Home | History | Annotate | Line # | Download | only in gen
arc4random.c revision 1.47
      1 /*	$NetBSD: arc4random.c,v 1.47 2025/03/10 21:21:32 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Legacy arc4random(3) API from OpenBSD reimplemented using the
     34  * ChaCha20 PRF, with per-thread state.
     35  *
     36  * Security model:
     37  * - An attacker who sees some outputs cannot predict past or future
     38  *   outputs.
     39  * - An attacker who sees the PRNG state cannot predict past outputs.
     40  * - An attacker who sees a child's PRNG state cannot predict past or
     41  *   future outputs in the parent, or in other children.
     42  *
     43  * The arc4random(3) API may abort the process if:
     44  *
     45  * (a) the crypto self-test fails, or
     46  * (b) sysctl(KERN_ARND) fails when reseeding the PRNG.
     47  *
     48  * The crypto self-test occurs only once, on the first use of any of
     49  * the arc4random(3) API.  KERN_ARND is unlikely to fail later unless
     50  * the kernel is seriously broken.
     51  */
     52 
     53 #include <sys/cdefs.h>
     54 __RCSID("$NetBSD: arc4random.c,v 1.47 2025/03/10 21:21:32 riastradh Exp $");
     55 
     56 #include "namespace.h"
     57 #include "reentrant.h"
     58 
     59 #include <sys/bitops.h>
     60 #include <sys/endian.h>
     61 #include <sys/errno.h>
     62 #include <sys/mman.h>
     63 #include <sys/sysctl.h>
     64 
     65 #include <assert.h>
     66 #include <sha2.h>
     67 #include <stdatomic.h>
     68 #include <stdbool.h>
     69 #include <stdint.h>
     70 #include <stdlib.h>
     71 #include <string.h>
     72 #include <unistd.h>
     73 
     74 #include "arc4random.h"
     75 #include "reentrant.h"
     76 
     77 #ifdef __weak_alias
     78 __weak_alias(arc4random,_arc4random)
     79 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
     80 __weak_alias(arc4random_buf,_arc4random_buf)
     81 __weak_alias(arc4random_stir,_arc4random_stir)
     82 __weak_alias(arc4random_uniform,_arc4random_uniform)
     83 #endif
     84 
     85 /*
     86  * For standard ChaCha, use le32dec/le32enc.  We don't need that for
     87  * the purposes of a nondeterministic random number generator -- we
     88  * don't need to be bit-for-bit compatible over any wire.
     89  */
     90 
     91 static inline uint32_t
     92 crypto_le32dec(const void *p)
     93 {
     94 	uint32_t v;
     95 
     96 	(void)memcpy(&v, p, sizeof v);
     97 
     98 	return v;
     99 }
    100 
    101 static inline void
    102 crypto_le32enc(void *p, uint32_t v)
    103 {
    104 
    105 	(void)memcpy(p, &v, sizeof v);
    106 }
    107 
    108 /* ChaCha core */
    109 
    110 #define	crypto_core_OUTPUTBYTES	64
    111 #define	crypto_core_INPUTBYTES	16
    112 #define	crypto_core_KEYBYTES	32
    113 #define	crypto_core_CONSTBYTES	16
    114 
    115 #define	crypto_core_ROUNDS	20
    116 
    117 static uint32_t
    118 rotate(uint32_t u, unsigned c)
    119 {
    120 
    121 	return (u << c) | (u >> (32 - c));
    122 }
    123 
    124 #define	QUARTERROUND(a, b, c, d) do {					      \
    125 	(a) += (b); (d) ^= (a); (d) = rotate((d), 16);			      \
    126 	(c) += (d); (b) ^= (c); (b) = rotate((b), 12);			      \
    127 	(a) += (b); (d) ^= (a); (d) = rotate((d),  8);			      \
    128 	(c) += (d); (b) ^= (c); (b) = rotate((b),  7);			      \
    129 } while (0)
    130 
    131 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
    132 
    133 static void
    134 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
    135     const uint8_t *c)
    136 {
    137 	uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
    138 	uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
    139 	int i;
    140 
    141 	j0 = x0 = crypto_le32dec(c + 0);
    142 	j1 = x1 = crypto_le32dec(c + 4);
    143 	j2 = x2 = crypto_le32dec(c + 8);
    144 	j3 = x3 = crypto_le32dec(c + 12);
    145 	j4 = x4 = crypto_le32dec(k + 0);
    146 	j5 = x5 = crypto_le32dec(k + 4);
    147 	j6 = x6 = crypto_le32dec(k + 8);
    148 	j7 = x7 = crypto_le32dec(k + 12);
    149 	j8 = x8 = crypto_le32dec(k + 16);
    150 	j9 = x9 = crypto_le32dec(k + 20);
    151 	j10 = x10 = crypto_le32dec(k + 24);
    152 	j11 = x11 = crypto_le32dec(k + 28);
    153 	j12 = x12 = crypto_le32dec(in + 0);
    154 	j13 = x13 = crypto_le32dec(in + 4);
    155 	j14 = x14 = crypto_le32dec(in + 8);
    156 	j15 = x15 = crypto_le32dec(in + 12);
    157 
    158 	for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
    159 		QUARTERROUND( x0, x4, x8,x12);
    160 		QUARTERROUND( x1, x5, x9,x13);
    161 		QUARTERROUND( x2, x6,x10,x14);
    162 		QUARTERROUND( x3, x7,x11,x15);
    163 		QUARTERROUND( x0, x5,x10,x15);
    164 		QUARTERROUND( x1, x6,x11,x12);
    165 		QUARTERROUND( x2, x7, x8,x13);
    166 		QUARTERROUND( x3, x4, x9,x14);
    167 	}
    168 
    169 	crypto_le32enc(out + 0, x0 + j0);
    170 	crypto_le32enc(out + 4, x1 + j1);
    171 	crypto_le32enc(out + 8, x2 + j2);
    172 	crypto_le32enc(out + 12, x3 + j3);
    173 	crypto_le32enc(out + 16, x4 + j4);
    174 	crypto_le32enc(out + 20, x5 + j5);
    175 	crypto_le32enc(out + 24, x6 + j6);
    176 	crypto_le32enc(out + 28, x7 + j7);
    177 	crypto_le32enc(out + 32, x8 + j8);
    178 	crypto_le32enc(out + 36, x9 + j9);
    179 	crypto_le32enc(out + 40, x10 + j10);
    180 	crypto_le32enc(out + 44, x11 + j11);
    181 	crypto_le32enc(out + 48, x12 + j12);
    182 	crypto_le32enc(out + 52, x13 + j13);
    183 	crypto_le32enc(out + 56, x14 + j14);
    184 	crypto_le32enc(out + 60, x15 + j15);
    185 }
    186 
    187 /* ChaCha self-test */
    188 
    189 /*
    190  * Test vector for ChaCha20 from
    191  * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
    192  * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
    193  * generated by the same crypto_core code with crypto_core_ROUNDS and
    194  * crypto_le32enc/dec varied.
    195  */
    196 
    197 static const uint8_t crypto_core_selftest_vector[64] = {
    198 #if _BYTE_ORDER == _LITTLE_ENDIAN
    199 #  if crypto_core_ROUNDS == 8
    200 	0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
    201 	0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
    202 	0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
    203 	0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
    204 	0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
    205 	0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
    206 	0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
    207 	0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
    208 #  elif crypto_core_ROUNDS == 12
    209 	0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
    210 	0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
    211 	0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
    212 	0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
    213 	0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
    214 	0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
    215 	0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
    216 	0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
    217 #  elif crypto_core_ROUNDS == 20
    218 	0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
    219 	0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
    220 	0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
    221 	0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
    222 	0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
    223 	0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
    224 	0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
    225 	0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
    226 #  else
    227 #    error crypto_core_ROUNDS must be 8, 12, or 20.
    228 #  endif
    229 #elif _BYTE_ORDER == _BIG_ENDIAN
    230 #  if crypto_core_ROUNDS == 8
    231 	0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
    232 	0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
    233 	0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
    234 	0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
    235 	0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
    236 	0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
    237 	0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
    238 	0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
    239 #  elif crypto_core_ROUNDS == 12
    240 	0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
    241 	0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
    242 	0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
    243 	0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
    244 	0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
    245 	0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
    246 	0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
    247 	0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
    248 #  elif crypto_core_ROUNDS == 20
    249 	0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
    250 	0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
    251 	0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
    252 	0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
    253 	0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
    254 	0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
    255 	0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
    256 	0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
    257 #  else
    258 #    error crypto_core_ROUNDS must be 8, 12, or 20.
    259 #  endif
    260 #else
    261 #  error Byte order must be little-endian or big-endian.
    262 #endif
    263 };
    264 
    265 static int
    266 crypto_core_selftest(void)
    267 {
    268 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
    269 	const uint8_t key[crypto_core_KEYBYTES] = {0};
    270 	uint8_t block[64];
    271 	unsigned i;
    272 
    273 	crypto_core(block, nonce, key, crypto_core_constant32);
    274 	for (i = 0; i < 64; i++) {
    275 		if (block[i] != crypto_core_selftest_vector[i])
    276 			return EIO;
    277 	}
    278 
    279 	return 0;
    280 }
    281 
    282 /* PRNG */
    283 
    284 /*
    285  * For a state s, rather than use ChaCha20 as a stream cipher to
    286  * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
    287  * split ChaCha20_s(0) into s' || x and yield x for the first request,
    288  * split ChaCha20_s'(0) into s'' || y and yield y for the second
    289  * request, &c.  This provides backtracking resistance: an attacker who
    290  * finds s'' can't recover s' or x.
    291  */
    292 
    293 #define	crypto_prng_SEEDBYTES		crypto_core_KEYBYTES
    294 #define	crypto_prng_MAXOUTPUTBYTES	\
    295 	(crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
    296 
    297 __CTASSERT(sizeof(struct crypto_prng) == crypto_prng_SEEDBYTES);
    298 
    299 static void
    300 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
    301 {
    302 
    303 	(void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
    304 }
    305 
    306 static void
    307 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
    308 {
    309 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
    310 	uint8_t output[crypto_core_OUTPUTBYTES];
    311 
    312 	_DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
    313 	__CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
    314 	    <= sizeof output);
    315 
    316 	crypto_core(output, nonce, prng->state, crypto_core_constant32);
    317 	(void)memcpy(prng->state, output, sizeof prng->state);
    318 	(void)memcpy(buf, output + sizeof prng->state, n);
    319 	(void)explicit_memset(output, 0, sizeof output);
    320 }
    321 
    322 static int
    323 crypto_prng_selftest(void)
    324 {
    325 	const uint8_t expected[32] = {
    326 #if _BYTE_ORDER == _LITTLE_ENDIAN
    327 #  if crypto_core_ROUNDS == 20
    328 		0x2b,	/* first call */
    329 		0x2d,0x41,0xa5,0x9c,0x90,0xe4,0x1a,0x8e, /* second call */
    330 		0x7a,0x4d,0xcc,0xaa,0x1c,0x46,0x06,0x99,
    331 		0x83,0xb1,0xa3,0x33,0xce,0x25,0x71,0x9e,
    332 		0xc3,0x43,0x77,0x68,0xab,0x57,
    333 		0x5f,	/* third call */
    334 #  else
    335 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    336 #  endif
    337 #elif _BYTE_ORDER == _BIG_ENDIAN
    338 #  if crypto_core_ROUNDS == 20
    339 		0xae,	/* first call */
    340 		0x97,0x14,0x5a,0x05,0xad,0xa8,0x48,0xf1, /* second call */
    341 		0x3a,0x81,0x84,0xd7,0x05,0xda,0x20,0x5d,
    342 		0xc0,0xef,0x86,0x65,0x98,0xbd,0xb0,0x16,
    343 		0x1b,0xfc,0xff,0xc4,0xc2,0xfd,
    344 		0xa0,	/* third call */
    345 #  else
    346 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    347 #  endif
    348 #else
    349 #  error Byte order must be little-endian or big-endian.
    350 #endif
    351 	};
    352 	uint8_t seed[crypto_prng_SEEDBYTES];
    353 	struct crypto_prng prng;
    354 	uint8_t output[32];
    355 	unsigned i;
    356 
    357 	for (i = 0; i < __arraycount(seed); i++)
    358 		seed[i] = i;
    359 	crypto_prng_seed(&prng, seed);
    360 	crypto_prng_buf(&prng, output, 1);
    361 	crypto_prng_buf(&prng, output + 1, 30);
    362 	crypto_prng_buf(&prng, output + 31, 1);
    363 	if (memcmp(output, expected, 32) != 0)
    364 		return EIO;
    365 	return 0;
    366 }
    367 
    368 /* One-time stream: expand short single-use secret into long secret */
    369 
    370 #define	crypto_onetimestream_SEEDBYTES	crypto_core_KEYBYTES
    371 
    372 static void
    373 crypto_onetimestream(const void *seed, void *buf, size_t n)
    374 {
    375 	uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
    376 	uint8_t block[crypto_core_OUTPUTBYTES];
    377 	uint8_t *p8, *p32;
    378 	const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
    379 	size_t ni, nb, nf;
    380 
    381 	/*
    382 	 * Guarantee we can generate up to n bytes.  We have
    383 	 * 2^(8*INPUTBYTES) possible inputs yielding output of
    384 	 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes.  It suffices to require
    385 	 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
    386 	 * (1/CHAR_BIT) log_2 of the total output stream length.  We
    387 	 * have
    388 	 *
    389 	 *	log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
    390 	 *	  = log_2 o + 8 i.
    391 	 */
    392 #ifndef __lint__
    393 	__CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
    394 		8 * crypto_core_INPUTBYTES));
    395 #endif
    396 
    397 	p8 = buf;
    398 	p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
    399 	ni = p32 - p8;
    400 	if (n < ni)
    401 		ni = n;
    402 	nb = (n - ni) / sizeof block;
    403 	nf = (n - ni) % sizeof block;
    404 
    405 	_DIAGASSERT(((uintptr_t)p32 & 3) == 0);
    406 	_DIAGASSERT(ni <= n);
    407 	_DIAGASSERT(nb <= (n / sizeof block));
    408 	_DIAGASSERT(nf <= n);
    409 	_DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
    410 	_DIAGASSERT(ni < 4);
    411 	_DIAGASSERT(nf < sizeof block);
    412 
    413 	if (ni) {
    414 		crypto_core(block, nonce8, seed, crypto_core_constant32);
    415 		nonce[0]++;
    416 		(void)memcpy(p8, block, ni);
    417 	}
    418 	while (nb--) {
    419 		crypto_core(p32, nonce8, seed, crypto_core_constant32);
    420 		if (++nonce[0] == 0)
    421 			nonce[1]++;
    422 		p32 += crypto_core_OUTPUTBYTES;
    423 	}
    424 	if (nf) {
    425 		crypto_core(block, nonce8, seed, crypto_core_constant32);
    426 		if (++nonce[0] == 0)
    427 			nonce[1]++;
    428 		(void)memcpy(p32, block, nf);
    429 	}
    430 
    431 	if (ni | nf)
    432 		(void)explicit_memset(block, 0, sizeof block);
    433 }
    434 
    435 static int
    436 crypto_onetimestream_selftest(void)
    437 {
    438 	const uint8_t expected[70] = {
    439 		0x5a,			/* guard byte */
    440 #if _BYTE_ORDER == _LITTLE_ENDIAN
    441 #  if crypto_core_ROUNDS == 20
    442 		0x39,0xfd,0x2b,		/* initial block */
    443 		0x18,0xb8,0x42,0x31,0xad,0xe6,0xa6,0xd1,
    444 		0x13,0x61,0x5c,0x61,0xaf,0x43,0x4e,0x27,
    445 		0xf8,0xb1,0xf3,0xf5,0xe1,0xad,0x5b,0x5c,
    446 		0xec,0xf8,0xfc,0x12,0x2a,0x35,0x75,0x5c,
    447 		0x72,0x08,0x08,0x6d,0xd1,0xee,0x3c,0x5d,
    448 		0x9d,0x81,0x58,0x24,0x64,0x0e,0x00,0x3c,
    449 		0x9b,0xa0,0xf6,0x5e,0xde,0x5d,0x59,0xce,
    450 		0x0d,0x2a,0x4a,0x7f,0x31,0x95,0x5a,0xcd,
    451 		0x42,			/* final block */
    452 #  else
    453 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    454 #  endif
    455 #elif _BYTE_ORDER == _BIG_ENDIAN
    456 #  if crypto_core_ROUNDS == 20
    457 		0x20,0xf0,0x66,		/* initial block */
    458 		0xc9,0x06,0x63,0xc5,0x45,0x38,0xd1,0xb1,
    459 		0xe6,0x3e,0xbf,0x68,0x19,0xd6,0xf1,0xbe,
    460 		0x09,0xb9,0x49,0xc4,0xf5,0x55,0x95,0xc1,
    461 		0x54,0x56,0xeb,0xe4,0x8c,0xa5,0xbb,0x55,
    462 		0x17,0x89,0x8e,0x90,0x51,0x53,0xea,0x17,
    463 		0x29,0xf5,0x7e,0xe4,0x78,0x08,0x53,0xc8,
    464 		0x54,0xa8,0xba,0x76,0xce,0x0e,0x8d,0x2f,
    465 		0xe1,0x07,0xc8,0x46,0x73,0x3e,0x61,0x0c,
    466 		0x02,			/* final block */
    467 #  else
    468 #    error crypto_core_ROUNDS other than 20 left as exercise for reader.
    469 #  endif
    470 #else
    471 #  error Byte order must be little-endian or big-endian.
    472 #endif
    473 		0xcc,			/* guard byte */
    474 	};
    475 	uint8_t seed[crypto_prng_SEEDBYTES];
    476 	uint8_t output[70] __aligned(4);
    477 	unsigned i;
    478 
    479 	for (i = 0; i < __arraycount(seed); i++)
    480 		seed[i] = i;
    481 	output[0] = 0x5a;
    482 	output[69] = 0xcc;
    483 	crypto_onetimestream(seed, output + 1, 68);
    484 	if (memcmp(output, expected, 70) != 0)
    485 		return EIO;
    486 	return 0;
    487 }
    488 
    489 /*
    490  * entropy_epoch()
    491  *
    492  *	Return the current entropy epoch, from the sysctl node
    493  *	kern.entropy.epoch.
    494  *
    495  *	The entropy epoch is never zero.  Initially, or on error, it is
    496  *	(unsigned)-1.  It may wrap around but it skips (unsigned)-1 and
    497  *	0 when it does.  Changes happen less than once per second, so
    498  *	wraparound will only affect systems after 136 years of uptime.
    499  *
    500  *	XXX This should get it from a page shared read-only by kernel
    501  *	with userland, but until we implement such a mechanism, this
    502  *	sysctl -- incurring the cost of a syscall -- will have to
    503  *	serve.
    504  */
    505 static unsigned
    506 entropy_epoch(void)
    507 {
    508 	static atomic_int mib0[3];
    509 	static atomic_bool initialized = false;
    510 	int mib[3];
    511 	unsigned epoch = (unsigned)-1;
    512 	size_t epochlen = sizeof(epoch);
    513 
    514 	/*
    515 	 * Resolve kern.entropy.epoch if we haven't already.  Cache it
    516 	 * for the next caller.  Initialization is idempotent, so it's
    517 	 * OK if two threads do it at once.
    518 	 */
    519 	if (atomic_load_explicit(&initialized, memory_order_acquire)) {
    520 		mib[0] = atomic_load_explicit(&mib0[0], memory_order_relaxed);
    521 		mib[1] = atomic_load_explicit(&mib0[1], memory_order_relaxed);
    522 		mib[2] = atomic_load_explicit(&mib0[2], memory_order_relaxed);
    523 	} else {
    524 		size_t nmib = __arraycount(mib);
    525 
    526 		if (sysctlnametomib("kern.entropy.epoch", mib, &nmib) == -1)
    527 			return (unsigned)-1;
    528 		if (nmib != __arraycount(mib))
    529 			return (unsigned)-1;
    530 		atomic_store_explicit(&mib0[0], mib[0], memory_order_relaxed);
    531 		atomic_store_explicit(&mib0[1], mib[1], memory_order_relaxed);
    532 		atomic_store_explicit(&mib0[2], mib[2], memory_order_relaxed);
    533 		atomic_store_explicit(&initialized, true,
    534 		    memory_order_release);
    535 	}
    536 
    537 	if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
    538 		return (unsigned)-1;
    539 	if (epochlen != sizeof(epoch))
    540 		return (unsigned)-1;
    541 
    542 	return epoch;
    543 }
    544 
    545 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
    546 
    547 static void
    548 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
    549     size_t datalen)
    550 {
    551 	const int mib[] = { CTL_KERN, KERN_ARND };
    552 	SHA256_CTX ctx;
    553 	uint8_t buf[crypto_prng_SEEDBYTES];
    554 	size_t buflen = sizeof buf;
    555 	unsigned epoch = entropy_epoch();
    556 
    557 	__CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
    558 
    559 	SHA256_Init(&ctx);
    560 
    561 	crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
    562 	SHA256_Update(&ctx, buf, sizeof buf);
    563 
    564 	if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
    565 		abort();
    566 	if (buflen != sizeof buf)
    567 		abort();
    568 	SHA256_Update(&ctx, buf, sizeof buf);
    569 
    570 	if (data != NULL)
    571 		SHA256_Update(&ctx, data, datalen);
    572 
    573 	SHA256_Final(buf, &ctx);
    574 	(void)explicit_memset(&ctx, 0, sizeof ctx);
    575 
    576 	/* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
    577 	crypto_prng_seed(&prng->arc4_prng, buf);
    578 	(void)explicit_memset(buf, 0, sizeof buf);
    579 	prng->arc4_epoch = epoch;
    580 }
    581 
    582 #ifdef _REENTRANT
    583 static struct arc4random_prng *
    584 arc4random_prng_create(void)
    585 {
    586 	struct arc4random_prng *prng;
    587 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
    588 
    589 	prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
    590 	    0);
    591 	if (prng == MAP_FAILED)
    592 		goto fail0;
    593 	if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
    594 		goto fail1;
    595 
    596 	return prng;
    597 
    598 fail1:	(void)munmap(prng, size);
    599 fail0:	return NULL;
    600 }
    601 #endif
    602 
    603 #ifdef _REENTRANT
    604 static void
    605 arc4random_prng_destroy(struct arc4random_prng *prng)
    606 {
    607 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
    608 
    609 	(void)explicit_memset(prng, 0, sizeof(*prng));
    610 	(void)munmap(prng, size);
    611 }
    612 #endif
    613 
    614 /* Library state */
    615 
    616 struct arc4random_global_state arc4random_global = {
    617 #ifdef _REENTRANT
    618 	.lock		= MUTEX_INITIALIZER,
    619 #endif
    620 	.once		= ONCE_INITIALIZER,
    621 };
    622 
    623 static void
    624 arc4random_atfork_prepare(void)
    625 {
    626 
    627 	mutex_lock(&arc4random_global.lock);
    628 	(void)explicit_memset(&arc4random_global.prng, 0,
    629 	    sizeof arc4random_global.prng);
    630 }
    631 
    632 static void
    633 arc4random_atfork_parent(void)
    634 {
    635 
    636 	mutex_unlock(&arc4random_global.lock);
    637 }
    638 
    639 static void
    640 arc4random_atfork_child(void)
    641 {
    642 
    643 	mutex_unlock(&arc4random_global.lock);
    644 }
    645 
    646 #ifdef _REENTRANT
    647 static void
    648 arc4random_tsd_destructor(void *p)
    649 {
    650 	struct arc4random_prng *const prng = p;
    651 
    652 	arc4random_prng_destroy(prng);
    653 }
    654 #endif
    655 
    656 static void
    657 arc4random_initialize(void)
    658 {
    659 
    660 	/*
    661 	 * If the crypto software is broken, abort -- something is
    662 	 * severely wrong with this process image.
    663 	 */
    664 	if (crypto_core_selftest() != 0 ||
    665 	    crypto_prng_selftest() != 0 ||
    666 	    crypto_onetimestream_selftest() != 0)
    667 		abort();
    668 
    669 	/*
    670 	 * Set up a pthread_atfork handler to lock the global state
    671 	 * around fork so that if forked children can't use the
    672 	 * per-thread state, they can take the lock and use the global
    673 	 * state without deadlock.  If this fails, we will fall back to
    674 	 * PRNG state on the stack reinitialized from the kernel
    675 	 * entropy pool at every call.
    676 	 */
    677 	if (pthread_atfork(&arc4random_atfork_prepare,
    678 		&arc4random_atfork_parent, &arc4random_atfork_child)
    679 	    == 0)
    680 		arc4random_global.forksafe = true;
    681 
    682 	/*
    683 	 * For multithreaded builds, try to allocate a per-thread PRNG
    684 	 * state to avoid contention due to arc4random.
    685 	 */
    686 #ifdef _REENTRANT
    687 	if (thr_keycreate(&arc4random_global.thread_key,
    688 		&arc4random_tsd_destructor) == 0)
    689 		arc4random_global.per_thread = true;
    690 #endif
    691 
    692 	/*
    693 	 * Note that the arc4random library state has been initialized
    694 	 * for the sake of automatic tests.
    695 	 */
    696 	arc4random_global.initialized = true;
    697 }
    698 
    699 static struct arc4random_prng *
    700 arc4random_prng_get(struct arc4random_prng *fallback)
    701 {
    702 	struct arc4random_prng *prng = NULL;
    703 
    704 	/* Make sure the library is initialized.  */
    705 	thr_once(&arc4random_global.once, &arc4random_initialize);
    706 
    707 #ifdef _REENTRANT
    708 	/* Get or create the per-thread PRNG state.  */
    709 	prng = __predict_true(arc4random_global.per_thread)
    710 	    ? thr_getspecific(arc4random_global.thread_key)
    711 	    : NULL;
    712 	if (__predict_false(prng == NULL) && arc4random_global.per_thread) {
    713 		prng = arc4random_prng_create();
    714 		thr_setspecific(arc4random_global.thread_key, prng);
    715 	}
    716 #endif
    717 
    718 	/*
    719 	 * If we can't create it, fall back to the global PRNG -- or an
    720 	 * on-stack PRNG, in the unlikely event that pthread_atfork
    721 	 * failed, which we have to seed from scratch each time
    722 	 * (suboptimal, but unlikely, so not worth optimizing).
    723 	 */
    724 	if (__predict_false(prng == NULL)) {
    725 		if (__predict_true(arc4random_global.forksafe)) {
    726 			mutex_lock(&arc4random_global.lock);
    727 			prng = &arc4random_global.prng;
    728 		} else {
    729 			prng = fallback;
    730 			memset(prng, 0, sizeof(*prng));
    731 		}
    732 	}
    733 
    734 	/* Guarantee the PRNG is seeded.  */
    735 	if (__predict_false(prng->arc4_epoch != entropy_epoch()))
    736 		arc4random_prng_addrandom(prng, NULL, 0);
    737 
    738 	return prng;
    739 }
    740 
    741 static void
    742 arc4random_prng_put(struct arc4random_prng *prng,
    743     struct arc4random_prng *fallback)
    744 {
    745 
    746 	/*
    747 	 * If we had to use a stack fallback, zero it before we return
    748 	 * so that after we return we avoid leaving secrets on the
    749 	 * stack that could recover the parent's future outputs in an
    750 	 * unprivileged forked child (of course, we can't guarantee
    751 	 * that the compiler hasn't spilled anything; this is
    752 	 * best-effort, not a guarantee).
    753 	 */
    754 	if (__predict_false(prng == fallback))
    755 		explicit_memset(fallback, 0, sizeof(*fallback));
    756 
    757 	/* If we had fallen back to the global PRNG, unlock it.  */
    758 	if (__predict_false(prng == &arc4random_global.prng))
    759 		mutex_unlock(&arc4random_global.lock);
    760 }
    761 
    762 /* Public API */
    763 
    764 uint32_t
    765 arc4random(void)
    766 {
    767 	struct arc4random_prng *prng, fallback;
    768 	uint32_t v;
    769 
    770 	prng = arc4random_prng_get(&fallback);
    771 	crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
    772 	arc4random_prng_put(prng, &fallback);
    773 
    774 	return v;
    775 }
    776 
    777 void
    778 arc4random_buf(void *buf, size_t len)
    779 {
    780 	struct arc4random_prng *prng, fallback;
    781 
    782 	if (len <= crypto_prng_MAXOUTPUTBYTES) {
    783 		prng = arc4random_prng_get(&fallback);
    784 		crypto_prng_buf(&prng->arc4_prng, buf, len);
    785 		arc4random_prng_put(prng, &fallback);
    786 	} else {
    787 		uint8_t seed[crypto_onetimestream_SEEDBYTES];
    788 
    789 		prng = arc4random_prng_get(&fallback);
    790 		crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
    791 		arc4random_prng_put(prng, &fallback);
    792 
    793 		crypto_onetimestream(seed, buf, len);
    794 		(void)explicit_memset(seed, 0, sizeof seed);
    795 	}
    796 }
    797 
    798 uint32_t
    799 arc4random_uniform(uint32_t bound)
    800 {
    801 	struct arc4random_prng *prng, fallback;
    802 	uint32_t minimum, r;
    803 
    804 	/*
    805 	 * We want a uniform random choice in [0, n), and arc4random()
    806 	 * makes a uniform random choice in [0, 2^32).  If we reduce
    807 	 * that modulo n, values in [0, 2^32 mod n) will be represented
    808 	 * slightly more than values in [2^32 mod n, n).  Instead we
    809 	 * choose only from [2^32 mod n, 2^32) by rejecting samples in
    810 	 * [0, 2^32 mod n), to avoid counting the extra representative
    811 	 * of [0, 2^32 mod n).  To compute 2^32 mod n, note that
    812 	 *
    813 	 *	2^32 mod n = 2^32 mod n - 0
    814 	 *	  = 2^32 mod n - n mod n
    815 	 *	  = (2^32 - n) mod n,
    816 	 *
    817 	 * the last of which is what we compute in 32-bit arithmetic.
    818 	 */
    819 	minimum = (-bound % bound);
    820 
    821 	prng = arc4random_prng_get(&fallback);
    822 	do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
    823 	while (__predict_false(r < minimum));
    824 	arc4random_prng_put(prng, &fallback);
    825 
    826 	return (r % bound);
    827 }
    828 
    829 void
    830 arc4random_stir(void)
    831 {
    832 	struct arc4random_prng *prng, fallback;
    833 
    834 	prng = arc4random_prng_get(&fallback);
    835 	arc4random_prng_addrandom(prng, NULL, 0);
    836 	arc4random_prng_put(prng, &fallback);
    837 }
    838 
    839 /*
    840  * Silly signature here is for hysterical raisins.  Should instead be
    841  * const void *data and size_t datalen.
    842  */
    843 void
    844 arc4random_addrandom(u_char *data, int datalen)
    845 {
    846 	struct arc4random_prng *prng, fallback;
    847 
    848 	_DIAGASSERT(0 <= datalen);
    849 
    850 	prng = arc4random_prng_get(&fallback);
    851 	arc4random_prng_addrandom(prng, data, datalen);
    852 	arc4random_prng_put(prng, &fallback);
    853 }
    854 
    855 #ifdef _ARC4RANDOM_TEST
    856 
    857 #include <sys/wait.h>
    858 
    859 #include <err.h>
    860 #include <stdio.h>
    861 
    862 int
    863 main(int argc __unused, char **argv __unused)
    864 {
    865 	unsigned char gubbish[] = "random gubbish";
    866 	const uint8_t zero64[64] = {0};
    867 	uint8_t buf[2048];
    868 	unsigned i, a, n;
    869 
    870 	/* Test arc4random: should not be deterministic.  */
    871 	if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
    872 		err(1, "printf");
    873 
    874 	/* Test stirring: should definitely not be deterministic.  */
    875 	arc4random_stir();
    876 
    877 	/* Test small buffer.  */
    878 	arc4random_buf(buf, 8);
    879 	if (printf("arc4randombuf small:") < 0)
    880 		err(1, "printf");
    881 	for (i = 0; i < 8; i++)
    882 		if (printf(" %02x", buf[i]) < 0)
    883 			err(1, "printf");
    884 	if (printf("\n") < 0)
    885 		err(1, "printf");
    886 
    887 	/* Test addrandom: should not make the rest deterministic.  */
    888 	arc4random_addrandom(gubbish, sizeof gubbish);
    889 
    890 	/* Test large buffer.  */
    891 	arc4random_buf(buf, sizeof buf);
    892 	if (printf("arc4randombuf_large:") < 0)
    893 		err(1, "printf");
    894 	for (i = 0; i < sizeof buf; i++)
    895 		if (printf(" %02x", buf[i]) < 0)
    896 			err(1, "printf");
    897 	if (printf("\n") < 0)
    898 		err(1, "printf");
    899 
    900 	/* Test misaligned small and large.  */
    901 	for (a = 0; a < 64; a++) {
    902 		for (n = a; n < sizeof buf; n++) {
    903 			(void)memset(buf, 0, sizeof buf);
    904 			arc4random_buf(buf, n - a);
    905 			if (memcmp(buf + n - a, zero64, a) != 0)
    906 				errx(1, "arc4random buffer overflow 0");
    907 
    908 			(void)memset(buf, 0, sizeof buf);
    909 			arc4random_buf(buf + a, n - a);
    910 			if (memcmp(buf, zero64, a) != 0)
    911 				errx(1, "arc4random buffer overflow 1");
    912 
    913 			if ((2*a) <= n) {
    914 				(void)memset(buf, 0, sizeof buf);
    915 				arc4random_buf(buf + a, n - a - a);
    916 				if (memcmp(buf + n - a, zero64, a) != 0)
    917 					errx(1,
    918 					    "arc4random buffer overflow 2");
    919 			}
    920 		}
    921 	}
    922 
    923 	/* Test fork-safety.  */
    924     {
    925 	pid_t pid, rpid;
    926 	int status;
    927 
    928 	pid = fork();
    929 	switch (pid) {
    930 	case -1:
    931 		err(1, "fork");
    932 	case 0: {
    933 		/*
    934 		 * Verify the epoch has been set to zero by fork.
    935 		 */
    936 		struct arc4random_prng *prng = NULL;
    937 #ifdef _REENTRANT
    938 		prng = arc4random_global.per_thread
    939 		    ? thr_getspecific(arc4random_global.thread_key)
    940 		    : NULL;
    941 #endif
    942 		if (prng == NULL)
    943 			prng = &arc4random_global.prng;
    944 		_exit(prng->arc4_epoch != 0);
    945 	}
    946 	default:
    947 		rpid = waitpid(pid, &status, 0);
    948 		if (rpid == -1)
    949 			err(1, "waitpid");
    950 		if (rpid != pid)
    951 			errx(1, "waitpid returned wrong pid"
    952 			    ": %"PRIdMAX" != %"PRIdMAX,
    953 			    (intmax_t)rpid,
    954 			    (intmax_t)pid);
    955 		if (WIFEXITED(status)) {
    956 			if (WEXITSTATUS(status) != 0)
    957 				errx(1, "child exited with %d",
    958 				    WEXITSTATUS(status));
    959 		} else if (WIFSIGNALED(status)) {
    960 			errx(1, "child terminated on signal %d",
    961 			    WTERMSIG(status));
    962 		} else {
    963 			errx(1, "child died mysteriously: %d", status);
    964 		}
    965 	}
    966     }
    967 
    968 	/* XXX Test multithreaded fork safety...?  */
    969 
    970 	return 0;
    971 }
    972 #endif
    973