, 0);
805 if (rpid == -1)
806 err(1, "waitpid");
807 if (rpid != pid)
808 errx(1, "waitpid returned wrong pid"
809 ": %"PRIdMAX" != %"PRIdMAX,
810 (intmax_t)rpid,
811 (intmax_t)pid);
812 if (WIFEXITED(status)) {
813 if (WEXITSTATUS(status) != 0)
814 errx(1, "child exited with %d",
815 WEXITSTATUS(status));
816 } else if (WIFSIGNALED(status)) {
817 errx(1, "child terminated on signal %d",
818 WTERMSIG(status));
819 } else {
820 errx(1, "child died mysteriously: %d", status);
821 }
822 }
823 }
824
825 /* XXX Test multithreaded fork safety...? */
826
827 return 0;
828 }
829 #endif
830