s_logl.c revision 1.1 1 1.1 christos /*-
2 1.1 christos * SPDX-License-Identifier: BSD-2-Clause
3 1.1 christos *
4 1.1 christos * Copyright (c) 2007-2013 Bruce D. Evans
5 1.1 christos * All rights reserved.
6 1.1 christos *
7 1.1 christos * Redistribution and use in source and binary forms, with or without
8 1.1 christos * modification, are permitted provided that the following conditions
9 1.1 christos * are met:
10 1.1 christos * 1. Redistributions of source code must retain the above copyright
11 1.1 christos * notice unmodified, this list of conditions, and the following
12 1.1 christos * disclaimer.
13 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 christos * notice, this list of conditions and the following disclaimer in the
15 1.1 christos * documentation and/or other materials provided with the distribution.
16 1.1 christos *
17 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 1.1 christos * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 1.1 christos * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.1 christos * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 1.1 christos * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 1.1 christos * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 1.1 christos * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 1.1 christos * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 1.1 christos * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 1.1 christos * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 1.1 christos */
28 1.1 christos
29 1.1 christos #include <sys/cdefs.h>
30 1.1 christos /**
31 1.1 christos * Implementation of the natural logarithm of x for 128-bit format.
32 1.1 christos *
33 1.1 christos * First decompose x into its base 2 representation:
34 1.1 christos *
35 1.1 christos * log(x) = log(X * 2**k), where X is in [1, 2)
36 1.1 christos * = log(X) + k * log(2).
37 1.1 christos *
38 1.1 christos * Let X = X_i + e, where X_i is the center of one of the intervals
39 1.1 christos * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
40 1.1 christos * and X is in this interval. Then
41 1.1 christos *
42 1.1 christos * log(X) = log(X_i + e)
43 1.1 christos * = log(X_i * (1 + e / X_i))
44 1.1 christos * = log(X_i) + log(1 + e / X_i).
45 1.1 christos *
46 1.1 christos * The values log(X_i) are tabulated below. Let d = e / X_i and use
47 1.1 christos *
48 1.1 christos * log(1 + d) = p(d)
49 1.1 christos *
50 1.1 christos * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
51 1.1 christos * suitably high degree.
52 1.1 christos *
53 1.1 christos * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
54 1.1 christos * sometimes (if |k| is not large) the first term in p(d) must be evaluated
55 1.1 christos * and added up in extra precision. Extra precision is not needed for the
56 1.1 christos * rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final
57 1.1 christos * error is controlled mainly by the error in the second term in p(d). The
58 1.1 christos * error in this term itself is at most 0.5 ulps from the d*d operation in
59 1.1 christos * it. The error in this term relative to the first term is thus at most
60 1.1 christos * 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of
61 1.1 christos * at most twice this at the point of the final rounding step. Thus the
62 1.1 christos * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive
63 1.1 christos * testing of a float variant of this function showed a maximum final error
64 1.1 christos * of 0.5008 ulps. Non-exhaustive testing of a double variant of this
65 1.1 christos * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
66 1.1 christos *
67 1.1 christos * We made the maximum of |d| (and thus the total relative error and the
68 1.1 christos * degree of p(d)) small by using a large number of intervals. Using
69 1.1 christos * centers of intervals instead of endpoints reduces this maximum by a
70 1.1 christos * factor of 2 for a given number of intervals. p(d) is special only
71 1.1 christos * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
72 1.1 christos * naturally. The most accurate minimax polynomial of a given degree might
73 1.1 christos * be different, but then we wouldn't want it since we would have to do
74 1.1 christos * extra work to avoid roundoff error (especially for P0*d instead of d).
75 1.1 christos */
76 1.1 christos
77 1.1 christos #ifdef DEBUG
78 1.1 christos #include <fenv.h>
79 1.1 christos #endif
80 1.1 christos
81 1.1 christos #include "math.h"
82 1.1 christos #ifndef NO_STRUCT_RETURN
83 1.1 christos #define STRUCT_RETURN
84 1.1 christos #endif
85 1.1 christos #include "math_private.h"
86 1.1 christos
87 1.1 christos #if !defined(NO_UTAB) && !defined(NO_UTABL)
88 1.1 christos #define USE_UTAB
89 1.1 christos #endif
90 1.1 christos
91 1.1 christos /*
92 1.1 christos * Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]:
93 1.1 christos * |log(1 + d)/d - p(d)| < 2**-122.7
94 1.1 christos */
95 1.1 christos static const long double
96 1.1 christos P2 = -0.5L,
97 1.1 christos P3 = 3.33333333333333333333333333333233795e-1L, /* 0x15555555555555555555555554d42.0p-114L */
98 1.1 christos P4 = -2.49999999999999999999999999941139296e-1L, /* -0x1ffffffffffffffffffffffdab14e.0p-115L */
99 1.1 christos P5 = 2.00000000000000000000000085468039943e-1L, /* 0x19999999999999999999a6d3567f4.0p-115L */
100 1.1 christos P6 = -1.66666666666666666666696142372698408e-1L, /* -0x15555555555555555567267a58e13.0p-115L */
101 1.1 christos P7 = 1.42857142857142857119522943477166120e-1L, /* 0x1249249249249248ed79a0ae434de.0p-115L */
102 1.1 christos P8 = -1.24999999999999994863289015033581301e-1L; /* -0x1fffffffffffffa13e91765e46140.0p-116L */
103 1.1 christos /* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */
104 1.1 christos static const double
105 1.1 christos P9 = 1.1111111111111401e-1, /* 0x1c71c71c71c7ed.0p-56 */
106 1.1 christos P10 = -1.0000000000040135e-1, /* -0x199999999a0a92.0p-56 */
107 1.1 christos P11 = 9.0909090728136258e-2, /* 0x1745d173962111.0p-56 */
108 1.1 christos P12 = -8.3333318851855284e-2, /* -0x1555551722c7a3.0p-56 */
109 1.1 christos P13 = 7.6928634666404178e-2, /* 0x13b1985204a4ae.0p-56 */
110 1.1 christos P14 = -7.1626810078462499e-2; /* -0x12562276cdc5d0.0p-56 */
111 1.1 christos
112 1.1 christos static volatile const double zero = 0;
113 1.1 christos
114 1.1 christos #define INTERVALS 128
115 1.1 christos #define LOG2_INTERVALS 7
116 1.1 christos #define TSIZE (INTERVALS + 1)
117 1.1 christos #define G(i) (T[(i)].G)
118 1.1 christos #define F_hi(i) (T[(i)].F_hi)
119 1.1 christos #define F_lo(i) (T[(i)].F_lo)
120 1.1 christos #define ln2_hi F_hi(TSIZE - 1)
121 1.1 christos #define ln2_lo F_lo(TSIZE - 1)
122 1.1 christos #define E(i) (U[(i)].E)
123 1.1 christos #define H(i) (U[(i)].H)
124 1.1 christos
125 1.1 christos static const struct {
126 1.1 christos float G; /* 1/(1 + i/128) rounded to 8/9 bits */
127 1.1 christos float F_hi; /* log(1 / G_i) rounded (see below) */
128 1.1 christos /* The compiler will insert 8 bytes of padding here. */
129 1.1 christos long double F_lo; /* next 113 bits for log(1 / G_i) */
130 1.1 christos } T[TSIZE] = {
131 1.1 christos /*
132 1.1 christos * ln2_hi and each F_hi(i) are rounded to a number of bits that
133 1.1 christos * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
134 1.1 christos *
135 1.1 christos * The last entry (for X just below 2) is used to define ln2_hi
136 1.1 christos * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
137 1.1 christos * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
138 1.1 christos * This is needed for accuracy when x is just below 1. (To avoid
139 1.1 christos * special cases, such x are "reduced" strangely to X just below
140 1.1 christos * 2 and dk = -1, and then the exact cancellation is needed
141 1.1 christos * because any the error from any non-exactness would be too
142 1.1 christos * large).
143 1.1 christos *
144 1.1 christos * The relevant range of dk is [-16445, 16383]. The maximum number
145 1.1 christos * of bits in F_hi(i) that works is very dependent on i but has
146 1.1 christos * a minimum of 93. We only need about 12 bits in F_hi(i) for
147 1.1 christos * it to provide enough extra precision.
148 1.1 christos *
149 1.1 christos * We round F_hi(i) to 24 bits so that it can have type float,
150 1.1 christos * mainly to minimize the size of the table. Using all 24 bits
151 1.1 christos * in a float for it automatically satisfies the above constraints.
152 1.1 christos */
153 1.1 christos { 0x800000.0p-23, 0, 0 },
154 1.1 christos { 0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L },
155 1.1 christos { 0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L },
156 1.1 christos { 0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173697cf302cc9476f561.0p-143L },
157 1.1 christos { 0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e78eba9b1113bc1c18.0p-142L },
158 1.1 christos { 0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L },
159 1.1 christos { 0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L },
160 1.1 christos { 0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L },
161 1.1 christos { 0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c484993c549c4bf40.0p-151L },
162 1.1 christos { 0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L },
163 1.1 christos { 0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L },
164 1.1 christos { 0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L },
165 1.1 christos { 0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da99ded322fb08b8462.0p-141L },
166 1.1 christos { 0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L },
167 1.1 christos { 0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251aefe0ded34c8318f52.0p-145L },
168 1.1 christos { 0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d56699c1799a244d4.0p-144L },
169 1.1 christos { 0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e6766abceccab1d7174.0p-141L },
170 1.1 christos { 0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L },
171 1.1 christos { 0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6affd511b534b72a28e.0p-140L },
172 1.1 christos { 0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L },
173 1.1 christos { 0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L },
174 1.1 christos { 0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L },
175 1.1 christos { 0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L },
176 1.1 christos { 0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e5697dc6a402a56fce1.0p-141L },
177 1.1 christos { 0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba9367707ebfa540e45350c.0p-144L },
178 1.1 christos { 0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d31ef0f4c9d43f79b2.0p-140L },
179 1.1 christos { 0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b75e7d900b521c48d.0p-141L },
180 1.1 christos { 0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L },
181 1.1 christos { 0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L },
182 1.1 christos { 0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d686581799fbce0b5f19.0p-141L },
183 1.1 christos { 0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae54f550444ecf8b995.0p-140L },
184 1.1 christos { 0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L },
185 1.1 christos { 0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d3a85b5b43c0e727.0p-141L },
186 1.1 christos { 0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L },
187 1.1 christos { 0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L },
188 1.1 christos { 0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa6911c7bafcb4d84fb.0p-141L },
189 1.1 christos { 0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb328337cc050c6d83b22.0p-140L },
190 1.1 christos { 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e5fcf1a212e2a91e.0p-139L },
191 1.1 christos { 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L },
192 1.1 christos { 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a0fe396f40f1dda9.0p-141L },
193 1.1 christos { 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de945a049a962e66c6.0p-139L },
194 1.1 christos { 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L },
195 1.1 christos { 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba46bae9827221dc98.0p-139L },
196 1.1 christos { 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L },
197 1.1 christos { 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L },
198 1.1 christos { 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L },
199 1.1 christos { 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L },
200 1.1 christos { 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb2438273918db7df5c.0p-141L },
201 1.1 christos { 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698298adddd7f32686.0p-141L },
202 1.1 christos { 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L },
203 1.1 christos { 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b263acb4351104631.0p-140L },
204 1.1 christos { 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L },
205 1.1 christos { 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L },
206 1.1 christos { 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770633947ffe651e7352f.0p-139L },
207 1.1 christos { 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L },
208 1.1 christos { 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f088b61a335f5b688c.0p-140L },
209 1.1 christos { 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L },
210 1.1 christos { 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L },
211 1.1 christos { 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L },
212 1.1 christos { 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L },
213 1.1 christos { 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L },
214 1.1 christos { 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L },
215 1.1 christos { 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L },
216 1.1 christos { 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a8717d5626e16acc7d.0p-141L },
217 1.1 christos { 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L },
218 1.1 christos { 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d79f51dcc73014c9.0p-141L },
219 1.1 christos { 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L },
220 1.1 christos { 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L },
221 1.1 christos { 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b610665377f15625b6.0p-140L },
222 1.1 christos { 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a2d1b2176010478be.0p-140L },
223 1.1 christos { 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L },
224 1.1 christos { 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L },
225 1.1 christos { 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f56db28da4d629d00a.0p-140L },
226 1.1 christos { 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L },
227 1.1 christos { 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L },
228 1.1 christos { 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd73692609040ccc2.0p-139L },
229 1.1 christos { 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L },
230 1.1 christos { 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L },
231 1.1 christos { 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d42f78d3e65d3727.0p-141L },
232 1.1 christos { 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af269647b783d88999.0p-139L },
233 1.1 christos { 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L },
234 1.1 christos { 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade02951686d5373aec.0p-139L },
235 1.1 christos { 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1649349630531502.0p-139L },
236 1.1 christos { 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c5320619fb9433d841.0p-139L },
237 1.1 christos { 0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L },
238 1.1 christos { 0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L },
239 1.1 christos { 0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b7d7f47ddb45c5a3.0p-139L },
240 1.1 christos { 0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb82873b04a9af1dd692c.0p-138L },
241 1.1 christos { 0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9b9770d8cb6573540.0p-138L },
242 1.1 christos { 0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f002e836dfd47bd41.0p-139L },
243 1.1 christos { 0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd5cd7cc94306fb3ff.0p-140L },
244 1.1 christos { 0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L },
245 1.1 christos { 0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L },
246 1.1 christos { 0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L },
247 1.1 christos { 0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L },
248 1.1 christos { 0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f76b87333891e0dec4.0p-138L },
249 1.1 christos { 0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L },
250 1.1 christos { 0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L },
251 1.1 christos { 0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L },
252 1.1 christos { 0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d21148c6002becd3.0p-139L },
253 1.1 christos { 0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c336af90e00533323ba.0p-139L },
254 1.1 christos { 0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf2f105a89060046aa.0p-138L },
255 1.1 christos { 0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L },
256 1.1 christos { 0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L },
257 1.1 christos { 0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L },
258 1.1 christos { 0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L },
259 1.1 christos { 0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f9527e6aba8f2d783c1.0p-138L },
260 1.1 christos { 0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe7ba81c664c107e0.0p-138L },
261 1.1 christos { 0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L },
262 1.1 christos { 0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a246726b304ccae56.0p-139L },
263 1.1 christos { 0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L },
264 1.1 christos { 0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f38b4619a2483399.0p-141L },
265 1.1 christos { 0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L },
266 1.1 christos { 0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L },
267 1.1 christos { 0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c008d3602a7b41c6e8.0p-139L },
268 1.1 christos { 0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541aca7d5844606b2421.0p-139L },
269 1.1 christos { 0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4571acbcfb03f16daf4.0p-138L },
270 1.1 christos { 0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c0a345ad743ae1ae.0p-140L },
271 1.1 christos { 0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d749362382a7688479e24.0p-140L },
272 1.1 christos { 0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce532661ea9643a3a2d378.0p-139L },
273 1.1 christos { 0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d257530a682b80490.0p-139L },
274 1.1 christos { 0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L },
275 1.1 christos { 0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3303dd481779df69.0p-139L },
276 1.1 christos { 0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L },
277 1.1 christos { 0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L },
278 1.1 christos { 0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a82ab19f77652d977a.0p-141L },
279 1.1 christos { 0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b48d7b98c1cf7234.0p-138L },
280 1.1 christos { 0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L },
281 1.1 christos { 0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L },
282 1.1 christos };
283 1.1 christos
284 1.1 christos #ifdef USE_UTAB
285 1.1 christos static const struct {
286 1.1 christos float H; /* 1 + i/INTERVALS (exact) */
287 1.1 christos float E; /* H(i) * G(i) - 1 (exact) */
288 1.1 christos } U[TSIZE] = {
289 1.1 christos { 0x800000.0p-23, 0 },
290 1.1 christos { 0x810000.0p-23, -0x800000.0p-37 },
291 1.1 christos { 0x820000.0p-23, -0x800000.0p-35 },
292 1.1 christos { 0x830000.0p-23, -0x900000.0p-34 },
293 1.1 christos { 0x840000.0p-23, -0x800000.0p-33 },
294 1.1 christos { 0x850000.0p-23, -0xc80000.0p-33 },
295 1.1 christos { 0x860000.0p-23, -0xa00000.0p-36 },
296 1.1 christos { 0x870000.0p-23, 0x940000.0p-33 },
297 1.1 christos { 0x880000.0p-23, 0x800000.0p-35 },
298 1.1 christos { 0x890000.0p-23, -0xc80000.0p-34 },
299 1.1 christos { 0x8a0000.0p-23, 0xe00000.0p-36 },
300 1.1 christos { 0x8b0000.0p-23, 0x900000.0p-33 },
301 1.1 christos { 0x8c0000.0p-23, -0x800000.0p-35 },
302 1.1 christos { 0x8d0000.0p-23, -0xe00000.0p-33 },
303 1.1 christos { 0x8e0000.0p-23, 0x880000.0p-33 },
304 1.1 christos { 0x8f0000.0p-23, -0xa80000.0p-34 },
305 1.1 christos { 0x900000.0p-23, -0x800000.0p-35 },
306 1.1 christos { 0x910000.0p-23, 0x800000.0p-37 },
307 1.1 christos { 0x920000.0p-23, 0x900000.0p-35 },
308 1.1 christos { 0x930000.0p-23, 0xd00000.0p-35 },
309 1.1 christos { 0x940000.0p-23, 0xe00000.0p-35 },
310 1.1 christos { 0x950000.0p-23, 0xc00000.0p-35 },
311 1.1 christos { 0x960000.0p-23, 0xe00000.0p-36 },
312 1.1 christos { 0x970000.0p-23, -0x800000.0p-38 },
313 1.1 christos { 0x980000.0p-23, -0xc00000.0p-35 },
314 1.1 christos { 0x990000.0p-23, -0xd00000.0p-34 },
315 1.1 christos { 0x9a0000.0p-23, 0x880000.0p-33 },
316 1.1 christos { 0x9b0000.0p-23, 0xe80000.0p-35 },
317 1.1 christos { 0x9c0000.0p-23, -0x800000.0p-35 },
318 1.1 christos { 0x9d0000.0p-23, 0xb40000.0p-33 },
319 1.1 christos { 0x9e0000.0p-23, 0x880000.0p-34 },
320 1.1 christos { 0x9f0000.0p-23, -0xe00000.0p-35 },
321 1.1 christos { 0xa00000.0p-23, 0x800000.0p-33 },
322 1.1 christos { 0xa10000.0p-23, -0x900000.0p-36 },
323 1.1 christos { 0xa20000.0p-23, -0xb00000.0p-33 },
324 1.1 christos { 0xa30000.0p-23, -0xa00000.0p-36 },
325 1.1 christos { 0xa40000.0p-23, 0x800000.0p-33 },
326 1.1 christos { 0xa50000.0p-23, -0xf80000.0p-35 },
327 1.1 christos { 0xa60000.0p-23, 0x880000.0p-34 },
328 1.1 christos { 0xa70000.0p-23, -0x900000.0p-33 },
329 1.1 christos { 0xa80000.0p-23, -0x800000.0p-35 },
330 1.1 christos { 0xa90000.0p-23, 0x900000.0p-34 },
331 1.1 christos { 0xaa0000.0p-23, 0xa80000.0p-33 },
332 1.1 christos { 0xab0000.0p-23, -0xac0000.0p-34 },
333 1.1 christos { 0xac0000.0p-23, -0x800000.0p-37 },
334 1.1 christos { 0xad0000.0p-23, 0xf80000.0p-35 },
335 1.1 christos { 0xae0000.0p-23, 0xf80000.0p-34 },
336 1.1 christos { 0xaf0000.0p-23, -0xac0000.0p-33 },
337 1.1 christos { 0xb00000.0p-23, -0x800000.0p-33 },
338 1.1 christos { 0xb10000.0p-23, -0xb80000.0p-34 },
339 1.1 christos { 0xb20000.0p-23, -0x800000.0p-34 },
340 1.1 christos { 0xb30000.0p-23, -0xb00000.0p-35 },
341 1.1 christos { 0xb40000.0p-23, -0x800000.0p-35 },
342 1.1 christos { 0xb50000.0p-23, -0xe00000.0p-36 },
343 1.1 christos { 0xb60000.0p-23, -0x800000.0p-35 },
344 1.1 christos { 0xb70000.0p-23, -0xb00000.0p-35 },
345 1.1 christos { 0xb80000.0p-23, -0x800000.0p-34 },
346 1.1 christos { 0xb90000.0p-23, -0xb80000.0p-34 },
347 1.1 christos { 0xba0000.0p-23, -0x800000.0p-33 },
348 1.1 christos { 0xbb0000.0p-23, -0xac0000.0p-33 },
349 1.1 christos { 0xbc0000.0p-23, 0x980000.0p-33 },
350 1.1 christos { 0xbd0000.0p-23, 0xbc0000.0p-34 },
351 1.1 christos { 0xbe0000.0p-23, 0xe00000.0p-36 },
352 1.1 christos { 0xbf0000.0p-23, -0xb80000.0p-35 },
353 1.1 christos { 0xc00000.0p-23, -0x800000.0p-33 },
354 1.1 christos { 0xc10000.0p-23, 0xa80000.0p-33 },
355 1.1 christos { 0xc20000.0p-23, 0x900000.0p-34 },
356 1.1 christos { 0xc30000.0p-23, -0x800000.0p-35 },
357 1.1 christos { 0xc40000.0p-23, -0x900000.0p-33 },
358 1.1 christos { 0xc50000.0p-23, 0x820000.0p-33 },
359 1.1 christos { 0xc60000.0p-23, 0x800000.0p-38 },
360 1.1 christos { 0xc70000.0p-23, -0x820000.0p-33 },
361 1.1 christos { 0xc80000.0p-23, 0x800000.0p-33 },
362 1.1 christos { 0xc90000.0p-23, -0xa00000.0p-36 },
363 1.1 christos { 0xca0000.0p-23, -0xb00000.0p-33 },
364 1.1 christos { 0xcb0000.0p-23, 0x840000.0p-34 },
365 1.1 christos { 0xcc0000.0p-23, -0xd00000.0p-34 },
366 1.1 christos { 0xcd0000.0p-23, 0x800000.0p-33 },
367 1.1 christos { 0xce0000.0p-23, -0xe00000.0p-35 },
368 1.1 christos { 0xcf0000.0p-23, 0xa60000.0p-33 },
369 1.1 christos { 0xd00000.0p-23, -0x800000.0p-35 },
370 1.1 christos { 0xd10000.0p-23, 0xb40000.0p-33 },
371 1.1 christos { 0xd20000.0p-23, -0x800000.0p-35 },
372 1.1 christos { 0xd30000.0p-23, 0xaa0000.0p-33 },
373 1.1 christos { 0xd40000.0p-23, -0xe00000.0p-35 },
374 1.1 christos { 0xd50000.0p-23, 0x880000.0p-33 },
375 1.1 christos { 0xd60000.0p-23, -0xd00000.0p-34 },
376 1.1 christos { 0xd70000.0p-23, 0x9c0000.0p-34 },
377 1.1 christos { 0xd80000.0p-23, -0xb00000.0p-33 },
378 1.1 christos { 0xd90000.0p-23, -0x800000.0p-38 },
379 1.1 christos { 0xda0000.0p-23, 0xa40000.0p-33 },
380 1.1 christos { 0xdb0000.0p-23, -0xdc0000.0p-34 },
381 1.1 christos { 0xdc0000.0p-23, 0xc00000.0p-35 },
382 1.1 christos { 0xdd0000.0p-23, 0xca0000.0p-33 },
383 1.1 christos { 0xde0000.0p-23, -0xb80000.0p-34 },
384 1.1 christos { 0xdf0000.0p-23, 0xd00000.0p-35 },
385 1.1 christos { 0xe00000.0p-23, 0xc00000.0p-33 },
386 1.1 christos { 0xe10000.0p-23, -0xf40000.0p-34 },
387 1.1 christos { 0xe20000.0p-23, 0x800000.0p-37 },
388 1.1 christos { 0xe30000.0p-23, 0x860000.0p-33 },
389 1.1 christos { 0xe40000.0p-23, -0xc80000.0p-33 },
390 1.1 christos { 0xe50000.0p-23, -0xa80000.0p-34 },
391 1.1 christos { 0xe60000.0p-23, 0xe00000.0p-36 },
392 1.1 christos { 0xe70000.0p-23, 0x880000.0p-33 },
393 1.1 christos { 0xe80000.0p-23, -0xe00000.0p-33 },
394 1.1 christos { 0xe90000.0p-23, -0xfc0000.0p-34 },
395 1.1 christos { 0xea0000.0p-23, -0x800000.0p-35 },
396 1.1 christos { 0xeb0000.0p-23, 0xe80000.0p-35 },
397 1.1 christos { 0xec0000.0p-23, 0x900000.0p-33 },
398 1.1 christos { 0xed0000.0p-23, 0xe20000.0p-33 },
399 1.1 christos { 0xee0000.0p-23, -0xac0000.0p-33 },
400 1.1 christos { 0xef0000.0p-23, -0xc80000.0p-34 },
401 1.1 christos { 0xf00000.0p-23, -0x800000.0p-35 },
402 1.1 christos { 0xf10000.0p-23, 0x800000.0p-35 },
403 1.1 christos { 0xf20000.0p-23, 0xb80000.0p-34 },
404 1.1 christos { 0xf30000.0p-23, 0x940000.0p-33 },
405 1.1 christos { 0xf40000.0p-23, 0xc80000.0p-33 },
406 1.1 christos { 0xf50000.0p-23, -0xf20000.0p-33 },
407 1.1 christos { 0xf60000.0p-23, -0xc80000.0p-33 },
408 1.1 christos { 0xf70000.0p-23, -0xa20000.0p-33 },
409 1.1 christos { 0xf80000.0p-23, -0x800000.0p-33 },
410 1.1 christos { 0xf90000.0p-23, -0xc40000.0p-34 },
411 1.1 christos { 0xfa0000.0p-23, -0x900000.0p-34 },
412 1.1 christos { 0xfb0000.0p-23, -0xc80000.0p-35 },
413 1.1 christos { 0xfc0000.0p-23, -0x800000.0p-35 },
414 1.1 christos { 0xfd0000.0p-23, -0x900000.0p-36 },
415 1.1 christos { 0xfe0000.0p-23, -0x800000.0p-37 },
416 1.1 christos { 0xff0000.0p-23, -0x800000.0p-39 },
417 1.1 christos { 0x800000.0p-22, 0 },
418 1.1 christos };
419 1.1 christos #endif /* USE_UTAB */
420 1.1 christos
421 1.1 christos #ifdef STRUCT_RETURN
422 1.1 christos #define RETURN1(rp, v) do { \
423 1.1 christos (rp)->hi = (v); \
424 1.1 christos (rp)->lo_set = 0; \
425 1.1 christos return; \
426 1.1 christos } while (0)
427 1.1 christos
428 1.1 christos #define RETURN2(rp, h, l) do { \
429 1.1 christos (rp)->hi = (h); \
430 1.1 christos (rp)->lo = (l); \
431 1.1 christos (rp)->lo_set = 1; \
432 1.1 christos return; \
433 1.1 christos } while (0)
434 1.1 christos
435 1.1 christos struct ld {
436 1.1 christos long double hi;
437 1.1 christos long double lo;
438 1.1 christos int lo_set;
439 1.1 christos };
440 1.1 christos #else
441 1.1 christos #define RETURN1(rp, v) RETURNF(v)
442 1.1 christos #define RETURN2(rp, h, l) RETURNI((h) + (l))
443 1.1 christos #endif
444 1.1 christos
445 1.1 christos #ifdef STRUCT_RETURN
446 1.1 christos static inline __always_inline void
447 1.1 christos k_logl(long double x, struct ld *rp)
448 1.1 christos #else
449 1.1 christos long double
450 1.1 christos logl(long double x)
451 1.1 christos #endif
452 1.1 christos {
453 1.1 christos long double d, val_hi, val_lo;
454 1.1 christos double dd, dk;
455 1.1 christos uint64_t lx, llx;
456 1.1 christos int i, k;
457 1.1 christos uint16_t hx;
458 1.1 christos
459 1.1 christos EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
460 1.1 christos k = -16383;
461 1.1 christos #if 0 /* Hard to do efficiently. Don't do it until we support all modes. */
462 1.1 christos if (x == 1)
463 1.1 christos RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */
464 1.1 christos #endif
465 1.1 christos if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */
466 1.1 christos if (((hx & 0x7fff) | lx | llx) == 0)
467 1.1 christos RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
468 1.1 christos if (hx != 0)
469 1.1 christos /* log(neg or NaN) = qNaN: */
470 1.1 christos RETURN1(rp, (x - x) / zero);
471 1.1 christos x *= 0x1.0p113; /* subnormal; scale up x */
472 1.1 christos EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
473 1.1 christos k = -16383 - 113;
474 1.1 christos } else if (hx >= 0x7fff)
475 1.1 christos RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */
476 1.1 christos #ifndef STRUCT_RETURN
477 1.1 christos ENTERI();
478 1.1 christos #endif
479 1.1 christos k += hx;
480 1.1 christos dk = k;
481 1.1 christos
482 1.1 christos /* Scale x to be in [1, 2). */
483 1.1 christos SET_LDBL_EXPSIGN(x, 0x3fff);
484 1.1 christos
485 1.1 christos /* 0 <= i <= INTERVALS: */
486 1.1 christos #define L2I (49 - LOG2_INTERVALS)
487 1.1 christos i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
488 1.1 christos
489 1.1 christos /*
490 1.1 christos * -0.005280 < d < 0.004838. In particular, the infinite-
491 1.1 christos * precision |d| is <= 2**-7. Rounding of G(i) to 8 bits
492 1.1 christos * ensures that d is representable without extra precision for
493 1.1 christos * this bound on |d| (since when this calculation is expressed
494 1.1 christos * as x*G(i)-1, the multiplication needs as many extra bits as
495 1.1 christos * G(i) has and the subtraction cancels 8 bits). But for
496 1.1 christos * most i (107 cases out of 129), the infinite-precision |d|
497 1.1 christos * is <= 2**-8. G(i) is rounded to 9 bits for such i to give
498 1.1 christos * better accuracy (this works by improving the bound on |d|,
499 1.1 christos * which in turn allows rounding to 9 bits in more cases).
500 1.1 christos * This is only important when the original x is near 1 -- it
501 1.1 christos * lets us avoid using a special method to give the desired
502 1.1 christos * accuracy for such x.
503 1.1 christos */
504 1.1 christos if (0)
505 1.1 christos d = x * G(i) - 1;
506 1.1 christos else {
507 1.1 christos #ifdef USE_UTAB
508 1.1 christos d = (x - H(i)) * G(i) + E(i);
509 1.1 christos #else
510 1.1 christos long double x_hi;
511 1.1 christos double x_lo;
512 1.1 christos
513 1.1 christos /*
514 1.1 christos * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
515 1.1 christos * G(i) has at most 9 bits, so the splitting point is not
516 1.1 christos * critical.
517 1.1 christos */
518 1.1 christos INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
519 1.1 christos llx & 0xffffffffff000000ULL);
520 1.1 christos x_lo = x - x_hi;
521 1.1 christos d = x_hi * G(i) - 1 + x_lo * G(i);
522 1.1 christos #endif
523 1.1 christos }
524 1.1 christos
525 1.1 christos /*
526 1.1 christos * Our algorithm depends on exact cancellation of F_lo(i) and
527 1.1 christos * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
528 1.1 christos * at the end of the table. This and other technical complications
529 1.1 christos * make it difficult to avoid the double scaling in (dk*ln2) *
530 1.1 christos * log(base) for base != e without losing more accuracy and/or
531 1.1 christos * efficiency than is gained.
532 1.1 christos */
533 1.1 christos /*
534 1.1 christos * Use double precision operations wherever possible, since
535 1.1 christos * long double operations are emulated and were very slow on
536 1.1 christos * the old sparc64 and unknown on the newer aarch64 and riscv
537 1.1 christos * machines. Also, don't try to improve parallelism by
538 1.1 christos * increasing the number of operations, since any parallelism
539 1.1 christos * on such machines is needed for the emulation. Horner's
540 1.1 christos * method is good for this, and is also good for accuracy.
541 1.1 christos * Horner's method doesn't handle the `lo' term well, either
542 1.1 christos * for efficiency or accuracy. However, for accuracy we
543 1.1 christos * evaluate d * d * P2 separately to take advantage of by P2
544 1.1 christos * being exact, and this gives a good place to sum the 'lo'
545 1.1 christos * term too.
546 1.1 christos */
547 1.1 christos dd = (double)d;
548 1.1 christos val_lo = d * d * d * (P3 +
549 1.1 christos d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
550 1.1 christos dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
551 1.1 christos dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2;
552 1.1 christos val_hi = d;
553 1.1 christos #ifdef DEBUG
554 1.1 christos if (fetestexcept(FE_UNDERFLOW))
555 1.1 christos breakpoint();
556 1.1 christos #endif
557 1.1 christos
558 1.1 christos _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
559 1.1 christos RETURN2(rp, val_hi, val_lo);
560 1.1 christos }
561 1.1 christos
562 1.1 christos long double
563 1.1 christos log1pl(long double x)
564 1.1 christos {
565 1.1 christos long double d, d_hi, f_lo, val_hi, val_lo;
566 1.1 christos long double f_hi, twopminusk;
567 1.1 christos double d_lo, dd, dk;
568 1.1 christos uint64_t lx, llx;
569 1.1 christos int i, k;
570 1.1 christos int16_t ax, hx;
571 1.1 christos
572 1.1 christos EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
573 1.1 christos if (hx < 0x3fff) { /* x < 1, or x neg NaN */
574 1.1 christos ax = hx & 0x7fff;
575 1.1 christos if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */
576 1.1 christos if (ax == 0x3fff && (lx | llx) == 0)
577 1.1 christos RETURNF(-1 / zero); /* log1p(-1) = -Inf */
578 1.1 christos /* log1p(x < 1, or x NaN) = qNaN: */
579 1.1 christos RETURNF((x - x) / (x - x));
580 1.1 christos }
581 1.1 christos if (ax <= 0x3f8d) { /* |x| < 2**-113 */
582 1.1 christos if ((int)x == 0)
583 1.1 christos RETURNF(x); /* x with inexact if x != 0 */
584 1.1 christos }
585 1.1 christos f_hi = 1;
586 1.1 christos f_lo = x;
587 1.1 christos } else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */
588 1.1 christos RETURNF(x + x); /* log1p(Inf or NaN) = Inf or qNaN */
589 1.1 christos } else if (hx < 0x40e1) { /* 1 <= x < 2**226 */
590 1.1 christos f_hi = x;
591 1.1 christos f_lo = 1;
592 1.1 christos } else { /* 2**226 <= x < +Inf */
593 1.1 christos f_hi = x;
594 1.1 christos f_lo = 0; /* avoid underflow of the P3 term */
595 1.1 christos }
596 1.1 christos ENTERI();
597 1.1 christos x = f_hi + f_lo;
598 1.1 christos f_lo = (f_hi - x) + f_lo;
599 1.1 christos
600 1.1 christos EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
601 1.1 christos k = -16383;
602 1.1 christos
603 1.1 christos k += hx;
604 1.1 christos dk = k;
605 1.1 christos
606 1.1 christos SET_LDBL_EXPSIGN(x, 0x3fff);
607 1.1 christos twopminusk = 1;
608 1.1 christos SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
609 1.1 christos f_lo *= twopminusk;
610 1.1 christos
611 1.1 christos i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
612 1.1 christos
613 1.1 christos /*
614 1.1 christos * x*G(i)-1 (with a reduced x) can be represented exactly, as
615 1.1 christos * above, but now we need to evaluate the polynomial on d =
616 1.1 christos * (x+f_lo)*G(i)-1 and extra precision is needed for that.
617 1.1 christos * Since x+x_lo is a hi+lo decomposition and subtracting 1
618 1.1 christos * doesn't lose too many bits, an inexact calculation for
619 1.1 christos * f_lo*G(i) is good enough.
620 1.1 christos */
621 1.1 christos if (0)
622 1.1 christos d_hi = x * G(i) - 1;
623 1.1 christos else {
624 1.1 christos #ifdef USE_UTAB
625 1.1 christos d_hi = (x - H(i)) * G(i) + E(i);
626 1.1 christos #else
627 1.1 christos long double x_hi;
628 1.1 christos double x_lo;
629 1.1 christos
630 1.1 christos INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
631 1.1 christos llx & 0xffffffffff000000ULL);
632 1.1 christos x_lo = x - x_hi;
633 1.1 christos d_hi = x_hi * G(i) - 1 + x_lo * G(i);
634 1.1 christos #endif
635 1.1 christos }
636 1.1 christos d_lo = f_lo * G(i);
637 1.1 christos
638 1.1 christos /*
639 1.1 christos * This is _2sumF(d_hi, d_lo) inlined. The condition
640 1.1 christos * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
641 1.1 christos * always satisifed, so it is not clear that this works, but
642 1.1 christos * it works in practice. It works even if it gives a wrong
643 1.1 christos * normalized d_lo, since |d_lo| > |d_hi| implies that i is
644 1.1 christos * nonzero and d is tiny, so the F(i) term dominates d_lo.
645 1.1 christos * In float precision:
646 1.1 christos * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
647 1.1 christos * And if d is only a little tinier than that, we would have
648 1.1 christos * another underflow problem for the P3 term; this is also ruled
649 1.1 christos * out by exhaustive testing.)
650 1.1 christos */
651 1.1 christos d = d_hi + d_lo;
652 1.1 christos d_lo = d_hi - d + d_lo;
653 1.1 christos d_hi = d;
654 1.1 christos
655 1.1 christos dd = (double)d;
656 1.1 christos val_lo = d * d * d * (P3 +
657 1.1 christos d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
658 1.1 christos dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
659 1.1 christos dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2;
660 1.1 christos val_hi = d_hi;
661 1.1 christos #ifdef DEBUG
662 1.1 christos if (fetestexcept(FE_UNDERFLOW))
663 1.1 christos breakpoint();
664 1.1 christos #endif
665 1.1 christos
666 1.1 christos _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
667 1.1 christos RETURNI(val_hi + val_lo);
668 1.1 christos }
669 1.1 christos
670 1.1 christos #ifdef STRUCT_RETURN
671 1.1 christos
672 1.1 christos long double
673 1.1 christos logl(long double x)
674 1.1 christos {
675 1.1 christos struct ld r;
676 1.1 christos
677 1.1 christos ENTERI();
678 1.1 christos k_logl(x, &r);
679 1.1 christos RETURNSPI(&r);
680 1.1 christos }
681 1.1 christos
682 1.1 christos /*
683 1.1 christos * 29+113 bit decompositions. The bits are distributed so that the products
684 1.1 christos * of the hi terms are exact in double precision. The types are chosen so
685 1.1 christos * that the products of the hi terms are done in at least double precision,
686 1.1 christos * without any explicit conversions. More natural choices would require a
687 1.1 christos * slow long double precision multiplication.
688 1.1 christos */
689 1.1 christos static const double
690 1.1 christos invln10_hi = 4.3429448176175356e-1, /* 0x1bcb7b15000000.0p-54 */
691 1.1 christos invln2_hi = 1.4426950402557850e0; /* 0x17154765000000.0p-52 */
692 1.1 christos static const long double
693 1.1 christos invln10_lo = 1.41498268538580090791605082294397000e-10L, /* 0x137287195355baaafad33dc323ee3.0p-145L */
694 1.1 christos invln2_lo = 6.33178418956604368501892137426645911e-10L, /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
695 1.1 christos invln10_lo_plus_hi = invln10_lo + invln10_hi,
696 1.1 christos invln2_lo_plus_hi = invln2_lo + invln2_hi;
697 1.1 christos
698 1.1 christos long double
699 1.1 christos log10l(long double x)
700 1.1 christos {
701 1.1 christos struct ld r;
702 1.1 christos long double hi, lo;
703 1.1 christos
704 1.1 christos ENTERI();
705 1.1 christos k_logl(x, &r);
706 1.1 christos if (!r.lo_set)
707 1.1 christos RETURNI(r.hi);
708 1.1 christos _2sumF(r.hi, r.lo);
709 1.1 christos hi = (float)r.hi;
710 1.1 christos lo = r.lo + (r.hi - hi);
711 1.1 christos RETURNI(invln10_hi * hi + (invln10_lo_plus_hi * lo + invln10_lo * hi));
712 1.1 christos }
713 1.1 christos
714 1.1 christos long double
715 1.1 christos log2l(long double x)
716 1.1 christos {
717 1.1 christos struct ld r;
718 1.1 christos long double hi, lo;
719 1.1 christos
720 1.1 christos ENTERI();
721 1.1 christos k_logl(x, &r);
722 1.1 christos if (!r.lo_set)
723 1.1 christos RETURNI(r.hi);
724 1.1 christos _2sumF(r.hi, r.lo);
725 1.1 christos hi = (float)r.hi;
726 1.1 christos lo = r.lo + (r.hi - hi);
727 1.1 christos RETURNI(invln2_hi * hi + (invln2_lo_plus_hi * lo + invln2_lo * hi));
728 1.1 christos }
729 1.1 christos
730 1.1 christos #endif /* STRUCT_RETURN */
731