arc4random.c revision 1.47 1 /* $NetBSD: arc4random.c,v 1.47 2025/03/10 21:21:32 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Legacy arc4random(3) API from OpenBSD reimplemented using the
34 * ChaCha20 PRF, with per-thread state.
35 *
36 * Security model:
37 * - An attacker who sees some outputs cannot predict past or future
38 * outputs.
39 * - An attacker who sees the PRNG state cannot predict past outputs.
40 * - An attacker who sees a child's PRNG state cannot predict past or
41 * future outputs in the parent, or in other children.
42 *
43 * The arc4random(3) API may abort the process if:
44 *
45 * (a) the crypto self-test fails, or
46 * (b) sysctl(KERN_ARND) fails when reseeding the PRNG.
47 *
48 * The crypto self-test occurs only once, on the first use of any of
49 * the arc4random(3) API. KERN_ARND is unlikely to fail later unless
50 * the kernel is seriously broken.
51 */
52
53 #include <sys/cdefs.h>
54 __RCSID("$NetBSD: arc4random.c,v 1.47 2025/03/10 21:21:32 riastradh Exp $");
55
56 #include "namespace.h"
57 #include "reentrant.h"
58
59 #include <sys/bitops.h>
60 #include <sys/endian.h>
61 #include <sys/errno.h>
62 #include <sys/mman.h>
63 #include <sys/sysctl.h>
64
65 #include <assert.h>
66 #include <sha2.h>
67 #include <stdatomic.h>
68 #include <stdbool.h>
69 #include <stdint.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <unistd.h>
73
74 #include "arc4random.h"
75 #include "reentrant.h"
76
77 #ifdef __weak_alias
78 __weak_alias(arc4random,_arc4random)
79 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
80 __weak_alias(arc4random_buf,_arc4random_buf)
81 __weak_alias(arc4random_stir,_arc4random_stir)
82 __weak_alias(arc4random_uniform,_arc4random_uniform)
83 #endif
84
85 /*
86 * For standard ChaCha, use le32dec/le32enc. We don't need that for
87 * the purposes of a nondeterministic random number generator -- we
88 * don't need to be bit-for-bit compatible over any wire.
89 */
90
91 static inline uint32_t
92 crypto_le32dec(const void *p)
93 {
94 uint32_t v;
95
96 (void)memcpy(&v, p, sizeof v);
97
98 return v;
99 }
100
101 static inline void
102 crypto_le32enc(void *p, uint32_t v)
103 {
104
105 (void)memcpy(p, &v, sizeof v);
106 }
107
108 /* ChaCha core */
109
110 #define crypto_core_OUTPUTBYTES 64
111 #define crypto_core_INPUTBYTES 16
112 #define crypto_core_KEYBYTES 32
113 #define crypto_core_CONSTBYTES 16
114
115 #define crypto_core_ROUNDS 20
116
117 static uint32_t
118 rotate(uint32_t u, unsigned c)
119 {
120
121 return (u << c) | (u >> (32 - c));
122 }
123
124 #define QUARTERROUND(a, b, c, d) do { \
125 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
126 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
127 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
128 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
129 } while (0)
130
131 static const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
132
133 static void
134 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
135 const uint8_t *c)
136 {
137 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
138 uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
139 int i;
140
141 j0 = x0 = crypto_le32dec(c + 0);
142 j1 = x1 = crypto_le32dec(c + 4);
143 j2 = x2 = crypto_le32dec(c + 8);
144 j3 = x3 = crypto_le32dec(c + 12);
145 j4 = x4 = crypto_le32dec(k + 0);
146 j5 = x5 = crypto_le32dec(k + 4);
147 j6 = x6 = crypto_le32dec(k + 8);
148 j7 = x7 = crypto_le32dec(k + 12);
149 j8 = x8 = crypto_le32dec(k + 16);
150 j9 = x9 = crypto_le32dec(k + 20);
151 j10 = x10 = crypto_le32dec(k + 24);
152 j11 = x11 = crypto_le32dec(k + 28);
153 j12 = x12 = crypto_le32dec(in + 0);
154 j13 = x13 = crypto_le32dec(in + 4);
155 j14 = x14 = crypto_le32dec(in + 8);
156 j15 = x15 = crypto_le32dec(in + 12);
157
158 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
159 QUARTERROUND( x0, x4, x8,x12);
160 QUARTERROUND( x1, x5, x9,x13);
161 QUARTERROUND( x2, x6,x10,x14);
162 QUARTERROUND( x3, x7,x11,x15);
163 QUARTERROUND( x0, x5,x10,x15);
164 QUARTERROUND( x1, x6,x11,x12);
165 QUARTERROUND( x2, x7, x8,x13);
166 QUARTERROUND( x3, x4, x9,x14);
167 }
168
169 crypto_le32enc(out + 0, x0 + j0);
170 crypto_le32enc(out + 4, x1 + j1);
171 crypto_le32enc(out + 8, x2 + j2);
172 crypto_le32enc(out + 12, x3 + j3);
173 crypto_le32enc(out + 16, x4 + j4);
174 crypto_le32enc(out + 20, x5 + j5);
175 crypto_le32enc(out + 24, x6 + j6);
176 crypto_le32enc(out + 28, x7 + j7);
177 crypto_le32enc(out + 32, x8 + j8);
178 crypto_le32enc(out + 36, x9 + j9);
179 crypto_le32enc(out + 40, x10 + j10);
180 crypto_le32enc(out + 44, x11 + j11);
181 crypto_le32enc(out + 48, x12 + j12);
182 crypto_le32enc(out + 52, x13 + j13);
183 crypto_le32enc(out + 56, x14 + j14);
184 crypto_le32enc(out + 60, x15 + j15);
185 }
186
187 /* ChaCha self-test */
188
189 /*
190 * Test vector for ChaCha20 from
191 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
192 * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
193 * generated by the same crypto_core code with crypto_core_ROUNDS and
194 * crypto_le32enc/dec varied.
195 */
196
197 static const uint8_t crypto_core_selftest_vector[64] = {
198 #if _BYTE_ORDER == _LITTLE_ENDIAN
199 # if crypto_core_ROUNDS == 8
200 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
201 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
202 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
203 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
204 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
205 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
206 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
207 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
208 # elif crypto_core_ROUNDS == 12
209 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
210 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
211 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
212 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
213 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
214 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
215 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
216 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
217 # elif crypto_core_ROUNDS == 20
218 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
219 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
220 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
221 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
222 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
223 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
224 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
225 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
226 # else
227 # error crypto_core_ROUNDS must be 8, 12, or 20.
228 # endif
229 #elif _BYTE_ORDER == _BIG_ENDIAN
230 # if crypto_core_ROUNDS == 8
231 0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
232 0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
233 0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
234 0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
235 0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
236 0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
237 0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
238 0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
239 # elif crypto_core_ROUNDS == 12
240 0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
241 0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
242 0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
243 0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
244 0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
245 0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
246 0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
247 0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
248 # elif crypto_core_ROUNDS == 20
249 0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
250 0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
251 0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
252 0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
253 0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
254 0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
255 0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
256 0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
257 # else
258 # error crypto_core_ROUNDS must be 8, 12, or 20.
259 # endif
260 #else
261 # error Byte order must be little-endian or big-endian.
262 #endif
263 };
264
265 static int
266 crypto_core_selftest(void)
267 {
268 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
269 const uint8_t key[crypto_core_KEYBYTES] = {0};
270 uint8_t block[64];
271 unsigned i;
272
273 crypto_core(block, nonce, key, crypto_core_constant32);
274 for (i = 0; i < 64; i++) {
275 if (block[i] != crypto_core_selftest_vector[i])
276 return EIO;
277 }
278
279 return 0;
280 }
281
282 /* PRNG */
283
284 /*
285 * For a state s, rather than use ChaCha20 as a stream cipher to
286 * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
287 * split ChaCha20_s(0) into s' || x and yield x for the first request,
288 * split ChaCha20_s'(0) into s'' || y and yield y for the second
289 * request, &c. This provides backtracking resistance: an attacker who
290 * finds s'' can't recover s' or x.
291 */
292
293 #define crypto_prng_SEEDBYTES crypto_core_KEYBYTES
294 #define crypto_prng_MAXOUTPUTBYTES \
295 (crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
296
297 __CTASSERT(sizeof(struct crypto_prng) == crypto_prng_SEEDBYTES);
298
299 static void
300 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
301 {
302
303 (void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
304 }
305
306 static void
307 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
308 {
309 const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
310 uint8_t output[crypto_core_OUTPUTBYTES];
311
312 _DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
313 __CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
314 <= sizeof output);
315
316 crypto_core(output, nonce, prng->state, crypto_core_constant32);
317 (void)memcpy(prng->state, output, sizeof prng->state);
318 (void)memcpy(buf, output + sizeof prng->state, n);
319 (void)explicit_memset(output, 0, sizeof output);
320 }
321
322 static int
323 crypto_prng_selftest(void)
324 {
325 const uint8_t expected[32] = {
326 #if _BYTE_ORDER == _LITTLE_ENDIAN
327 # if crypto_core_ROUNDS == 20
328 0x2b, /* first call */
329 0x2d,0x41,0xa5,0x9c,0x90,0xe4,0x1a,0x8e, /* second call */
330 0x7a,0x4d,0xcc,0xaa,0x1c,0x46,0x06,0x99,
331 0x83,0xb1,0xa3,0x33,0xce,0x25,0x71,0x9e,
332 0xc3,0x43,0x77,0x68,0xab,0x57,
333 0x5f, /* third call */
334 # else
335 # error crypto_core_ROUNDS other than 20 left as exercise for reader.
336 # endif
337 #elif _BYTE_ORDER == _BIG_ENDIAN
338 # if crypto_core_ROUNDS == 20
339 0xae, /* first call */
340 0x97,0x14,0x5a,0x05,0xad,0xa8,0x48,0xf1, /* second call */
341 0x3a,0x81,0x84,0xd7,0x05,0xda,0x20,0x5d,
342 0xc0,0xef,0x86,0x65,0x98,0xbd,0xb0,0x16,
343 0x1b,0xfc,0xff,0xc4,0xc2,0xfd,
344 0xa0, /* third call */
345 # else
346 # error crypto_core_ROUNDS other than 20 left as exercise for reader.
347 # endif
348 #else
349 # error Byte order must be little-endian or big-endian.
350 #endif
351 };
352 uint8_t seed[crypto_prng_SEEDBYTES];
353 struct crypto_prng prng;
354 uint8_t output[32];
355 unsigned i;
356
357 for (i = 0; i < __arraycount(seed); i++)
358 seed[i] = i;
359 crypto_prng_seed(&prng, seed);
360 crypto_prng_buf(&prng, output, 1);
361 crypto_prng_buf(&prng, output + 1, 30);
362 crypto_prng_buf(&prng, output + 31, 1);
363 if (memcmp(output, expected, 32) != 0)
364 return EIO;
365 return 0;
366 }
367
368 /* One-time stream: expand short single-use secret into long secret */
369
370 #define crypto_onetimestream_SEEDBYTES crypto_core_KEYBYTES
371
372 static void
373 crypto_onetimestream(const void *seed, void *buf, size_t n)
374 {
375 uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
376 uint8_t block[crypto_core_OUTPUTBYTES];
377 uint8_t *p8, *p32;
378 const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
379 size_t ni, nb, nf;
380
381 /*
382 * Guarantee we can generate up to n bytes. We have
383 * 2^(8*INPUTBYTES) possible inputs yielding output of
384 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes. It suffices to require
385 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
386 * (1/CHAR_BIT) log_2 of the total output stream length. We
387 * have
388 *
389 * log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
390 * = log_2 o + 8 i.
391 */
392 #ifndef __lint__
393 __CTASSERT(CHAR_BIT * sizeof n <= (ilog2(crypto_core_OUTPUTBYTES) +
394 8 * crypto_core_INPUTBYTES));
395 #endif
396
397 p8 = buf;
398 p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
399 ni = p32 - p8;
400 if (n < ni)
401 ni = n;
402 nb = (n - ni) / sizeof block;
403 nf = (n - ni) % sizeof block;
404
405 _DIAGASSERT(((uintptr_t)p32 & 3) == 0);
406 _DIAGASSERT(ni <= n);
407 _DIAGASSERT(nb <= (n / sizeof block));
408 _DIAGASSERT(nf <= n);
409 _DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
410 _DIAGASSERT(ni < 4);
411 _DIAGASSERT(nf < sizeof block);
412
413 if (ni) {
414 crypto_core(block, nonce8, seed, crypto_core_constant32);
415 nonce[0]++;
416 (void)memcpy(p8, block, ni);
417 }
418 while (nb--) {
419 crypto_core(p32, nonce8, seed, crypto_core_constant32);
420 if (++nonce[0] == 0)
421 nonce[1]++;
422 p32 += crypto_core_OUTPUTBYTES;
423 }
424 if (nf) {
425 crypto_core(block, nonce8, seed, crypto_core_constant32);
426 if (++nonce[0] == 0)
427 nonce[1]++;
428 (void)memcpy(p32, block, nf);
429 }
430
431 if (ni | nf)
432 (void)explicit_memset(block, 0, sizeof block);
433 }
434
435 static int
436 crypto_onetimestream_selftest(void)
437 {
438 const uint8_t expected[70] = {
439 0x5a, /* guard byte */
440 #if _BYTE_ORDER == _LITTLE_ENDIAN
441 # if crypto_core_ROUNDS == 20
442 0x39,0xfd,0x2b, /* initial block */
443 0x18,0xb8,0x42,0x31,0xad,0xe6,0xa6,0xd1,
444 0x13,0x61,0x5c,0x61,0xaf,0x43,0x4e,0x27,
445 0xf8,0xb1,0xf3,0xf5,0xe1,0xad,0x5b,0x5c,
446 0xec,0xf8,0xfc,0x12,0x2a,0x35,0x75,0x5c,
447 0x72,0x08,0x08,0x6d,0xd1,0xee,0x3c,0x5d,
448 0x9d,0x81,0x58,0x24,0x64,0x0e,0x00,0x3c,
449 0x9b,0xa0,0xf6,0x5e,0xde,0x5d,0x59,0xce,
450 0x0d,0x2a,0x4a,0x7f,0x31,0x95,0x5a,0xcd,
451 0x42, /* final block */
452 # else
453 # error crypto_core_ROUNDS other than 20 left as exercise for reader.
454 # endif
455 #elif _BYTE_ORDER == _BIG_ENDIAN
456 # if crypto_core_ROUNDS == 20
457 0x20,0xf0,0x66, /* initial block */
458 0xc9,0x06,0x63,0xc5,0x45,0x38,0xd1,0xb1,
459 0xe6,0x3e,0xbf,0x68,0x19,0xd6,0xf1,0xbe,
460 0x09,0xb9,0x49,0xc4,0xf5,0x55,0x95,0xc1,
461 0x54,0x56,0xeb,0xe4,0x8c,0xa5,0xbb,0x55,
462 0x17,0x89,0x8e,0x90,0x51,0x53,0xea,0x17,
463 0x29,0xf5,0x7e,0xe4,0x78,0x08,0x53,0xc8,
464 0x54,0xa8,0xba,0x76,0xce,0x0e,0x8d,0x2f,
465 0xe1,0x07,0xc8,0x46,0x73,0x3e,0x61,0x0c,
466 0x02, /* final block */
467 # else
468 # error crypto_core_ROUNDS other than 20 left as exercise for reader.
469 # endif
470 #else
471 # error Byte order must be little-endian or big-endian.
472 #endif
473 0xcc, /* guard byte */
474 };
475 uint8_t seed[crypto_prng_SEEDBYTES];
476 uint8_t output[70] __aligned(4);
477 unsigned i;
478
479 for (i = 0; i < __arraycount(seed); i++)
480 seed[i] = i;
481 output[0] = 0x5a;
482 output[69] = 0xcc;
483 crypto_onetimestream(seed, output + 1, 68);
484 if (memcmp(output, expected, 70) != 0)
485 return EIO;
486 return 0;
487 }
488
489 /*
490 * entropy_epoch()
491 *
492 * Return the current entropy epoch, from the sysctl node
493 * kern.entropy.epoch.
494 *
495 * The entropy epoch is never zero. Initially, or on error, it is
496 * (unsigned)-1. It may wrap around but it skips (unsigned)-1 and
497 * 0 when it does. Changes happen less than once per second, so
498 * wraparound will only affect systems after 136 years of uptime.
499 *
500 * XXX This should get it from a page shared read-only by kernel
501 * with userland, but until we implement such a mechanism, this
502 * sysctl -- incurring the cost of a syscall -- will have to
503 * serve.
504 */
505 static unsigned
506 entropy_epoch(void)
507 {
508 static atomic_int mib0[3];
509 static atomic_bool initialized = false;
510 int mib[3];
511 unsigned epoch = (unsigned)-1;
512 size_t epochlen = sizeof(epoch);
513
514 /*
515 * Resolve kern.entropy.epoch if we haven't already. Cache it
516 * for the next caller. Initialization is idempotent, so it's
517 * OK if two threads do it at once.
518 */
519 if (atomic_load_explicit(&initialized, memory_order_acquire)) {
520 mib[0] = atomic_load_explicit(&mib0[0], memory_order_relaxed);
521 mib[1] = atomic_load_explicit(&mib0[1], memory_order_relaxed);
522 mib[2] = atomic_load_explicit(&mib0[2], memory_order_relaxed);
523 } else {
524 size_t nmib = __arraycount(mib);
525
526 if (sysctlnametomib("kern.entropy.epoch", mib, &nmib) == -1)
527 return (unsigned)-1;
528 if (nmib != __arraycount(mib))
529 return (unsigned)-1;
530 atomic_store_explicit(&mib0[0], mib[0], memory_order_relaxed);
531 atomic_store_explicit(&mib0[1], mib[1], memory_order_relaxed);
532 atomic_store_explicit(&mib0[2], mib[2], memory_order_relaxed);
533 atomic_store_explicit(&initialized, true,
534 memory_order_release);
535 }
536
537 if (sysctl(mib, __arraycount(mib), &epoch, &epochlen, NULL, 0) == -1)
538 return (unsigned)-1;
539 if (epochlen != sizeof(epoch))
540 return (unsigned)-1;
541
542 return epoch;
543 }
544
545 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
546
547 static void
548 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
549 size_t datalen)
550 {
551 const int mib[] = { CTL_KERN, KERN_ARND };
552 SHA256_CTX ctx;
553 uint8_t buf[crypto_prng_SEEDBYTES];
554 size_t buflen = sizeof buf;
555 unsigned epoch = entropy_epoch();
556
557 __CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
558
559 SHA256_Init(&ctx);
560
561 crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
562 SHA256_Update(&ctx, buf, sizeof buf);
563
564 if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
565 abort();
566 if (buflen != sizeof buf)
567 abort();
568 SHA256_Update(&ctx, buf, sizeof buf);
569
570 if (data != NULL)
571 SHA256_Update(&ctx, data, datalen);
572
573 SHA256_Final(buf, &ctx);
574 (void)explicit_memset(&ctx, 0, sizeof ctx);
575
576 /* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
577 crypto_prng_seed(&prng->arc4_prng, buf);
578 (void)explicit_memset(buf, 0, sizeof buf);
579 prng->arc4_epoch = epoch;
580 }
581
582 #ifdef _REENTRANT
583 static struct arc4random_prng *
584 arc4random_prng_create(void)
585 {
586 struct arc4random_prng *prng;
587 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
588
589 prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
590 0);
591 if (prng == MAP_FAILED)
592 goto fail0;
593 if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
594 goto fail1;
595
596 return prng;
597
598 fail1: (void)munmap(prng, size);
599 fail0: return NULL;
600 }
601 #endif
602
603 #ifdef _REENTRANT
604 static void
605 arc4random_prng_destroy(struct arc4random_prng *prng)
606 {
607 const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
608
609 (void)explicit_memset(prng, 0, sizeof(*prng));
610 (void)munmap(prng, size);
611 }
612 #endif
613
614 /* Library state */
615
616 struct arc4random_global_state arc4random_global = {
617 #ifdef _REENTRANT
618 .lock = MUTEX_INITIALIZER,
619 #endif
620 .once = ONCE_INITIALIZER,
621 };
622
623 static void
624 arc4random_atfork_prepare(void)
625 {
626
627 mutex_lock(&arc4random_global.lock);
628 (void)explicit_memset(&arc4random_global.prng, 0,
629 sizeof arc4random_global.prng);
630 }
631
632 static void
633 arc4random_atfork_parent(void)
634 {
635
636 mutex_unlock(&arc4random_global.lock);
637 }
638
639 static void
640 arc4random_atfork_child(void)
641 {
642
643 mutex_unlock(&arc4random_global.lock);
644 }
645
646 #ifdef _REENTRANT
647 static void
648 arc4random_tsd_destructor(void *p)
649 {
650 struct arc4random_prng *const prng = p;
651
652 arc4random_prng_destroy(prng);
653 }
654 #endif
655
656 static void
657 arc4random_initialize(void)
658 {
659
660 /*
661 * If the crypto software is broken, abort -- something is
662 * severely wrong with this process image.
663 */
664 if (crypto_core_selftest() != 0 ||
665 crypto_prng_selftest() != 0 ||
666 crypto_onetimestream_selftest() != 0)
667 abort();
668
669 /*
670 * Set up a pthread_atfork handler to lock the global state
671 * around fork so that if forked children can't use the
672 * per-thread state, they can take the lock and use the global
673 * state without deadlock. If this fails, we will fall back to
674 * PRNG state on the stack reinitialized from the kernel
675 * entropy pool at every call.
676 */
677 if (pthread_atfork(&arc4random_atfork_prepare,
678 &arc4random_atfork_parent, &arc4random_atfork_child)
679 == 0)
680 arc4random_global.forksafe = true;
681
682 /*
683 * For multithreaded builds, try to allocate a per-thread PRNG
684 * state to avoid contention due to arc4random.
685 */
686 #ifdef _REENTRANT
687 if (thr_keycreate(&arc4random_global.thread_key,
688 &arc4random_tsd_destructor) == 0)
689 arc4random_global.per_thread = true;
690 #endif
691
692 /*
693 * Note that the arc4random library state has been initialized
694 * for the sake of automatic tests.
695 */
696 arc4random_global.initialized = true;
697 }
698
699 static struct arc4random_prng *
700 arc4random_prng_get(struct arc4random_prng *fallback)
701 {
702 struct arc4random_prng *prng = NULL;
703
704 /* Make sure the library is initialized. */
705 thr_once(&arc4random_global.once, &arc4random_initialize);
706
707 #ifdef _REENTRANT
708 /* Get or create the per-thread PRNG state. */
709 prng = __predict_true(arc4random_global.per_thread)
710 ? thr_getspecific(arc4random_global.thread_key)
711 : NULL;
712 if (__predict_false(prng == NULL) && arc4random_global.per_thread) {
713 prng = arc4random_prng_create();
714 thr_setspecific(arc4random_global.thread_key, prng);
715 }
716 #endif
717
718 /*
719 * If we can't create it, fall back to the global PRNG -- or an
720 * on-stack PRNG, in the unlikely event that pthread_atfork
721 * failed, which we have to seed from scratch each time
722 * (suboptimal, but unlikely, so not worth optimizing).
723 */
724 if (__predict_false(prng == NULL)) {
725 if (__predict_true(arc4random_global.forksafe)) {
726 mutex_lock(&arc4random_global.lock);
727 prng = &arc4random_global.prng;
728 } else {
729 prng = fallback;
730 memset(prng, 0, sizeof(*prng));
731 }
732 }
733
734 /* Guarantee the PRNG is seeded. */
735 if (__predict_false(prng->arc4_epoch != entropy_epoch()))
736 arc4random_prng_addrandom(prng, NULL, 0);
737
738 return prng;
739 }
740
741 static void
742 arc4random_prng_put(struct arc4random_prng *prng,
743 struct arc4random_prng *fallback)
744 {
745
746 /*
747 * If we had to use a stack fallback, zero it before we return
748 * so that after we return we avoid leaving secrets on the
749 * stack that could recover the parent's future outputs in an
750 * unprivileged forked child (of course, we can't guarantee
751 * that the compiler hasn't spilled anything; this is
752 * best-effort, not a guarantee).
753 */
754 if (__predict_false(prng == fallback))
755 explicit_memset(fallback, 0, sizeof(*fallback));
756
757 /* If we had fallen back to the global PRNG, unlock it. */
758 if (__predict_false(prng == &arc4random_global.prng))
759 mutex_unlock(&arc4random_global.lock);
760 }
761
762 /* Public API */
763
764 uint32_t
765 arc4random(void)
766 {
767 struct arc4random_prng *prng, fallback;
768 uint32_t v;
769
770 prng = arc4random_prng_get(&fallback);
771 crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
772 arc4random_prng_put(prng, &fallback);
773
774 return v;
775 }
776
777 void
778 arc4random_buf(void *buf, size_t len)
779 {
780 struct arc4random_prng *prng, fallback;
781
782 if (len <= crypto_prng_MAXOUTPUTBYTES) {
783 prng = arc4random_prng_get(&fallback);
784 crypto_prng_buf(&prng->arc4_prng, buf, len);
785 arc4random_prng_put(prng, &fallback);
786 } else {
787 uint8_t seed[crypto_onetimestream_SEEDBYTES];
788
789 prng = arc4random_prng_get(&fallback);
790 crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
791 arc4random_prng_put(prng, &fallback);
792
793 crypto_onetimestream(seed, buf, len);
794 (void)explicit_memset(seed, 0, sizeof seed);
795 }
796 }
797
798 uint32_t
799 arc4random_uniform(uint32_t bound)
800 {
801 struct arc4random_prng *prng, fallback;
802 uint32_t minimum, r;
803
804 /*
805 * We want a uniform random choice in [0, n), and arc4random()
806 * makes a uniform random choice in [0, 2^32). If we reduce
807 * that modulo n, values in [0, 2^32 mod n) will be represented
808 * slightly more than values in [2^32 mod n, n). Instead we
809 * choose only from [2^32 mod n, 2^32) by rejecting samples in
810 * [0, 2^32 mod n), to avoid counting the extra representative
811 * of [0, 2^32 mod n). To compute 2^32 mod n, note that
812 *
813 * 2^32 mod n = 2^32 mod n - 0
814 * = 2^32 mod n - n mod n
815 * = (2^32 - n) mod n,
816 *
817 * the last of which is what we compute in 32-bit arithmetic.
818 */
819 minimum = (-bound % bound);
820
821 prng = arc4random_prng_get(&fallback);
822 do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
823 while (__predict_false(r < minimum));
824 arc4random_prng_put(prng, &fallback);
825
826 return (r % bound);
827 }
828
829 void
830 arc4random_stir(void)
831 {
832 struct arc4random_prng *prng, fallback;
833
834 prng = arc4random_prng_get(&fallback);
835 arc4random_prng_addrandom(prng, NULL, 0);
836 arc4random_prng_put(prng, &fallback);
837 }
838
839 /*
840 * Silly signature here is for hysterical raisins. Should instead be
841 * const void *data and size_t datalen.
842 */
843 void
844 arc4random_addrandom(u_char *data, int datalen)
845 {
846 struct arc4random_prng *prng, fallback;
847
848 _DIAGASSERT(0 <= datalen);
849
850 prng = arc4random_prng_get(&fallback);
851 arc4random_prng_addrandom(prng, data, datalen);
852 arc4random_prng_put(prng, &fallback);
853 }
854
855 #ifdef _ARC4RANDOM_TEST
856
857 #include <sys/wait.h>
858
859 #include <err.h>
860 #include <stdio.h>
861
862 int
863 main(int argc __unused, char **argv __unused)
864 {
865 unsigned char gubbish[] = "random gubbish";
866 const uint8_t zero64[64] = {0};
867 uint8_t buf[2048];
868 unsigned i, a, n;
869
870 /* Test arc4random: should not be deterministic. */
871 if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
872 err(1, "printf");
873
874 /* Test stirring: should definitely not be deterministic. */
875 arc4random_stir();
876
877 /* Test small buffer. */
878 arc4random_buf(buf, 8);
879 if (printf("arc4randombuf small:") < 0)
880 err(1, "printf");
881 for (i = 0; i < 8; i++)
882 if (printf(" %02x", buf[i]) < 0)
883 err(1, "printf");
884 if (printf("\n") < 0)
885 err(1, "printf");
886
887 /* Test addrandom: should not make the rest deterministic. */
888 arc4random_addrandom(gubbish, sizeof gubbish);
889
890 /* Test large buffer. */
891 arc4random_buf(buf, sizeof buf);
892 if (printf("arc4randombuf_large:") < 0)
893 err(1, "printf");
894 for (i = 0; i < sizeof buf; i++)
895 if (printf(" %02x", buf[i]) < 0)
896 err(1, "printf");
897 if (printf("\n") < 0)
898 err(1, "printf");
899
900 /* Test misaligned small and large. */
901 for (a = 0; a < 64; a++) {
902 for (n = a; n < sizeof buf; n++) {
903 (void)memset(buf, 0, sizeof buf);
904 arc4random_buf(buf, n - a);
905 if (memcmp(buf + n - a, zero64, a) != 0)
906 errx(1, "arc4random buffer overflow 0");
907
908 (void)memset(buf, 0, sizeof buf);
909 arc4random_buf(buf + a, n - a);
910 if (memcmp(buf, zero64, a) != 0)
911 errx(1, "arc4random buffer overflow 1");
912
913 if ((2*a) <= n) {
914 (void)memset(buf, 0, sizeof buf);
915 arc4random_buf(buf + a, n - a - a);
916 if (memcmp(buf + n - a, zero64, a) != 0)
917 errx(1,
918 "arc4random buffer overflow 2");
919 }
920 }
921 }
922
923 /* Test fork-safety. */
924 {
925 pid_t pid, rpid;
926 int status;
927
928 pid = fork();
929 switch (pid) {
930 case -1:
931 err(1, "fork");
932 case 0: {
933 /*
934 * Verify the epoch has been set to zero by fork.
935 */
936 struct arc4random_prng *prng = NULL;
937 #ifdef _REENTRANT
938 prng = arc4random_global.per_thread
939 ? thr_getspecific(arc4random_global.thread_key)
940 : NULL;
941 #endif
942 if (prng == NULL)
943 prng = &arc4random_global.prng;
944 _exit(prng->arc4_epoch != 0);
945 }
946 default:
947 rpid = waitpid(pid, &status, 0);
948 if (rpid == -1)
949 err(1, "waitpid");
950 if (rpid != pid)
951 errx(1, "waitpid returned wrong pid"
952 ": %"PRIdMAX" != %"PRIdMAX,
953 (intmax_t)rpid,
954 (intmax_t)pid);
955 if (WIFEXITED(status)) {
956 if (WEXITSTATUS(status) != 0)
957 errx(1, "child exited with %d",
958 WEXITSTATUS(status));
959 } else if (WIFSIGNALED(status)) {
960 errx(1, "child terminated on signal %d",
961 WTERMSIG(status));
962 } else {
963 errx(1, "child died mysteriously: %d", status);
964 }
965 }
966 }
967
968 /* XXX Test multithreaded fork safety...? */
969
970 return 0;
971 }
972 #endif
973