Home | History | Annotate | Line # | Download | only in complex
      1 /*	$NetBSD: catrigl.c,v 1.3 2022/04/19 20:32:16 rillig Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen (at) FreeBSD.ORG>
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     25  * SUCH DAMAGE.
     26  */
     27 
     28 /*
     29  * The algorithm is very close to that in "Implementing the complex arcsine
     30  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
     31  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
     32  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
     33  * http://dl.acm.org/citation.cfm?id=275324.
     34  *
     35  * The code for catrig.c contains complete comments.
     36  */
     37 #include <sys/cdefs.h>
     38 __RCSID("$NetBSD: catrigl.c,v 1.3 2022/04/19 20:32:16 rillig Exp $");
     39 
     40 #include "namespace.h"
     41 #ifdef __weak_alias
     42 __weak_alias(casinl, _casinl)
     43 #endif
     44 #ifdef __weak_alias
     45 __weak_alias(catanl, _catanl)
     46 #endif
     47 
     48 
     49 #include <sys/param.h>
     50 #include <complex.h>
     51 #include <float.h>
     52 #include <math.h>
     53 #ifdef notyet // missing log1pl __HAVE_LONG_DOUBLE
     54 
     55 #include "math_private.h"
     56 
     57 #undef isinf
     58 #define isinf(x)	(fabsl(x) == INFINITY)
     59 #undef isnan
     60 #define isnan(x)	((x) != (x))
     61 #define	raise_inexact()	do { volatile float junk __unused = /*LINTED*/1 + tiny; } while (0)
     62 #undef signbit
     63 #define signbit(x)	(__builtin_signbitl(x))
     64 
     65 #if __HAVE_LONG_DOUBLE + 0 == 128
     66 // Ok
     67 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
     68 // XXX: Byte order
     69 #define EXT_EXPBITS	15
     70 struct ieee_ext {
     71 	uint64_t ext_frac;
     72 	uint16_t ext_exp:EXT_EXPBITS;
     73 	uint16_t ext_sign:1;
     74 	uint16_t ext_pad;
     75 };
     76 #define extu_exp	extu_ext.ext_exp
     77 #define extu_sign	extu_ext.ext_sign
     78 #define extu_frac	extu_ext.ext_frac
     79 union ieee_ext_u {
     80 	long double extu_ld;
     81 	struct ieee_ext extu_ext;
     82 };
     83 #else
     84 	#error "unsupported long double format"
     85 #endif
     86 
     87 #define GET_LDBL_EXPSIGN(r, s) \
     88     do { \
     89 	    union ieee_ext_u u; \
     90 	    u.extu_ld = s; \
     91 	    r = u.extu_sign; \
     92 	    r >>= EXT_EXPBITS - 1; \
     93     } while (0)
     94 #define SET_LDBL_EXPSIGN(s, r) \
     95     do { \
     96 	    union ieee_ext_u u; \
     97 	    u.extu_ld = s; \
     98 	    u.extu_exp &= __BITS(0, EXT_EXPBITS - 1); \
     99 	    u.extu_exp |= (r) << (EXT_EXPBITS - 1); \
    100 	    s = u.extu_ld; \
    101     } while (0)
    102 
    103 static const long double
    104 A_crossover =		10,
    105 B_crossover =		0.6417,
    106 FOUR_SQRT_MIN =		0x1p-8189L,
    107 QUARTER_SQRT_MAX =	0x1p8189L,
    108 RECIP_EPSILON =		1/LDBL_EPSILON,
    109 SQRT_MIN =		0x1p-8191L;
    110 
    111 static const long double
    112 m_e =		2.71828182845904523536028747135266250e0L,	/* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */
    113 m_ln2 =		6.93147180559945309417232121458176568e-1L,	/* 0x162e42fefa39ef35793c7673007e6.0p-113 */
    114 pio2_hi =      1.5707963267948966192313216916397514L, /* pi/2 */
    115 SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17L,	/*  0x1bb67ae8584caa73b25742d7078b8.0p-168 */
    116 SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17L;	/*  0x13988e1409212e7d0321914321a55.0p-167 */
    117 
    118 static const volatile double
    119 pio2_lo =               6.1232339957367659e-17; /*  0x11a62633145c07.0p-106 */
    120 static const volatile float
    121 tiny =			0x1p-100;
    122 
    123 static long double complex clog_for_large_values(long double complex z);
    124 
    125 inline static long double
    126 f(long double a, long double b, long double hypot_a_b)
    127 {
    128 	if (b < 0)
    129 		return ((hypot_a_b - b) / 2);
    130 	if (b == 0)
    131 		return (a / 2);
    132 	return (a * a / (hypot_a_b + b) / 2);
    133 }
    134 
    135 inline static void
    136 do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, long double *B, long double *sqrt_A2my2, long double *new_y)
    137 {
    138 	long double R, S, A;
    139 	long double Am1, Amy;
    140 
    141 	R = hypotl(x, y+1);
    142 	S = hypotl(x, y-1);
    143 
    144 	A = (R + S) / 2;
    145 	if (A < 1)
    146 		A = 1;
    147 
    148 	if (A < A_crossover) {
    149 		if (y == 1 && x < LDBL_EPSILON*LDBL_EPSILON/128) {
    150 			*rx = sqrtl(x);
    151 		} else if (x >= LDBL_EPSILON * fabsl(y-1)) {
    152 			Am1 = f(x, 1+y, R) + f(x, 1-y, S);
    153 			*rx = log1pl(Am1 + sqrtl(Am1*(A+1)));
    154 		} else if (y < 1) {
    155 			*rx = x/sqrtl((1-y)*(1+y));
    156 		} else {
    157 			*rx = log1pl((y-1) + sqrtl((y-1)*(y+1)));
    158 		}
    159 	} else
    160 		*rx = logl(A + sqrtl(A*A-1));
    161 
    162 	*new_y = y;
    163 
    164 	if (y < FOUR_SQRT_MIN) {
    165 		*B_is_usable = 0;
    166 		*sqrt_A2my2 = A * (2 / LDBL_EPSILON);
    167 		*new_y= y * (2 / LDBL_EPSILON);
    168 		return;
    169 	}
    170 
    171 	*B = y/A;
    172 	*B_is_usable = 1;
    173 
    174 	if (*B > B_crossover) {
    175 		*B_is_usable = 0;
    176 		if (y == 1 && x < LDBL_EPSILON/128) {
    177 			*sqrt_A2my2 = sqrtl(x)*sqrtl((A+y)/2);
    178 		} else if (x >= LDBL_EPSILON * fabsl(y-1)) {
    179 			Amy = f(x, y+1, R) + f(x, y-1, S);
    180 			*sqrt_A2my2 = sqrtl(Amy*(A+y));
    181 		} else if (y > 1) {
    182 			*sqrt_A2my2 = x * (4/LDBL_EPSILON/LDBL_EPSILON) * y /
    183 			    sqrtl((y+1)*(y-1));
    184 			*new_y = y * (4/LDBL_EPSILON/LDBL_EPSILON);
    185 		} else {
    186 			*sqrt_A2my2 = sqrtl((1-y)*(1+y));
    187 		}
    188 	}
    189 }
    190 
    191 long double complex
    192 casinhl(long double complex z)
    193 {
    194 	long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
    195 	int B_is_usable;
    196 	long double complex w;
    197 
    198 	x = creall(z);
    199 	y = cimagl(z);
    200 	ax = fabsl(x);
    201 	ay = fabsl(y);
    202 
    203 	if (isnan(x) || isnan(y)) {
    204 		if (isinf(x))
    205 			return (CMPLXL(x, y+y));
    206 		if (isinf(y))
    207 			return (CMPLXL(y, x+x));
    208 		if (y == 0) return (CMPLXL(x+x, y));
    209 		return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
    210 	}
    211 
    212 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
    213 		if (signbit(x) == 0)
    214 			w = clog_for_large_values(z) + m_ln2;
    215 		else
    216 			w = clog_for_large_values(-z) + m_ln2;
    217 		return (CMPLXL(copysignl(creall(w), x), copysignl(cimagl(w), y)));
    218 	}
    219 
    220 	if (x == 0 && y == 0)
    221 		return (z);
    222 
    223 	raise_inexact();
    224 
    225 	if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
    226 		return (z);
    227 
    228 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
    229 	if (B_is_usable)
    230 		ry = asinl(B);
    231 	else
    232 		ry = atan2l(new_y, sqrt_A2my2);
    233 	return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
    234 }
    235 
    236 long double complex
    237 casinl(long double complex z)
    238 {
    239 	long double complex w = casinhl(CMPLXL(cimagl(z), creall(z)));
    240 	return (CMPLXL(cimagl(w), creall(w)));
    241 }
    242 
    243 long double complex
    244 cacosl(long double complex z)
    245 {
    246 	long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
    247 	int sx, sy;
    248 	int B_is_usable;
    249 	long double complex w;
    250 
    251 	x = creall(z);
    252 	y = cimagl(z);
    253 	sx = signbit(x);
    254 	sy = signbit(y);
    255 	ax = fabsl(x);
    256 	ay = fabsl(y);
    257 
    258 	if (isnan(x) || isnan(y)) {
    259 		if (isinf(x))
    260 			return (CMPLXL(y+y, -INFINITY));
    261 		if (isinf(y))
    262 			return (CMPLXL(x+x, -y));
    263 		if (x == 0) return (CMPLXL(pio2_hi + pio2_lo, y+y));
    264 		return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
    265 	}
    266 
    267 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
    268 		w = clog_for_large_values(z);
    269 		rx = fabsl(cimagl(w));
    270 		ry = creall(w) + m_ln2;
    271 		if (sy == 0)
    272 			ry = -ry;
    273 		return (CMPLXL(rx, ry));
    274 	}
    275 
    276 	if (x == 1 && y == 0)
    277 		return (CMPLXL(0, -y));
    278 
    279 	raise_inexact();
    280 
    281 	if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
    282 		return (CMPLXL(pio2_hi - (x - pio2_lo), -y));
    283 
    284 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
    285 	if (B_is_usable) {
    286 		if (sx==0)
    287 			rx = acosl(B);
    288 		else
    289 			rx = acosl(-B);
    290 	} else {
    291 		if (sx==0)
    292 			rx = atan2l(sqrt_A2mx2, new_x);
    293 		else
    294 			rx = atan2l(sqrt_A2mx2, -new_x);
    295 	}
    296 	if (sy==0)
    297 		ry = -ry;
    298 	return (CMPLXL(rx, ry));
    299 }
    300 
    301 long double complex
    302 cacoshl(long double complex z)
    303 {
    304 	long double complex w;
    305 	long double rx, ry;
    306 
    307 	w = cacosl(z);
    308 	rx = creall(w);
    309 	ry = cimagl(w);
    310 	if (isnan(rx) && isnan(ry))
    311 		return (CMPLXL(ry, rx));
    312 	if (isnan(rx))
    313 		return (CMPLXL(fabsl(ry), rx));
    314 	if (isnan(ry))
    315 		return (CMPLXL(ry, ry));
    316 	return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z))));
    317 }
    318 
    319 static long double complex
    320 clog_for_large_values(long double complex z)
    321 {
    322 	long double x, y;
    323 	long double ax, ay, t;
    324 
    325 	x = creall(z);
    326 	y = cimagl(z);
    327 	ax = fabsl(x);
    328 	ay = fabsl(y);
    329 	if (ax < ay) {
    330 		t = ax;
    331 		ax = ay;
    332 		ay = t;
    333 	}
    334 
    335 	if (ax > LDBL_MAX / 2)
    336 		return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, atan2l(y, x)));
    337 
    338 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
    339 		return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x)));
    340 
    341 	return (CMPLXL(logl(ax*ax + ay*ay) / 2, atan2l(y, x)));
    342 }
    343 
    344 inline static long double
    345 sum_squares(long double x, long double y)
    346 {
    347 	if (y < SQRT_MIN)
    348 		return (x*x);
    349 
    350 	return (x*x + y*y);
    351 }
    352 
    353 inline static long double
    354 real_part_reciprocal(long double x, long double y)
    355 {
    356 	long double scale;
    357 	uint16_t hx, hy;
    358 	int16_t ix, iy;
    359 
    360 	GET_LDBL_EXPSIGN(hx, x);
    361 	ix = hx & 0x7fff;
    362 	GET_LDBL_EXPSIGN(hy, y);
    363 	iy = hy & 0x7fff;
    364 #define	BIAS	(LDBL_MAX_EXP - 1)
    365 #define	CUTOFF	(LDBL_MANT_DIG / 2 + 1)
    366 	if (ix - iy >= CUTOFF || isinf(x))
    367 		return (1/x);
    368 	if (iy - ix >= CUTOFF)
    369 		return (x/y/y);
    370 	if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF)
    371 		return (x/(x*x + y*y));
    372 	scale = 1;
    373 	SET_LDBL_EXPSIGN(scale, 0x7fff - ix);
    374 	x *= scale;
    375 	y *= scale;
    376 	return (x/(x*x + y*y) * scale);
    377 }
    378 
    379 long double complex
    380 catanhl(long double complex z)
    381 {
    382 	long double x, y, ax, ay, rx, ry;
    383 
    384 	x = creall(z);
    385 	y = cimagl(z);
    386 	ax = fabsl(x);
    387 	ay = fabsl(y);
    388 
    389 	if (y == 0 && ax <= 1)
    390 		return (CMPLXL(atanhl(x), y)); 	/* XXX need atanhl() */
    391 
    392 	if (x == 0)
    393 		return (CMPLXL(x, atanl(y)));
    394 
    395 	if (isnan(x) || isnan(y)) {
    396 		if (isinf(x))
    397 			return (CMPLXL(copysignl(0, x), y+y));
    398 		if (isinf(y))
    399 			return (CMPLXL(copysignl(0, x), copysignl(pio2_hi + pio2_lo, y)));
    400 		return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
    401 	}
    402 
    403 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
    404 		return (CMPLXL(real_part_reciprocal(x, y), copysignl(pio2_hi + pio2_lo, y)));
    405 
    406 	if (ax < SQRT_3_EPSILON/2 && ay < SQRT_3_EPSILON/2) {
    407 		raise_inexact();
    408 		return (z);
    409 	}
    410 
    411 	if (ax == 1 && ay < LDBL_EPSILON) {
    412 #if 0
    413 		if (ay > 2*LDBL_MIN)
    414 			rx = - logl(ay/2) / 2;
    415 		else
    416 #endif
    417 			rx = - (logl(ay) - m_ln2) / 2;
    418 	} else
    419 		rx = log1pl(4*ax / sum_squares(ax-1, ay)) / 4;
    420 
    421 	if (ax == 1)
    422 		ry = atan2l(2, -ay) / 2;
    423 	else if (ay < LDBL_EPSILON)
    424 		ry = atan2l(2*ay, (1-ax)*(1+ax)) / 2;
    425 	else
    426 		ry = atan2l(2*ay, (1-ax)*(1+ax) - ay*ay) / 2;
    427 
    428 	return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
    429 }
    430 
    431 long double complex
    432 catanl(long double complex z)
    433 {
    434 	long double complex w = catanhl(CMPLXL(cimagl(z), creall(z)));
    435 	return (CMPLXL(cimagl(w), creall(w)));
    436 }
    437 
    438 #else
    439 __strong_alias(_casinl, casin)
    440 __strong_alias(_catanl, catan)
    441 __strong_alias(cacoshl, cacosh)
    442 __strong_alias(cacosl, cacos)
    443 __strong_alias(casinhl, casinh)
    444 __strong_alias(catanhl, catanh)
    445 #endif
    446