catrigl.c revision 1.1.2.2 1 1.1.2.2 pgoyette /* $NetBSD: catrigl.c,v 1.1.2.2 2016/11/04 14:48:54 pgoyette Exp $ */
2 1.1.2.2 pgoyette /*-
3 1.1.2.2 pgoyette * Copyright (c) 2012 Stephen Montgomery-Smith <stephen (at) FreeBSD.ORG>
4 1.1.2.2 pgoyette * All rights reserved.
5 1.1.2.2 pgoyette *
6 1.1.2.2 pgoyette * Redistribution and use in source and binary forms, with or without
7 1.1.2.2 pgoyette * modification, are permitted provided that the following conditions
8 1.1.2.2 pgoyette * are met:
9 1.1.2.2 pgoyette * 1. Redistributions of source code must retain the above copyright
10 1.1.2.2 pgoyette * notice, this list of conditions and the following disclaimer.
11 1.1.2.2 pgoyette * 2. Redistributions in binary form must reproduce the above copyright
12 1.1.2.2 pgoyette * notice, this list of conditions and the following disclaimer in the
13 1.1.2.2 pgoyette * documentation and/or other materials provided with the distribution.
14 1.1.2.2 pgoyette *
15 1.1.2.2 pgoyette * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 1.1.2.2 pgoyette * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 1.1.2.2 pgoyette * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 1.1.2.2 pgoyette * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 1.1.2.2 pgoyette * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 1.1.2.2 pgoyette * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 1.1.2.2 pgoyette * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 1.1.2.2 pgoyette * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 1.1.2.2 pgoyette * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 1.1.2.2 pgoyette * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 1.1.2.2 pgoyette * SUCH DAMAGE.
26 1.1.2.2 pgoyette */
27 1.1.2.2 pgoyette
28 1.1.2.2 pgoyette /*
29 1.1.2.2 pgoyette * The algorithm is very close to that in "Implementing the complex arcsine
30 1.1.2.2 pgoyette * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
31 1.1.2.2 pgoyette * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
32 1.1.2.2 pgoyette * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
33 1.1.2.2 pgoyette * http://dl.acm.org/citation.cfm?id=275324.
34 1.1.2.2 pgoyette *
35 1.1.2.2 pgoyette * The code for catrig.c contains complete comments.
36 1.1.2.2 pgoyette */
37 1.1.2.2 pgoyette #include <sys/cdefs.h>
38 1.1.2.2 pgoyette __RCSID("$NetBSD: catrigl.c,v 1.1.2.2 2016/11/04 14:48:54 pgoyette Exp $");
39 1.1.2.2 pgoyette
40 1.1.2.2 pgoyette #include "namespace.h"
41 1.1.2.2 pgoyette #ifdef __weak_alias
42 1.1.2.2 pgoyette __weak_alias(casinl, _casinl)
43 1.1.2.2 pgoyette #endif
44 1.1.2.2 pgoyette #ifdef __weak_alias
45 1.1.2.2 pgoyette __weak_alias(catanl, _catanl)
46 1.1.2.2 pgoyette #endif
47 1.1.2.2 pgoyette
48 1.1.2.2 pgoyette
49 1.1.2.2 pgoyette #include <complex.h>
50 1.1.2.2 pgoyette #include <float.h>
51 1.1.2.2 pgoyette #ifdef __HAVE_LONG_DOUBLE
52 1.1.2.2 pgoyette
53 1.1.2.2 pgoyette #include "math.h"
54 1.1.2.2 pgoyette #include "math_private.h"
55 1.1.2.2 pgoyette
56 1.1.2.2 pgoyette #undef isinf
57 1.1.2.2 pgoyette #define isinf(x) (fabsl(x) == INFINITY)
58 1.1.2.2 pgoyette #undef isnan
59 1.1.2.2 pgoyette #define isnan(x) ((x) != (x))
60 1.1.2.2 pgoyette #define raise_inexact() do { volatile float junk __unused = /*LINTED*/1 + tiny; } while(/*CONSTCOND*/0)
61 1.1.2.2 pgoyette #undef signbit
62 1.1.2.2 pgoyette #define signbit(x) (__builtin_signbitl(x))
63 1.1.2.2 pgoyette
64 1.1.2.2 pgoyette #if __HAVE_LONG_DOUBLE + 0 == 128
65 1.1.2.2 pgoyette // Ok
66 1.1.2.2 pgoyette #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
67 1.1.2.2 pgoyette // XXX: Byte order
68 1.1.2.2 pgoyette struct ieee_ext {
69 1.1.2.2 pgoyette uint64_t ext_frac;
70 1.1.2.2 pgoyette uint16_t ext_exp:15;
71 1.1.2.2 pgoyette uint16_t ext_sign:1;
72 1.1.2.2 pgoyette uint16_t ext_pad;
73 1.1.2.2 pgoyette };
74 1.1.2.2 pgoyette #define extu_exp extu_ext.ext_exp
75 1.1.2.2 pgoyette #define extu_sign extu_ext.ext_sign
76 1.1.2.2 pgoyette #define extu_frac extu_ext.ext_frac
77 1.1.2.2 pgoyette union ieee_ext_u {
78 1.1.2.2 pgoyette long double extu_ld;
79 1.1.2.2 pgoyette struct ieee_ext extu_ext;
80 1.1.2.2 pgoyette };
81 1.1.2.2 pgoyette #else
82 1.1.2.2 pgoyette #error "unsupported long double format"
83 1.1.2.2 pgoyette #endif
84 1.1.2.2 pgoyette
85 1.1.2.2 pgoyette #define GET_LDBL_EXPSIGN(r, s) \
86 1.1.2.2 pgoyette do { \
87 1.1.2.2 pgoyette union ieee_ext_u u; \
88 1.1.2.2 pgoyette u.extu_ld = s; \
89 1.1.2.2 pgoyette r = u.extu_sign; \
90 1.1.2.2 pgoyette r >>= EXT_EXPBITS - 1;
91 1.1.2.2 pgoyette } while (/*CONSTCOND*/0)
92 1.1.2.2 pgoyette #define SET_LDBL_EXPSIGN(r, s) \
93 1.1.2.2 pgoyette do { \
94 1.1.2.2 pgoyette union ieee_ext_u u; \
95 1.1.2.2 pgoyette u.extu_ld = s; \
96 1.1.2.2 pgoyette u.extu_exp &= __BITS(0, EXT_EXPBITS - 1); \
97 1.1.2.2 pgoyette u.extu_exp |= r << (EXT_EXPBITS - 1); \
98 1.1.2.2 pgoyette s = u.extu_ld; \
99 1.1.2.2 pgoyette } while (/*CONSTCOND*/0)
100 1.1.2.2 pgoyette
101 1.1.2.2 pgoyette static const long double
102 1.1.2.2 pgoyette A_crossover = 10,
103 1.1.2.2 pgoyette B_crossover = 0.6417,
104 1.1.2.2 pgoyette FOUR_SQRT_MIN = 0x1p-8189L,
105 1.1.2.2 pgoyette QUARTER_SQRT_MAX = 0x1p8189L,
106 1.1.2.2 pgoyette RECIP_EPSILON = 1/LDBL_EPSILON,
107 1.1.2.2 pgoyette SQRT_MIN = 0x1p-8191L;
108 1.1.2.2 pgoyette
109 1.1.2.2 pgoyette static const long double
110 1.1.2.2 pgoyette m_e = 2.71828182845904523536028747135266250e0L, /* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */
111 1.1.2.2 pgoyette m_ln2 = 6.93147180559945309417232121458176568e-1L, /* 0x162e42fefa39ef35793c7673007e6.0p-113 */
112 1.1.2.2 pgoyette pio2_hi = 1.5707963267948966192313216916397514L, /* pi/2 */
113 1.1.2.2 pgoyette SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17L, /* 0x1bb67ae8584caa73b25742d7078b8.0p-168 */
114 1.1.2.2 pgoyette SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17L; /* 0x13988e1409212e7d0321914321a55.0p-167 */
115 1.1.2.2 pgoyette
116 1.1.2.2 pgoyette static const volatile double
117 1.1.2.2 pgoyette pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */
118 1.1.2.2 pgoyette static const volatile float
119 1.1.2.2 pgoyette tiny = 0x1p-100;
120 1.1.2.2 pgoyette
121 1.1.2.2 pgoyette static long double complex clog_for_large_values(long double complex z);
122 1.1.2.2 pgoyette
123 1.1.2.2 pgoyette inline static long double
124 1.1.2.2 pgoyette f(long double a, long double b, long double hypot_a_b)
125 1.1.2.2 pgoyette {
126 1.1.2.2 pgoyette if (b < 0)
127 1.1.2.2 pgoyette return ((hypot_a_b - b) / 2);
128 1.1.2.2 pgoyette if (b == 0)
129 1.1.2.2 pgoyette return (a / 2);
130 1.1.2.2 pgoyette return (a * a / (hypot_a_b + b) / 2);
131 1.1.2.2 pgoyette }
132 1.1.2.2 pgoyette
133 1.1.2.2 pgoyette inline static void
134 1.1.2.2 pgoyette do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, long double *B, long double *sqrt_A2my2, long double *new_y)
135 1.1.2.2 pgoyette {
136 1.1.2.2 pgoyette long double R, S, A;
137 1.1.2.2 pgoyette long double Am1, Amy;
138 1.1.2.2 pgoyette
139 1.1.2.2 pgoyette R = hypotl(x, y+1);
140 1.1.2.2 pgoyette S = hypotl(x, y-1);
141 1.1.2.2 pgoyette
142 1.1.2.2 pgoyette A = (R + S) / 2;
143 1.1.2.2 pgoyette if (A < 1)
144 1.1.2.2 pgoyette A = 1;
145 1.1.2.2 pgoyette
146 1.1.2.2 pgoyette if (A < A_crossover) {
147 1.1.2.2 pgoyette if (y == 1 && x < LDBL_EPSILON*LDBL_EPSILON/128) {
148 1.1.2.2 pgoyette *rx = sqrtl(x);
149 1.1.2.2 pgoyette } else if (x >= LDBL_EPSILON * fabsl(y-1)) {
150 1.1.2.2 pgoyette Am1 = f(x, 1+y, R) + f(x, 1-y, S);
151 1.1.2.2 pgoyette *rx = log1pl(Am1 + sqrtl(Am1*(A+1)));
152 1.1.2.2 pgoyette } else if (y < 1) {
153 1.1.2.2 pgoyette *rx = x/sqrtl((1-y)*(1+y));
154 1.1.2.2 pgoyette } else {
155 1.1.2.2 pgoyette *rx = log1pl((y-1) + sqrtl((y-1)*(y+1)));
156 1.1.2.2 pgoyette }
157 1.1.2.2 pgoyette } else
158 1.1.2.2 pgoyette *rx = logl(A + sqrtl(A*A-1));
159 1.1.2.2 pgoyette
160 1.1.2.2 pgoyette *new_y = y;
161 1.1.2.2 pgoyette
162 1.1.2.2 pgoyette if (y < FOUR_SQRT_MIN) {
163 1.1.2.2 pgoyette *B_is_usable = 0;
164 1.1.2.2 pgoyette *sqrt_A2my2 = A * (2 / LDBL_EPSILON);
165 1.1.2.2 pgoyette *new_y= y * (2 / LDBL_EPSILON);
166 1.1.2.2 pgoyette return;
167 1.1.2.2 pgoyette }
168 1.1.2.2 pgoyette
169 1.1.2.2 pgoyette *B = y/A;
170 1.1.2.2 pgoyette *B_is_usable = 1;
171 1.1.2.2 pgoyette
172 1.1.2.2 pgoyette if (*B > B_crossover) {
173 1.1.2.2 pgoyette *B_is_usable = 0;
174 1.1.2.2 pgoyette if (y == 1 && x < LDBL_EPSILON/128) {
175 1.1.2.2 pgoyette *sqrt_A2my2 = sqrtl(x)*sqrtl((A+y)/2);
176 1.1.2.2 pgoyette } else if (x >= LDBL_EPSILON * fabsl(y-1)) {
177 1.1.2.2 pgoyette Amy = f(x, y+1, R) + f(x, y-1, S);
178 1.1.2.2 pgoyette *sqrt_A2my2 = sqrtl(Amy*(A+y));
179 1.1.2.2 pgoyette } else if (y > 1) {
180 1.1.2.2 pgoyette *sqrt_A2my2 = x * (4/LDBL_EPSILON/LDBL_EPSILON) * y /
181 1.1.2.2 pgoyette sqrtl((y+1)*(y-1));
182 1.1.2.2 pgoyette *new_y = y * (4/LDBL_EPSILON/LDBL_EPSILON);
183 1.1.2.2 pgoyette } else {
184 1.1.2.2 pgoyette *sqrt_A2my2 = sqrtl((1-y)*(1+y));
185 1.1.2.2 pgoyette }
186 1.1.2.2 pgoyette }
187 1.1.2.2 pgoyette }
188 1.1.2.2 pgoyette
189 1.1.2.2 pgoyette long double complex
190 1.1.2.2 pgoyette casinhl(long double complex z)
191 1.1.2.2 pgoyette {
192 1.1.2.2 pgoyette long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
193 1.1.2.2 pgoyette int B_is_usable;
194 1.1.2.2 pgoyette long double complex w;
195 1.1.2.2 pgoyette
196 1.1.2.2 pgoyette x = creall(z);
197 1.1.2.2 pgoyette y = cimagl(z);
198 1.1.2.2 pgoyette ax = fabsl(x);
199 1.1.2.2 pgoyette ay = fabsl(y);
200 1.1.2.2 pgoyette
201 1.1.2.2 pgoyette if (isnan(x) || isnan(y)) {
202 1.1.2.2 pgoyette if (isinf(x))
203 1.1.2.2 pgoyette return (CMPLXL(x, y+y));
204 1.1.2.2 pgoyette if (isinf(y))
205 1.1.2.2 pgoyette return (CMPLXL(y, x+x));
206 1.1.2.2 pgoyette if (y == 0) return (CMPLXL(x+x, y));
207 1.1.2.2 pgoyette return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
208 1.1.2.2 pgoyette }
209 1.1.2.2 pgoyette
210 1.1.2.2 pgoyette if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
211 1.1.2.2 pgoyette if (signbit(x) == 0)
212 1.1.2.2 pgoyette w = clog_for_large_values(z) + m_ln2;
213 1.1.2.2 pgoyette else
214 1.1.2.2 pgoyette w = clog_for_large_values(-z) + m_ln2;
215 1.1.2.2 pgoyette return (CMPLXL(copysignl(creall(w), x), copysignl(cimagl(w), y)));
216 1.1.2.2 pgoyette }
217 1.1.2.2 pgoyette
218 1.1.2.2 pgoyette if (x == 0 && y == 0)
219 1.1.2.2 pgoyette return (z);
220 1.1.2.2 pgoyette
221 1.1.2.2 pgoyette raise_inexact();
222 1.1.2.2 pgoyette
223 1.1.2.2 pgoyette if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
224 1.1.2.2 pgoyette return (z);
225 1.1.2.2 pgoyette
226 1.1.2.2 pgoyette do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
227 1.1.2.2 pgoyette if (B_is_usable)
228 1.1.2.2 pgoyette ry = asinl(B);
229 1.1.2.2 pgoyette else
230 1.1.2.2 pgoyette ry = atan2l(new_y, sqrt_A2my2);
231 1.1.2.2 pgoyette return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
232 1.1.2.2 pgoyette }
233 1.1.2.2 pgoyette
234 1.1.2.2 pgoyette long double complex
235 1.1.2.2 pgoyette casinl(long double complex z)
236 1.1.2.2 pgoyette {
237 1.1.2.2 pgoyette long double complex w = casinhl(CMPLXL(cimagl(z), creall(z)));
238 1.1.2.2 pgoyette return (CMPLXL(cimagl(w), creall(w)));
239 1.1.2.2 pgoyette }
240 1.1.2.2 pgoyette
241 1.1.2.2 pgoyette long double complex
242 1.1.2.2 pgoyette cacosl(long double complex z)
243 1.1.2.2 pgoyette {
244 1.1.2.2 pgoyette long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
245 1.1.2.2 pgoyette int sx, sy;
246 1.1.2.2 pgoyette int B_is_usable;
247 1.1.2.2 pgoyette long double complex w;
248 1.1.2.2 pgoyette
249 1.1.2.2 pgoyette x = creall(z);
250 1.1.2.2 pgoyette y = cimagl(z);
251 1.1.2.2 pgoyette sx = signbit(x);
252 1.1.2.2 pgoyette sy = signbit(y);
253 1.1.2.2 pgoyette ax = fabsl(x);
254 1.1.2.2 pgoyette ay = fabsl(y);
255 1.1.2.2 pgoyette
256 1.1.2.2 pgoyette if (isnan(x) || isnan(y)) {
257 1.1.2.2 pgoyette if (isinf(x))
258 1.1.2.2 pgoyette return (CMPLXL(y+y, -INFINITY));
259 1.1.2.2 pgoyette if (isinf(y))
260 1.1.2.2 pgoyette return (CMPLXL(x+x, -y));
261 1.1.2.2 pgoyette if (x == 0) return (CMPLXL(pio2_hi + pio2_lo, y+y));
262 1.1.2.2 pgoyette return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
263 1.1.2.2 pgoyette }
264 1.1.2.2 pgoyette
265 1.1.2.2 pgoyette if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
266 1.1.2.2 pgoyette w = clog_for_large_values(z);
267 1.1.2.2 pgoyette rx = fabsl(cimagl(w));
268 1.1.2.2 pgoyette ry = creall(w) + m_ln2;
269 1.1.2.2 pgoyette if (sy == 0)
270 1.1.2.2 pgoyette ry = -ry;
271 1.1.2.2 pgoyette return (CMPLXL(rx, ry));
272 1.1.2.2 pgoyette }
273 1.1.2.2 pgoyette
274 1.1.2.2 pgoyette if (x == 1 && y == 0)
275 1.1.2.2 pgoyette return (CMPLXL(0, -y));
276 1.1.2.2 pgoyette
277 1.1.2.2 pgoyette raise_inexact();
278 1.1.2.2 pgoyette
279 1.1.2.2 pgoyette if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
280 1.1.2.2 pgoyette return (CMPLXL(pio2_hi - (x - pio2_lo), -y));
281 1.1.2.2 pgoyette
282 1.1.2.2 pgoyette do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
283 1.1.2.2 pgoyette if (B_is_usable) {
284 1.1.2.2 pgoyette if (sx==0)
285 1.1.2.2 pgoyette rx = acosl(B);
286 1.1.2.2 pgoyette else
287 1.1.2.2 pgoyette rx = acosl(-B);
288 1.1.2.2 pgoyette } else {
289 1.1.2.2 pgoyette if (sx==0)
290 1.1.2.2 pgoyette rx = atan2l(sqrt_A2mx2, new_x);
291 1.1.2.2 pgoyette else
292 1.1.2.2 pgoyette rx = atan2l(sqrt_A2mx2, -new_x);
293 1.1.2.2 pgoyette }
294 1.1.2.2 pgoyette if (sy==0)
295 1.1.2.2 pgoyette ry = -ry;
296 1.1.2.2 pgoyette return (CMPLXL(rx, ry));
297 1.1.2.2 pgoyette }
298 1.1.2.2 pgoyette
299 1.1.2.2 pgoyette long double complex
300 1.1.2.2 pgoyette cacoshl(long double complex z)
301 1.1.2.2 pgoyette {
302 1.1.2.2 pgoyette long double complex w;
303 1.1.2.2 pgoyette long double rx, ry;
304 1.1.2.2 pgoyette
305 1.1.2.2 pgoyette w = cacosl(z);
306 1.1.2.2 pgoyette rx = creall(w);
307 1.1.2.2 pgoyette ry = cimagl(w);
308 1.1.2.2 pgoyette if (isnan(rx) && isnan(ry))
309 1.1.2.2 pgoyette return (CMPLXL(ry, rx));
310 1.1.2.2 pgoyette if (isnan(rx))
311 1.1.2.2 pgoyette return (CMPLXL(fabsl(ry), rx));
312 1.1.2.2 pgoyette if (isnan(ry))
313 1.1.2.2 pgoyette return (CMPLXL(ry, ry));
314 1.1.2.2 pgoyette return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z))));
315 1.1.2.2 pgoyette }
316 1.1.2.2 pgoyette
317 1.1.2.2 pgoyette static long double complex
318 1.1.2.2 pgoyette clog_for_large_values(long double complex z)
319 1.1.2.2 pgoyette {
320 1.1.2.2 pgoyette long double x, y;
321 1.1.2.2 pgoyette long double ax, ay, t;
322 1.1.2.2 pgoyette
323 1.1.2.2 pgoyette x = creall(z);
324 1.1.2.2 pgoyette y = cimagl(z);
325 1.1.2.2 pgoyette ax = fabsl(x);
326 1.1.2.2 pgoyette ay = fabsl(y);
327 1.1.2.2 pgoyette if (ax < ay) {
328 1.1.2.2 pgoyette t = ax;
329 1.1.2.2 pgoyette ax = ay;
330 1.1.2.2 pgoyette ay = t;
331 1.1.2.2 pgoyette }
332 1.1.2.2 pgoyette
333 1.1.2.2 pgoyette if (ax > LDBL_MAX / 2)
334 1.1.2.2 pgoyette return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, atan2l(y, x)));
335 1.1.2.2 pgoyette
336 1.1.2.2 pgoyette if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
337 1.1.2.2 pgoyette return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x)));
338 1.1.2.2 pgoyette
339 1.1.2.2 pgoyette return (CMPLXL(logl(ax*ax + ay*ay) / 2, atan2l(y, x)));
340 1.1.2.2 pgoyette }
341 1.1.2.2 pgoyette
342 1.1.2.2 pgoyette inline static long double
343 1.1.2.2 pgoyette sum_squares(long double x, long double y)
344 1.1.2.2 pgoyette {
345 1.1.2.2 pgoyette if (y < SQRT_MIN)
346 1.1.2.2 pgoyette return (x*x);
347 1.1.2.2 pgoyette
348 1.1.2.2 pgoyette return (x*x + y*y);
349 1.1.2.2 pgoyette }
350 1.1.2.2 pgoyette
351 1.1.2.2 pgoyette inline static long double
352 1.1.2.2 pgoyette real_part_reciprocal(long double x, long double y)
353 1.1.2.2 pgoyette {
354 1.1.2.2 pgoyette long double scale;
355 1.1.2.2 pgoyette uint16_t hx, hy;
356 1.1.2.2 pgoyette int16_t ix, iy;
357 1.1.2.2 pgoyette
358 1.1.2.2 pgoyette GET_LDBL_EXPSIGN(hx, x);
359 1.1.2.2 pgoyette ix = hx & 0x7fff;
360 1.1.2.2 pgoyette GET_LDBL_EXPSIGN(hy, y);
361 1.1.2.2 pgoyette iy = hy & 0x7fff;
362 1.1.2.2 pgoyette #define BIAS (LDBL_MAX_EXP - 1)
363 1.1.2.2 pgoyette #define CUTOFF (LDBL_MANT_DIG / 2 + 1)
364 1.1.2.2 pgoyette if (ix - iy >= CUTOFF || isinf(x))
365 1.1.2.2 pgoyette return (1/x);
366 1.1.2.2 pgoyette if (iy - ix >= CUTOFF)
367 1.1.2.2 pgoyette return (x/y/y);
368 1.1.2.2 pgoyette if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF)
369 1.1.2.2 pgoyette return (x/(x*x + y*y));
370 1.1.2.2 pgoyette scale = 1;
371 1.1.2.2 pgoyette SET_LDBL_EXPSIGN(scale, 0x7fff - ix);
372 1.1.2.2 pgoyette x *= scale;
373 1.1.2.2 pgoyette y *= scale;
374 1.1.2.2 pgoyette return (x/(x*x + y*y) * scale);
375 1.1.2.2 pgoyette }
376 1.1.2.2 pgoyette
377 1.1.2.2 pgoyette long double complex
378 1.1.2.2 pgoyette catanhl(long double complex z)
379 1.1.2.2 pgoyette {
380 1.1.2.2 pgoyette long double x, y, ax, ay, rx, ry;
381 1.1.2.2 pgoyette
382 1.1.2.2 pgoyette x = creall(z);
383 1.1.2.2 pgoyette y = cimagl(z);
384 1.1.2.2 pgoyette ax = fabsl(x);
385 1.1.2.2 pgoyette ay = fabsl(y);
386 1.1.2.2 pgoyette
387 1.1.2.2 pgoyette if (y == 0 && ax <= 1)
388 1.1.2.2 pgoyette return (CMPLXL(atanhl(x), y)); /* XXX need atanhl() */
389 1.1.2.2 pgoyette
390 1.1.2.2 pgoyette if (x == 0)
391 1.1.2.2 pgoyette return (CMPLXL(x, atanl(y)));
392 1.1.2.2 pgoyette
393 1.1.2.2 pgoyette if (isnan(x) || isnan(y)) {
394 1.1.2.2 pgoyette if (isinf(x))
395 1.1.2.2 pgoyette return (CMPLXL(copysignl(0, x), y+y));
396 1.1.2.2 pgoyette if (isinf(y))
397 1.1.2.2 pgoyette return (CMPLXL(copysignl(0, x), copysignl(pio2_hi + pio2_lo, y)));
398 1.1.2.2 pgoyette return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
399 1.1.2.2 pgoyette }
400 1.1.2.2 pgoyette
401 1.1.2.2 pgoyette if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
402 1.1.2.2 pgoyette return (CMPLXL(real_part_reciprocal(x, y), copysignl(pio2_hi + pio2_lo, y)));
403 1.1.2.2 pgoyette
404 1.1.2.2 pgoyette if (ax < SQRT_3_EPSILON/2 && ay < SQRT_3_EPSILON/2) {
405 1.1.2.2 pgoyette raise_inexact();
406 1.1.2.2 pgoyette return (z);
407 1.1.2.2 pgoyette }
408 1.1.2.2 pgoyette
409 1.1.2.2 pgoyette if (ax == 1 && ay < LDBL_EPSILON) {
410 1.1.2.2 pgoyette #if 0
411 1.1.2.2 pgoyette if (ay > 2*LDBL_MIN)
412 1.1.2.2 pgoyette rx = - logl(ay/2) / 2;
413 1.1.2.2 pgoyette else
414 1.1.2.2 pgoyette #endif
415 1.1.2.2 pgoyette rx = - (logl(ay) - m_ln2) / 2;
416 1.1.2.2 pgoyette } else
417 1.1.2.2 pgoyette rx = log1pl(4*ax / sum_squares(ax-1, ay)) / 4;
418 1.1.2.2 pgoyette
419 1.1.2.2 pgoyette if (ax == 1)
420 1.1.2.2 pgoyette ry = atan2l(2, -ay) / 2;
421 1.1.2.2 pgoyette else if (ay < LDBL_EPSILON)
422 1.1.2.2 pgoyette ry = atan2l(2*ay, (1-ax)*(1+ax)) / 2;
423 1.1.2.2 pgoyette else
424 1.1.2.2 pgoyette ry = atan2l(2*ay, (1-ax)*(1+ax) - ay*ay) / 2;
425 1.1.2.2 pgoyette
426 1.1.2.2 pgoyette return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
427 1.1.2.2 pgoyette }
428 1.1.2.2 pgoyette
429 1.1.2.2 pgoyette long double complex
430 1.1.2.2 pgoyette catanl(long double complex z)
431 1.1.2.2 pgoyette {
432 1.1.2.2 pgoyette long double complex w = catanhl(CMPLXL(cimagl(z), creall(z)));
433 1.1.2.2 pgoyette return (CMPLXL(cimagl(w), creall(w)));
434 1.1.2.2 pgoyette }
435 1.1.2.2 pgoyette
436 1.1.2.2 pgoyette #else
437 1.1.2.2 pgoyette __strong_alias(_casinl, casin)
438 1.1.2.2 pgoyette __strong_alias(_catanl, catan)
439 1.1.2.2 pgoyette __strong_alias(cacoshl, cacosh)
440 1.1.2.2 pgoyette __strong_alias(cacosl, cacos)
441 1.1.2.2 pgoyette __strong_alias(casinhl, casinh)
442 1.1.2.2 pgoyette __strong_alias(catanhl, catanh)
443 1.1.2.2 pgoyette #endif
444