Home | History | Annotate | Line # | Download | only in ld128
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause
      3  *
      4  * Copyright (c) 2007-2013 Bruce D. Evans
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice unmodified, this list of conditions, and the following
     12  *    disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 /**
     31  * Implementation of the natural logarithm of x for 128-bit format.
     32  *
     33  * First decompose x into its base 2 representation:
     34  *
     35  *    log(x) = log(X * 2**k), where X is in [1, 2)
     36  *           = log(X) + k * log(2).
     37  *
     38  * Let X = X_i + e, where X_i is the center of one of the intervals
     39  * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
     40  * and X is in this interval.  Then
     41  *
     42  *    log(X) = log(X_i + e)
     43  *           = log(X_i * (1 + e / X_i))
     44  *           = log(X_i) + log(1 + e / X_i).
     45  *
     46  * The values log(X_i) are tabulated below.  Let d = e / X_i and use
     47  *
     48  *    log(1 + d) = p(d)
     49  *
     50  * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
     51  * suitably high degree.
     52  *
     53  * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
     54  * sometimes (if |k| is not large) the first term in p(d) must be evaluated
     55  * and added up in extra precision.  Extra precision is not needed for the
     56  * rest of p(d).  In the worst case when k = 0 and log(X_i) is 0, the final
     57  * error is controlled mainly by the error in the second term in p(d).  The
     58  * error in this term itself is at most 0.5 ulps from the d*d operation in
     59  * it.  The error in this term relative to the first term is thus at most
     60  * 0.5 * |-0.5| * |d| < 1.0/1024 ulps.  We aim for an accumulated error of
     61  * at most twice this at the point of the final rounding step.  Thus the
     62  * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps.  Exhaustive
     63  * testing of a float variant of this function showed a maximum final error
     64  * of 0.5008 ulps.  Non-exhaustive testing of a double variant of this
     65  * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
     66  *
     67  * We made the maximum of |d| (and thus the total relative error and the
     68  * degree of p(d)) small by using a large number of intervals.  Using
     69  * centers of intervals instead of endpoints reduces this maximum by a
     70  * factor of 2 for a given number of intervals.  p(d) is special only
     71  * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
     72  * naturally.  The most accurate minimax polynomial of a given degree might
     73  * be different, but then we wouldn't want it since we would have to do
     74  * extra work to avoid roundoff error (especially for P0*d instead of d).
     75  */
     76 
     77 #ifdef DEBUG
     78 #include <fenv.h>
     79 #endif
     80 
     81 #include "math.h"
     82 #ifndef NO_STRUCT_RETURN
     83 #define	STRUCT_RETURN
     84 #endif
     85 #include "math_private.h"
     86 
     87 #if !defined(NO_UTAB) && !defined(NO_UTABL)
     88 #define	USE_UTAB
     89 #endif
     90 
     91 /*
     92  * Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]:
     93  * |log(1 + d)/d - p(d)| < 2**-122.7
     94  */
     95 static const long double
     96 P2 = -0.5L,
     97 P3 =  3.33333333333333333333333333333233795e-1L,	/*  0x15555555555555555555555554d42.0p-114L */
     98 P4 = -2.49999999999999999999999999941139296e-1L,	/* -0x1ffffffffffffffffffffffdab14e.0p-115L */
     99 P5 =  2.00000000000000000000000085468039943e-1L,	/*  0x19999999999999999999a6d3567f4.0p-115L */
    100 P6 = -1.66666666666666666666696142372698408e-1L,	/* -0x15555555555555555567267a58e13.0p-115L */
    101 P7 =  1.42857142857142857119522943477166120e-1L,	/*  0x1249249249249248ed79a0ae434de.0p-115L */
    102 P8 = -1.24999999999999994863289015033581301e-1L;	/* -0x1fffffffffffffa13e91765e46140.0p-116L */
    103 /* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */
    104 static const double
    105 P9 =  1.1111111111111401e-1,		/*  0x1c71c71c71c7ed.0p-56 */
    106 P10 = -1.0000000000040135e-1,		/* -0x199999999a0a92.0p-56 */
    107 P11 =  9.0909090728136258e-2,		/*  0x1745d173962111.0p-56 */
    108 P12 = -8.3333318851855284e-2,		/* -0x1555551722c7a3.0p-56 */
    109 P13 =  7.6928634666404178e-2,		/*  0x13b1985204a4ae.0p-56 */
    110 P14 = -7.1626810078462499e-2;		/* -0x12562276cdc5d0.0p-56 */
    111 
    112 static volatile const double zero = 0;
    113 
    114 #define	INTERVALS	128
    115 #define	LOG2_INTERVALS	7
    116 #define	TSIZE		(INTERVALS + 1)
    117 #define	G(i)		(T[(i)].G)
    118 #define	F_hi(i)		(T[(i)].F_hi)
    119 #define	F_lo(i)		(T[(i)].F_lo)
    120 #define	ln2_hi		F_hi(TSIZE - 1)
    121 #define	ln2_lo		F_lo(TSIZE - 1)
    122 #define	E(i)		(U[(i)].E)
    123 #define	H(i)		(U[(i)].H)
    124 
    125 static const struct {
    126 	float	G;			/* 1/(1 + i/128) rounded to 8/9 bits */
    127 	float	F_hi;			/* log(1 / G_i) rounded (see below) */
    128 	/* The compiler will insert 8 bytes of padding here. */
    129 	long double F_lo;		/* next 113 bits for log(1 / G_i) */
    130 } T[TSIZE] = {
    131 	/*
    132 	 * ln2_hi and each F_hi(i) are rounded to a number of bits that
    133 	 * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
    134 	 *
    135 	 * The last entry (for X just below 2) is used to define ln2_hi
    136 	 * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
    137 	 * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
    138 	 * This is needed for accuracy when x is just below 1.  (To avoid
    139 	 * special cases, such x are "reduced" strangely to X just below
    140 	 * 2 and dk = -1, and then the exact cancellation is needed
    141 	 * because any the error from any non-exactness would be too
    142 	 * large).
    143 	 *
    144 	 * The relevant range of dk is [-16445, 16383].  The maximum number
    145 	 * of bits in F_hi(i) that works is very dependent on i but has
    146 	 * a minimum of 93.  We only need about 12 bits in F_hi(i) for
    147 	 * it to provide enough extra precision.
    148 	 *
    149 	 * We round F_hi(i) to 24 bits so that it can have type float,
    150 	 * mainly to minimize the size of the table.  Using all 24 bits
    151 	 * in a float for it automatically satisfies the above constraints.
    152 	 */
    153       { 0x800000.0p-23,  0,               0 },
    154       { 0xfe0000.0p-24,  0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L },
    155       { 0xfc0000.0p-24,  0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L },
    156       { 0xfa0000.0p-24,  0xc24929.0p-29,  0x1191957d173697cf302cc9476f561.0p-143L },
    157       { 0xf80000.0p-24,  0x820aec.0p-28,  0x13ce8888e02e78eba9b1113bc1c18.0p-142L },
    158       { 0xf60000.0p-24,  0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L },
    159       { 0xf48000.0p-24,  0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L },
    160       { 0xf30000.0p-24,  0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L },
    161       { 0xf10000.0p-24,  0xf7518e.0p-28,  0x1ae1eec1b036c484993c549c4bf40.0p-151L },
    162       { 0xef0000.0p-24,  0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L },
    163       { 0xed8000.0p-24,  0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L },
    164       { 0xec0000.0p-24,  0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L },
    165       { 0xea0000.0p-24,  0xb80698.0p-27,  0x15d581c1e8da99ded322fb08b8462.0p-141L },
    166       { 0xe80000.0p-24,  0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L },
    167       { 0xe70000.0p-24,  0xd273b2.0p-27,  0x163786f5251aefe0ded34c8318f52.0p-145L },
    168       { 0xe50000.0p-24,  0xe442c0.0p-27,  0x1bc4b2368e32d56699c1799a244d4.0p-144L },
    169       { 0xe38000.0p-24,  0xf1b83f.0p-27,  0x1c6090f684e6766abceccab1d7174.0p-141L },
    170       { 0xe20000.0p-24,  0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L },
    171       { 0xe08000.0p-24,  0x8673f6.0p-26,  0x1b9985194b6affd511b534b72a28e.0p-140L },
    172       { 0xdf0000.0p-24,  0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L },
    173       { 0xdd8000.0p-24,  0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L },
    174       { 0xdc0000.0p-24,  0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L },
    175       { 0xda8000.0p-24,  0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L },
    176       { 0xd90000.0p-24,  0xa93f2f.0p-26,  0x1286d633e8e5697dc6a402a56fce1.0p-141L },
    177       { 0xd78000.0p-24,  0xb05988.0p-26,  0x16128eba9367707ebfa540e45350c.0p-144L },
    178       { 0xd60000.0p-24,  0xb78094.0p-26,  0x16ead577390d31ef0f4c9d43f79b2.0p-140L },
    179       { 0xd50000.0p-24,  0xbc4c6c.0p-26,  0x151131ccf7c7b75e7d900b521c48d.0p-141L },
    180       { 0xd38000.0p-24,  0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L },
    181       { 0xd20000.0p-24,  0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L },
    182       { 0xd10000.0p-24,  0xcfb620.0p-26,  0x1c2259904d686581799fbce0b5f19.0p-141L },
    183       { 0xcf8000.0p-24,  0xd71653.0p-26,  0x1ece57a8d5ae54f550444ecf8b995.0p-140L },
    184       { 0xce0000.0p-24,  0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L },
    185       { 0xcd0000.0p-24,  0xe37fde.0p-26,  0x1bc03dc271a74d3a85b5b43c0e727.0p-141L },
    186       { 0xcb8000.0p-24,  0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L },
    187       { 0xca0000.0p-24,  0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L },
    188       { 0xc90000.0p-24,  0xf7ad6f.0p-26,  0x1373ff977baa6911c7bafcb4d84fb.0p-141L },
    189       { 0xc80000.0p-24,  0xfcc8e3.0p-26,  0x196766f2fb328337cc050c6d83b22.0p-140L },
    190       { 0xc68000.0p-24,  0x823f30.0p-25,  0x19bd076f7c434e5fcf1a212e2a91e.0p-139L },
    191       { 0xc58000.0p-24,  0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L },
    192       { 0xc40000.0p-24,  0x88bc74.0p-25,  0x113f23def19c5a0fe396f40f1dda9.0p-141L },
    193       { 0xc30000.0p-24,  0x8b5ae6.0p-25,  0x1759f6e6b37de945a049a962e66c6.0p-139L },
    194       { 0xc20000.0p-24,  0x8dfccb.0p-25,  0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L },
    195       { 0xc10000.0p-24,  0x90a22b.0p-25,  0x1a1d71a87deba46bae9827221dc98.0p-139L },
    196       { 0xbf8000.0p-24,  0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L },
    197       { 0xbe8000.0p-24,  0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L },
    198       { 0xbd8000.0p-24,  0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L },
    199       { 0xbc8000.0p-24,  0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L },
    200       { 0xbb0000.0p-24,  0xa0cda1.0p-25,  0x1eaf46390dbb2438273918db7df5c.0p-141L },
    201       { 0xba0000.0p-24,  0xa38c6e.0p-25,  0x138e20d831f698298adddd7f32686.0p-141L },
    202       { 0xb90000.0p-24,  0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L },
    203       { 0xb80000.0p-24,  0xa91570.0p-25,  0x1ce28f5f3840b263acb4351104631.0p-140L },
    204       { 0xb70000.0p-24,  0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L },
    205       { 0xb60000.0p-24,  0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L },
    206       { 0xb50000.0p-24,  0xb18018.0p-25,  0x16755892770633947ffe651e7352f.0p-139L },
    207       { 0xb40000.0p-24,  0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L },
    208       { 0xb30000.0p-24,  0xb73077.0p-25,  0x1abc65c8595f088b61a335f5b688c.0p-140L },
    209       { 0xb20000.0p-24,  0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L },
    210       { 0xb10000.0p-24,  0xbcf133.0p-25,  0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L },
    211       { 0xb00000.0p-24,  0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L },
    212       { 0xaf0000.0p-24,  0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L },
    213       { 0xae8000.0p-24,  0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L },
    214       { 0xad8000.0p-24,  0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L },
    215       { 0xac8000.0p-24,  0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L },
    216       { 0xab8000.0p-24,  0xcd1aae.0p-25,  0x19deb5ce6a6a8717d5626e16acc7d.0p-141L },
    217       { 0xaa8000.0p-24,  0xd0192f.0p-25,  0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L },
    218       { 0xaa0000.0p-24,  0xd19a20.0p-25,  0x1127d3c6457f9d79f51dcc73014c9.0p-141L },
    219       { 0xa90000.0p-24,  0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L },
    220       { 0xa80000.0p-24,  0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L },
    221       { 0xa70000.0p-24,  0xdab7d0.0p-25,  0x1118a425494b610665377f15625b6.0p-140L },
    222       { 0xa68000.0p-24,  0xdc40d5.0p-25,  0x1966f24d29d3a2d1b2176010478be.0p-140L },
    223       { 0xa58000.0p-24,  0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L },
    224       { 0xa48000.0p-24,  0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L },
    225       { 0xa40000.0p-24,  0xe3ffce.0p-25,  0x1d155324911f56db28da4d629d00a.0p-140L },
    226       { 0xa30000.0p-24,  0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L },
    227       { 0xa20000.0p-24,  0xea4812.0p-25,  0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L },
    228       { 0xa18000.0p-24,  0xebdd3d.0p-25,  0x1b3cfb3f7511dd73692609040ccc2.0p-139L },
    229       { 0xa08000.0p-24,  0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L },
    230       { 0xa00000.0p-24,  0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L },
    231       { 0x9f0000.0p-24,  0xf3da16.0p-25,  0x1eed6b9aafac8d42f78d3e65d3727.0p-141L },
    232       { 0x9e8000.0p-24,  0xf576e9.0p-25,  0x1d593218675af269647b783d88999.0p-139L },
    233       { 0x9d8000.0p-24,  0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L },
    234       { 0x9d0000.0p-24,  0xfa553f.0p-25,  0x1c063259bcade02951686d5373aec.0p-139L },
    235       { 0x9c0000.0p-24,  0xfd9ac5.0p-25,  0x1ef491085fa3c1649349630531502.0p-139L },
    236       { 0x9b8000.0p-24,  0xff3f8c.0p-25,  0x1d607a7c2b8c5320619fb9433d841.0p-139L },
    237       { 0x9a8000.0p-24,  0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L },
    238       { 0x9a0000.0p-24,  0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L },
    239       { 0x990000.0p-24,  0x83c5f8.0p-24,  0x14cf15a048907b7d7f47ddb45c5a3.0p-139L },
    240       { 0x988000.0p-24,  0x849c7d.0p-24,  0x1cbb1d35fb82873b04a9af1dd692c.0p-138L },
    241       { 0x978000.0p-24,  0x864ba6.0p-24,  0x1128639b814f9b9770d8cb6573540.0p-138L },
    242       { 0x970000.0p-24,  0x87244c.0p-24,  0x184733853300f002e836dfd47bd41.0p-139L },
    243       { 0x968000.0p-24,  0x87fdaa.0p-24,  0x109d23aef77dd5cd7cc94306fb3ff.0p-140L },
    244       { 0x958000.0p-24,  0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L },
    245       { 0x950000.0p-24,  0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L },
    246       { 0x948000.0p-24,  0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L },
    247       { 0x938000.0p-24,  0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L },
    248       { 0x930000.0p-24,  0x8e03c2.0p-24,  0x135cc00e566f76b87333891e0dec4.0p-138L },
    249       { 0x928000.0p-24,  0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L },
    250       { 0x918000.0p-24,  0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L },
    251       { 0x910000.0p-24,  0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L },
    252       { 0x908000.0p-24,  0x9267e7.0p-24,  0x1be03669a5268d21148c6002becd3.0p-139L },
    253       { 0x8f8000.0p-24,  0x942f04.0p-24,  0x10b28e0e26c336af90e00533323ba.0p-139L },
    254       { 0x8f0000.0p-24,  0x9513c3.0p-24,  0x1a1d820da57cf2f105a89060046aa.0p-138L },
    255       { 0x8e8000.0p-24,  0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L },
    256       { 0x8e0000.0p-24,  0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L },
    257       { 0x8d0000.0p-24,  0x98aed2.0p-24,  0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L },
    258       { 0x8c8000.0p-24,  0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L },
    259       { 0x8c0000.0p-24,  0x9a8145.0p-24,  0x1b3b190b83f9527e6aba8f2d783c1.0p-138L },
    260       { 0x8b8000.0p-24,  0x9b6bbf.0p-24,  0x13a69fad7e7abe7ba81c664c107e0.0p-138L },
    261       { 0x8b0000.0p-24,  0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L },
    262       { 0x8a8000.0p-24,  0x9d433b.0p-24,  0x1c95c444b807a246726b304ccae56.0p-139L },
    263       { 0x898000.0p-24,  0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L },
    264       { 0x890000.0p-24,  0xa00ce1.0p-24,  0x125ca93186cf0f38b4619a2483399.0p-141L },
    265       { 0x888000.0p-24,  0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L },
    266       { 0x880000.0p-24,  0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L },
    267       { 0x878000.0p-24,  0xa2de62.0p-24,  0x193224e8516c008d3602a7b41c6e8.0p-139L },
    268       { 0x870000.0p-24,  0xa3d0a9.0p-24,  0x1fa28b4d2541aca7d5844606b2421.0p-139L },
    269       { 0x868000.0p-24,  0xa4c3d6.0p-24,  0x1c1b5760fb4571acbcfb03f16daf4.0p-138L },
    270       { 0x858000.0p-24,  0xa6acea.0p-24,  0x1fed5d0f65949c0a345ad743ae1ae.0p-140L },
    271       { 0x850000.0p-24,  0xa7a2d4.0p-24,  0x1ad270c9d749362382a7688479e24.0p-140L },
    272       { 0x848000.0p-24,  0xa899ab.0p-24,  0x199ff15ce532661ea9643a3a2d378.0p-139L },
    273       { 0x840000.0p-24,  0xa99171.0p-24,  0x1a19e15ccc45d257530a682b80490.0p-139L },
    274       { 0x838000.0p-24,  0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L },
    275       { 0x830000.0p-24,  0xab83d1.0p-24,  0x1aee319980bff3303dd481779df69.0p-139L },
    276       { 0x828000.0p-24,  0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L },
    277       { 0x820000.0p-24,  0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L },
    278       { 0x818000.0p-24,  0xae768f.0p-24,  0x17c35c55a04a82ab19f77652d977a.0p-141L },
    279       { 0x810000.0p-24,  0xaf7415.0p-24,  0x1448324047019b48d7b98c1cf7234.0p-138L },
    280       { 0x808000.0p-24,  0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L },
    281       { 0x800000.0p-24,  0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L },
    282 };
    283 
    284 #ifdef USE_UTAB
    285 static const struct {
    286 	float	H;			/* 1 + i/INTERVALS (exact) */
    287 	float	E;			/* H(i) * G(i) - 1 (exact) */
    288 } U[TSIZE] = {
    289 	{ 0x800000.0p-23,  0 },
    290 	{ 0x810000.0p-23, -0x800000.0p-37 },
    291 	{ 0x820000.0p-23, -0x800000.0p-35 },
    292 	{ 0x830000.0p-23, -0x900000.0p-34 },
    293 	{ 0x840000.0p-23, -0x800000.0p-33 },
    294 	{ 0x850000.0p-23, -0xc80000.0p-33 },
    295 	{ 0x860000.0p-23, -0xa00000.0p-36 },
    296 	{ 0x870000.0p-23,  0x940000.0p-33 },
    297 	{ 0x880000.0p-23,  0x800000.0p-35 },
    298 	{ 0x890000.0p-23, -0xc80000.0p-34 },
    299 	{ 0x8a0000.0p-23,  0xe00000.0p-36 },
    300 	{ 0x8b0000.0p-23,  0x900000.0p-33 },
    301 	{ 0x8c0000.0p-23, -0x800000.0p-35 },
    302 	{ 0x8d0000.0p-23, -0xe00000.0p-33 },
    303 	{ 0x8e0000.0p-23,  0x880000.0p-33 },
    304 	{ 0x8f0000.0p-23, -0xa80000.0p-34 },
    305 	{ 0x900000.0p-23, -0x800000.0p-35 },
    306 	{ 0x910000.0p-23,  0x800000.0p-37 },
    307 	{ 0x920000.0p-23,  0x900000.0p-35 },
    308 	{ 0x930000.0p-23,  0xd00000.0p-35 },
    309 	{ 0x940000.0p-23,  0xe00000.0p-35 },
    310 	{ 0x950000.0p-23,  0xc00000.0p-35 },
    311 	{ 0x960000.0p-23,  0xe00000.0p-36 },
    312 	{ 0x970000.0p-23, -0x800000.0p-38 },
    313 	{ 0x980000.0p-23, -0xc00000.0p-35 },
    314 	{ 0x990000.0p-23, -0xd00000.0p-34 },
    315 	{ 0x9a0000.0p-23,  0x880000.0p-33 },
    316 	{ 0x9b0000.0p-23,  0xe80000.0p-35 },
    317 	{ 0x9c0000.0p-23, -0x800000.0p-35 },
    318 	{ 0x9d0000.0p-23,  0xb40000.0p-33 },
    319 	{ 0x9e0000.0p-23,  0x880000.0p-34 },
    320 	{ 0x9f0000.0p-23, -0xe00000.0p-35 },
    321 	{ 0xa00000.0p-23,  0x800000.0p-33 },
    322 	{ 0xa10000.0p-23, -0x900000.0p-36 },
    323 	{ 0xa20000.0p-23, -0xb00000.0p-33 },
    324 	{ 0xa30000.0p-23, -0xa00000.0p-36 },
    325 	{ 0xa40000.0p-23,  0x800000.0p-33 },
    326 	{ 0xa50000.0p-23, -0xf80000.0p-35 },
    327 	{ 0xa60000.0p-23,  0x880000.0p-34 },
    328 	{ 0xa70000.0p-23, -0x900000.0p-33 },
    329 	{ 0xa80000.0p-23, -0x800000.0p-35 },
    330 	{ 0xa90000.0p-23,  0x900000.0p-34 },
    331 	{ 0xaa0000.0p-23,  0xa80000.0p-33 },
    332 	{ 0xab0000.0p-23, -0xac0000.0p-34 },
    333 	{ 0xac0000.0p-23, -0x800000.0p-37 },
    334 	{ 0xad0000.0p-23,  0xf80000.0p-35 },
    335 	{ 0xae0000.0p-23,  0xf80000.0p-34 },
    336 	{ 0xaf0000.0p-23, -0xac0000.0p-33 },
    337 	{ 0xb00000.0p-23, -0x800000.0p-33 },
    338 	{ 0xb10000.0p-23, -0xb80000.0p-34 },
    339 	{ 0xb20000.0p-23, -0x800000.0p-34 },
    340 	{ 0xb30000.0p-23, -0xb00000.0p-35 },
    341 	{ 0xb40000.0p-23, -0x800000.0p-35 },
    342 	{ 0xb50000.0p-23, -0xe00000.0p-36 },
    343 	{ 0xb60000.0p-23, -0x800000.0p-35 },
    344 	{ 0xb70000.0p-23, -0xb00000.0p-35 },
    345 	{ 0xb80000.0p-23, -0x800000.0p-34 },
    346 	{ 0xb90000.0p-23, -0xb80000.0p-34 },
    347 	{ 0xba0000.0p-23, -0x800000.0p-33 },
    348 	{ 0xbb0000.0p-23, -0xac0000.0p-33 },
    349 	{ 0xbc0000.0p-23,  0x980000.0p-33 },
    350 	{ 0xbd0000.0p-23,  0xbc0000.0p-34 },
    351 	{ 0xbe0000.0p-23,  0xe00000.0p-36 },
    352 	{ 0xbf0000.0p-23, -0xb80000.0p-35 },
    353 	{ 0xc00000.0p-23, -0x800000.0p-33 },
    354 	{ 0xc10000.0p-23,  0xa80000.0p-33 },
    355 	{ 0xc20000.0p-23,  0x900000.0p-34 },
    356 	{ 0xc30000.0p-23, -0x800000.0p-35 },
    357 	{ 0xc40000.0p-23, -0x900000.0p-33 },
    358 	{ 0xc50000.0p-23,  0x820000.0p-33 },
    359 	{ 0xc60000.0p-23,  0x800000.0p-38 },
    360 	{ 0xc70000.0p-23, -0x820000.0p-33 },
    361 	{ 0xc80000.0p-23,  0x800000.0p-33 },
    362 	{ 0xc90000.0p-23, -0xa00000.0p-36 },
    363 	{ 0xca0000.0p-23, -0xb00000.0p-33 },
    364 	{ 0xcb0000.0p-23,  0x840000.0p-34 },
    365 	{ 0xcc0000.0p-23, -0xd00000.0p-34 },
    366 	{ 0xcd0000.0p-23,  0x800000.0p-33 },
    367 	{ 0xce0000.0p-23, -0xe00000.0p-35 },
    368 	{ 0xcf0000.0p-23,  0xa60000.0p-33 },
    369 	{ 0xd00000.0p-23, -0x800000.0p-35 },
    370 	{ 0xd10000.0p-23,  0xb40000.0p-33 },
    371 	{ 0xd20000.0p-23, -0x800000.0p-35 },
    372 	{ 0xd30000.0p-23,  0xaa0000.0p-33 },
    373 	{ 0xd40000.0p-23, -0xe00000.0p-35 },
    374 	{ 0xd50000.0p-23,  0x880000.0p-33 },
    375 	{ 0xd60000.0p-23, -0xd00000.0p-34 },
    376 	{ 0xd70000.0p-23,  0x9c0000.0p-34 },
    377 	{ 0xd80000.0p-23, -0xb00000.0p-33 },
    378 	{ 0xd90000.0p-23, -0x800000.0p-38 },
    379 	{ 0xda0000.0p-23,  0xa40000.0p-33 },
    380 	{ 0xdb0000.0p-23, -0xdc0000.0p-34 },
    381 	{ 0xdc0000.0p-23,  0xc00000.0p-35 },
    382 	{ 0xdd0000.0p-23,  0xca0000.0p-33 },
    383 	{ 0xde0000.0p-23, -0xb80000.0p-34 },
    384 	{ 0xdf0000.0p-23,  0xd00000.0p-35 },
    385 	{ 0xe00000.0p-23,  0xc00000.0p-33 },
    386 	{ 0xe10000.0p-23, -0xf40000.0p-34 },
    387 	{ 0xe20000.0p-23,  0x800000.0p-37 },
    388 	{ 0xe30000.0p-23,  0x860000.0p-33 },
    389 	{ 0xe40000.0p-23, -0xc80000.0p-33 },
    390 	{ 0xe50000.0p-23, -0xa80000.0p-34 },
    391 	{ 0xe60000.0p-23,  0xe00000.0p-36 },
    392 	{ 0xe70000.0p-23,  0x880000.0p-33 },
    393 	{ 0xe80000.0p-23, -0xe00000.0p-33 },
    394 	{ 0xe90000.0p-23, -0xfc0000.0p-34 },
    395 	{ 0xea0000.0p-23, -0x800000.0p-35 },
    396 	{ 0xeb0000.0p-23,  0xe80000.0p-35 },
    397 	{ 0xec0000.0p-23,  0x900000.0p-33 },
    398 	{ 0xed0000.0p-23,  0xe20000.0p-33 },
    399 	{ 0xee0000.0p-23, -0xac0000.0p-33 },
    400 	{ 0xef0000.0p-23, -0xc80000.0p-34 },
    401 	{ 0xf00000.0p-23, -0x800000.0p-35 },
    402 	{ 0xf10000.0p-23,  0x800000.0p-35 },
    403 	{ 0xf20000.0p-23,  0xb80000.0p-34 },
    404 	{ 0xf30000.0p-23,  0x940000.0p-33 },
    405 	{ 0xf40000.0p-23,  0xc80000.0p-33 },
    406 	{ 0xf50000.0p-23, -0xf20000.0p-33 },
    407 	{ 0xf60000.0p-23, -0xc80000.0p-33 },
    408 	{ 0xf70000.0p-23, -0xa20000.0p-33 },
    409 	{ 0xf80000.0p-23, -0x800000.0p-33 },
    410 	{ 0xf90000.0p-23, -0xc40000.0p-34 },
    411 	{ 0xfa0000.0p-23, -0x900000.0p-34 },
    412 	{ 0xfb0000.0p-23, -0xc80000.0p-35 },
    413 	{ 0xfc0000.0p-23, -0x800000.0p-35 },
    414 	{ 0xfd0000.0p-23, -0x900000.0p-36 },
    415 	{ 0xfe0000.0p-23, -0x800000.0p-37 },
    416 	{ 0xff0000.0p-23, -0x800000.0p-39 },
    417 	{ 0x800000.0p-22,  0 },
    418 };
    419 #endif /* USE_UTAB */
    420 
    421 #ifdef STRUCT_RETURN
    422 #define	RETURN1(rp, v) do {	\
    423 	(rp)->hi = (v);		\
    424 	(rp)->lo_set = 0;	\
    425 	return;			\
    426 } while (0)
    427 
    428 #define	RETURN2(rp, h, l) do {	\
    429 	(rp)->hi = (h);		\
    430 	(rp)->lo = (l);		\
    431 	(rp)->lo_set = 1;	\
    432 	return;			\
    433 } while (0)
    434 
    435 struct ld {
    436 	long double hi;
    437 	long double lo;
    438 	int	lo_set;
    439 };
    440 #else
    441 #define	RETURN1(rp, v)	RETURNF(v)
    442 #define	RETURN2(rp, h, l)	RETURNI((h) + (l))
    443 #endif
    444 
    445 #ifdef STRUCT_RETURN
    446 static inline __always_inline void
    447 k_logl(long double x, struct ld *rp)
    448 #else
    449 long double
    450 logl(long double x)
    451 #endif
    452 {
    453 	long double d, val_hi, val_lo;
    454 	double dd, dk;
    455 	uint64_t lx, llx;
    456 	int i, k;
    457 	uint16_t hx;
    458 
    459 	EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
    460 	k = -16383;
    461 #if 0 /* Hard to do efficiently.  Don't do it until we support all modes. */
    462 	if (x == 1)
    463 		RETURN1(rp, 0);		/* log(1) = +0 in all rounding modes */
    464 #endif
    465 	if (hx == 0 || hx >= 0x8000) {	/* zero, negative or subnormal? */
    466 		if (((hx & 0x7fff) | lx | llx) == 0)
    467 			RETURN1(rp, -1 / zero);	/* log(+-0) = -Inf */
    468 		if (hx != 0)
    469 			/* log(neg or NaN) = qNaN: */
    470 			RETURN1(rp, (x - x) / zero);
    471 		x *= 0x1.0p113;		/* subnormal; scale up x */
    472 		EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
    473 		k = -16383 - 113;
    474 	} else if (hx >= 0x7fff)
    475 		RETURN1(rp, x + x);	/* log(Inf or NaN) = Inf or qNaN */
    476 #ifndef STRUCT_RETURN
    477 	ENTERI();
    478 #endif
    479 	k += hx;
    480 	dk = k;
    481 
    482 	/* Scale x to be in [1, 2). */
    483 	SET_LDBL_EXPSIGN(x, 0x3fff);
    484 
    485 	/* 0 <= i <= INTERVALS: */
    486 #define	L2I	(49 - LOG2_INTERVALS)
    487 	i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
    488 
    489 	/*
    490 	 * -0.005280 < d < 0.004838.  In particular, the infinite-
    491 	 * precision |d| is <= 2**-7.  Rounding of G(i) to 8 bits
    492 	 * ensures that d is representable without extra precision for
    493 	 * this bound on |d| (since when this calculation is expressed
    494 	 * as x*G(i)-1, the multiplication needs as many extra bits as
    495 	 * G(i) has and the subtraction cancels 8 bits).  But for
    496 	 * most i (107 cases out of 129), the infinite-precision |d|
    497 	 * is <= 2**-8.  G(i) is rounded to 9 bits for such i to give
    498 	 * better accuracy (this works by improving the bound on |d|,
    499 	 * which in turn allows rounding to 9 bits in more cases).
    500 	 * This is only important when the original x is near 1 -- it
    501 	 * lets us avoid using a special method to give the desired
    502 	 * accuracy for such x.
    503 	 */
    504 	if (0)
    505 		d = x * G(i) - 1;
    506 	else {
    507 #ifdef USE_UTAB
    508 		d = (x - H(i)) * G(i) + E(i);
    509 #else
    510 		long double x_hi;
    511 		double x_lo;
    512 
    513 		/*
    514 		 * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
    515 		 * G(i) has at most 9 bits, so the splitting point is not
    516 		 * critical.
    517 		 */
    518 		INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
    519 		    llx & 0xffffffffff000000ULL);
    520 		x_lo = x - x_hi;
    521 		d = x_hi * G(i) - 1 + x_lo * G(i);
    522 #endif
    523 	}
    524 
    525 	/*
    526 	 * Our algorithm depends on exact cancellation of F_lo(i) and
    527 	 * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
    528 	 * at the end of the table.  This and other technical complications
    529 	 * make it difficult to avoid the double scaling in (dk*ln2) *
    530 	 * log(base) for base != e without losing more accuracy and/or
    531 	 * efficiency than is gained.
    532 	 */
    533 	/*
    534 	 * Use double precision operations wherever possible, since
    535 	 * long double operations are emulated and were very slow on
    536 	 * the old sparc64 and unknown on the newer aarch64 and riscv
    537 	 * machines.  Also, don't try to improve parallelism by
    538 	 * increasing the number of operations, since any parallelism
    539 	 * on such machines is needed for the emulation.  Horner's
    540 	 * method is good for this, and is also good for accuracy.
    541 	 * Horner's method doesn't handle the `lo' term well, either
    542 	 * for efficiency or accuracy.  However, for accuracy we
    543 	 * evaluate d * d * P2 separately to take advantage of by P2
    544 	 * being exact, and this gives a good place to sum the 'lo'
    545 	 * term too.
    546 	 */
    547 	dd = (double)d;
    548 	val_lo = d * d * d * (P3 +
    549 	    d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
    550 	    dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
    551 	    dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2;
    552 	val_hi = d;
    553 #ifdef DEBUG
    554 	if (fetestexcept(FE_UNDERFLOW))
    555 		breakpoint();
    556 #endif
    557 
    558 	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
    559 	RETURN2(rp, val_hi, val_lo);
    560 }
    561 
    562 long double
    563 log1pl(long double x)
    564 {
    565 	long double d, d_hi, f_lo, val_hi, val_lo;
    566 	long double f_hi, twopminusk;
    567 	double d_lo, dd, dk;
    568 	uint64_t lx, llx;
    569 	int i, k;
    570 	int16_t ax, hx;
    571 
    572 	EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
    573 	if (hx < 0x3fff) {		/* x < 1, or x neg NaN */
    574 		ax = hx & 0x7fff;
    575 		if (ax >= 0x3fff) {	/* x <= -1, or x neg NaN */
    576 			if (ax == 0x3fff && (lx | llx) == 0)
    577 				RETURNF(-1 / zero);	/* log1p(-1) = -Inf */
    578 			/* log1p(x < 1, or x NaN) = qNaN: */
    579 			RETURNF((x - x) / (x - x));
    580 		}
    581 		if (ax <= 0x3f8d) {	/* |x| < 2**-113 */
    582 			if ((int)x == 0)
    583 				RETURNF(x);	/* x with inexact if x != 0 */
    584 		}
    585 		f_hi = 1;
    586 		f_lo = x;
    587 	} else if (hx >= 0x7fff) {	/* x +Inf or non-neg NaN */
    588 		RETURNF(x + x);		/* log1p(Inf or NaN) = Inf or qNaN */
    589 	} else if (hx < 0x40e1) {	/* 1 <= x < 2**226 */
    590 		f_hi = x;
    591 		f_lo = 1;
    592 	} else {			/* 2**226 <= x < +Inf */
    593 		f_hi = x;
    594 		f_lo = 0;		/* avoid underflow of the P3 term */
    595 	}
    596 	ENTERI();
    597 	x = f_hi + f_lo;
    598 	f_lo = (f_hi - x) + f_lo;
    599 
    600 	EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
    601 	k = -16383;
    602 
    603 	k += hx;
    604 	dk = k;
    605 
    606 	SET_LDBL_EXPSIGN(x, 0x3fff);
    607 	twopminusk = 1;
    608 	SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
    609 	f_lo *= twopminusk;
    610 
    611 	i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
    612 
    613 	/*
    614 	 * x*G(i)-1 (with a reduced x) can be represented exactly, as
    615 	 * above, but now we need to evaluate the polynomial on d =
    616 	 * (x+f_lo)*G(i)-1 and extra precision is needed for that.
    617 	 * Since x+x_lo is a hi+lo decomposition and subtracting 1
    618 	 * doesn't lose too many bits, an inexact calculation for
    619 	 * f_lo*G(i) is good enough.
    620 	 */
    621 	if (0)
    622 		d_hi = x * G(i) - 1;
    623 	else {
    624 #ifdef USE_UTAB
    625 		d_hi = (x - H(i)) * G(i) + E(i);
    626 #else
    627 		long double x_hi;
    628 		double x_lo;
    629 
    630 		INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
    631 		    llx & 0xffffffffff000000ULL);
    632 		x_lo = x - x_hi;
    633 		d_hi = x_hi * G(i) - 1 + x_lo * G(i);
    634 #endif
    635 	}
    636 	d_lo = f_lo * G(i);
    637 
    638 	/*
    639 	 * This is _2sumF(d_hi, d_lo) inlined.  The condition
    640 	 * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
    641 	 * always satisifed, so it is not clear that this works, but
    642 	 * it works in practice.  It works even if it gives a wrong
    643 	 * normalized d_lo, since |d_lo| > |d_hi| implies that i is
    644 	 * nonzero and d is tiny, so the F(i) term dominates d_lo.
    645 	 * In float precision:
    646 	 * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
    647 	 * And if d is only a little tinier than that, we would have
    648 	 * another underflow problem for the P3 term; this is also ruled
    649 	 * out by exhaustive testing.)
    650 	 */
    651 	d = d_hi + d_lo;
    652 	d_lo = d_hi - d + d_lo;
    653 	d_hi = d;
    654 
    655 	dd = (double)d;
    656 	val_lo = d * d * d * (P3 +
    657 	    d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
    658 	    dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
    659 	    dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2;
    660 	val_hi = d_hi;
    661 #ifdef DEBUG
    662 	if (fetestexcept(FE_UNDERFLOW))
    663 		breakpoint();
    664 #endif
    665 
    666 	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
    667 	RETURNI(val_hi + val_lo);
    668 }
    669 
    670 #ifdef STRUCT_RETURN
    671 
    672 long double
    673 logl(long double x)
    674 {
    675 	struct ld r;
    676 
    677 	ENTERI();
    678 	k_logl(x, &r);
    679 	RETURNSPI(&r);
    680 }
    681 
    682 /*
    683  * 29+113 bit decompositions.  The bits are distributed so that the products
    684  * of the hi terms are exact in double precision.  The types are chosen so
    685  * that the products of the hi terms are done in at least double precision,
    686  * without any explicit conversions.  More natural choices would require a
    687  * slow long double precision multiplication.
    688  */
    689 static const double
    690 invln10_hi =  4.3429448176175356e-1,		/*  0x1bcb7b15000000.0p-54 */
    691 invln2_hi =  1.4426950402557850e0;		/*  0x17154765000000.0p-52 */
    692 static const long double
    693 invln10_lo =  1.41498268538580090791605082294397000e-10L,	/*  0x137287195355baaafad33dc323ee3.0p-145L */
    694 invln2_lo =  6.33178418956604368501892137426645911e-10L,	/*  0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
    695 invln10_lo_plus_hi = invln10_lo + invln10_hi,
    696 invln2_lo_plus_hi = invln2_lo + invln2_hi;
    697 
    698 long double
    699 log10l(long double x)
    700 {
    701 	struct ld r;
    702 	long double hi, lo;
    703 
    704 	ENTERI();
    705 	k_logl(x, &r);
    706 	if (!r.lo_set)
    707 		RETURNI(r.hi);
    708 	_2sumF(r.hi, r.lo);
    709 	hi = (float)r.hi;
    710 	lo = r.lo + (r.hi - hi);
    711 	RETURNI(invln10_hi * hi + (invln10_lo_plus_hi * lo + invln10_lo * hi));
    712 }
    713 
    714 long double
    715 log2l(long double x)
    716 {
    717 	struct ld r;
    718 	long double hi, lo;
    719 
    720 	ENTERI();
    721 	k_logl(x, &r);
    722 	if (!r.lo_set)
    723 		RETURNI(r.hi);
    724 	_2sumF(r.hi, r.lo);
    725 	hi = (float)r.hi;
    726 	lo = r.lo + (r.hi - hi);
    727 	RETURNI(invln2_hi * hi + (invln2_lo_plus_hi * lo + invln2_lo * hi));
    728 }
    729 
    730 #endif /* STRUCT_RETURN */
    731