Home | History | Annotate | Line # | Download | only in ld80
      1 /*-
      2  * SPDX-License-Identifier: BSD-3-Clause
      3  *
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * The original code, FreeBSD's old svn r93211, contain the following
     34  * attribution:
     35  *
     36  *    This code by P. McIlroy, Oct 1992;
     37  *
     38  *    The financial support of UUNET Communications Services is greatfully
     39  *    acknowledged.
     40  *
     41  * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
     42  */
     43 
     44 #include <sys/cdefs.h>
     45 
     46 /*
     47  * See bsdsrc/t_tgamma.c for implementation details.
     48  */
     49 
     50 #include <float.h>
     51 
     52 #if LDBL_MAX_EXP != 0x4000
     53 #error "Unsupported long double format"
     54 #endif
     55 
     56 #include "math.h"
     57 #include "math_private.h"
     58 
     59 /* Used in b_log.c and below. */
     60 struct LDouble {
     61 	long double a;
     62 	long double b;
     63 };
     64 
     65 #include "b_logl.c"
     66 #include "b_expl.c"
     67 
     68 static const double zero = 0.;
     69 static const volatile double tiny = 1e-300;
     70 /*
     71  * x >= 6
     72  *
     73  * Use the asymptotic approximation (Stirling's formula) adjusted for
     74  * equal-ripples:
     75  *
     76  * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
     77  *
     78  * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
     79  * premature round-off.
     80  *
     81  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
     82  */
     83 
     84 /*
     85  * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
     86  * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo.  The
     87  * variables are clearly misnamed.
     88  */
     89 static const union ieee_ext_u
     90 ln2pi_hiu = LD80C(0xd680000000000000,  -2,  4.18945312500000000000e-01L),
     91 ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
     92 #define	ln2pi_hi	(ln2pi_hiu.extu_ld)
     93 #define	ln2pi_lo	(ln2pi_lou.extu_ld)
     94 
     95 static const union ieee_ext_u
     96     Pa0u = LD80C(0xaaaaaaaaaaaaaaaa,  -4,  8.33333333333333333288e-02L),
     97     Pa1u = LD80C(0xb60b60b60b5fcd59,  -9, -2.77777777777776516326e-03L),
     98     Pa2u = LD80C(0xd00d00cffbb47014, -11,  7.93650793635429639018e-04L),
     99     Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
    100     Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11,  8.41749082509607342883e-04L),
    101     Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
    102     Pa6u = LD80C(0xd15a4ba04078d3f8,  -8,  6.38893788027752396194e-03L),
    103     Pa7u = LD80C(0xe877283110bcad95,  -6, -2.83771309846297590312e-02L),
    104     Pa8u = LD80C(0x8da97eed13717af8,  -3,  1.38341887683837576925e-01L),
    105     Pa9u = LD80C(0xf093b1c1584e30ce,  -2, -4.69876818515470146031e-01L);
    106 #define	Pa0	(Pa0u.extu_ld)
    107 #define	Pa1	(Pa1u.extu_ld)
    108 #define	Pa2	(Pa2u.extu_ld)
    109 #define	Pa3	(Pa3u.extu_ld)
    110 #define	Pa4	(Pa4u.extu_ld)
    111 #define	Pa5	(Pa5u.extu_ld)
    112 #define	Pa6	(Pa6u.extu_ld)
    113 #define	Pa7	(Pa7u.extu_ld)
    114 #define	Pa8	(Pa8u.extu_ld)
    115 #define	Pa9	(Pa9u.extu_ld)
    116 
    117 static struct LDouble
    118 large_gam(long double x)
    119 {
    120 	long double p, z, thi, tlo, xhi, xlo;
    121 	struct LDouble u;
    122 
    123 	z = 1 / (x * x);
    124 	p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
    125 	    z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
    126 	p = p / x;
    127 
    128 	u = __log__LD(x);
    129 	u.a -= 1;
    130 
    131 	/* Split (x - 0.5) in high and low parts. */
    132 	x -= 0.5L;
    133 	xhi = (float)x;
    134 	xlo = x - xhi;
    135 
    136 	/* Compute  t = (x-.5)*(log(x)-1) in extra precision. */
    137 	thi = xhi * u.a;
    138 	tlo = xlo * u.a + x * u.b;
    139 
    140 	/* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
    141 	tlo += ln2pi_lo;
    142 	tlo += p;
    143 	u.a = ln2pi_hi + tlo;
    144 	u.a += thi;
    145 	u.b = thi - u.a;
    146 	u.b += ln2pi_hi;
    147 	u.b += tlo;
    148 	return (u);
    149 }
    150 /*
    151  * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
    152  * [1.066.., 2.066..] accurate to 4.25e-19.
    153  *
    154  * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
    155  */
    156 static const union ieee_ext_u
    157     a0_hiu = LD80C(0xe2b6e4153a57746c,  -1, 8.85603194410888700265e-01L),
    158     a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
    159 #define	a0_hi	(a0_hiu.extu_ld)
    160 #define	a0_lo	(a0_lou.extu_ld)
    161 
    162 static const union ieee_ext_u
    163 P0u = LD80C(0xdb629fb9bbdc1c1d,    -2,  4.28486815855585429733e-01L),
    164 P1u = LD80C(0xe6f4f9f5641aa6be,    -3,  2.25543885805587730552e-01L),
    165 P2u = LD80C(0xead1bd99fdaf7cc1,    -6,  2.86644652514293482381e-02L),
    166 P3u = LD80C(0x9ccc8b25838ab1e0,    -8,  4.78512567772456362048e-03L),
    167 P4u = LD80C(0x8f0c4383ef9ce72a,    -9,  2.18273781132301146458e-03L),
    168 P5u = LD80C(0xe732ab2c0a2778da,   -13,  2.20487522485636008928e-04L),
    169 P6u = LD80C(0xce70b27ca822b297,   -16,  2.46095923774929264284e-05L),
    170 P7u = LD80C(0xa309e2e16fb63663,   -19,  2.42946473022376182921e-06L),
    171 P8u = LD80C(0xaf9c110efb2c633d,   -23,  1.63549217667765869987e-07L),
    172 Q1u = LD80C(0xd4d7422719f48f15,    -1,  8.31409582658993993626e-01L),
    173 Q2u = LD80C(0xe13138ea404f1268,    -5, -5.49785826915643198508e-02L),
    174 Q3u = LD80C(0xd1c6cc91989352c0,    -4, -1.02429960435139887683e-01L),
    175 Q4u = LD80C(0xa7e9435a84445579,    -7,  1.02484853505908820524e-02L),
    176 Q5u = LD80C(0x83c7c34db89b7bda,    -8,  4.02161632832052872697e-03L),
    177 Q6u = LD80C(0xbed06bf6e1c14e5b,   -11, -7.27898206351223022157e-04L),
    178 Q7u = LD80C(0xef05bf841d4504c0,   -18,  7.12342421869453515194e-06L),
    179 Q8u = LD80C(0xf348d08a1ff53cb1,   -19,  3.62522053809474067060e-06L);
    180 #define	P0	(P0u.extu_ld)
    181 #define	P1	(P1u.extu_ld)
    182 #define	P2	(P2u.extu_ld)
    183 #define	P3	(P3u.extu_ld)
    184 #define	P4	(P4u.extu_ld)
    185 #define	P5	(P5u.extu_ld)
    186 #define	P6	(P6u.extu_ld)
    187 #define	P7	(P7u.extu_ld)
    188 #define	P8	(P8u.extu_ld)
    189 #define	Q1	(Q1u.extu_ld)
    190 #define	Q2	(Q2u.extu_ld)
    191 #define	Q3	(Q3u.extu_ld)
    192 #define	Q4	(Q4u.extu_ld)
    193 #define	Q5	(Q5u.extu_ld)
    194 #define	Q6	(Q6u.extu_ld)
    195 #define	Q7	(Q7u.extu_ld)
    196 #define	Q8	(Q8u.extu_ld)
    197 
    198 static struct LDouble
    199 ratfun_gam(long double z, long double c)
    200 {
    201 	long double p, q, thi, tlo;
    202 	struct LDouble r;
    203 
    204 	q = 1  + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
    205 	    z * (Q6 + z * (Q7 + z * Q8)))))));
    206 	p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
    207 	    z * (P6 + z * (P7 + z * P8)))))));
    208 	p = p / q;
    209 
    210 	/* Split z into high and low parts. */
    211 	thi = (float)z;
    212 	tlo = (z - thi) + c;
    213 	tlo *= (thi + z);
    214 
    215 	/* Split (z+c)^2 into high and low parts. */
    216 	thi *= thi;
    217 	q = thi;
    218 	thi = (float)thi;
    219 	tlo += (q - thi);
    220 
    221 	/* Split p/q into high and low parts. */
    222 	r.a = (float)p;
    223 	r.b = p - r.a;
    224 
    225 	tlo = tlo * p + thi * r.b + a0_lo;
    226 	thi *= r.a;				/* t = (z+c)^2*(P/Q) */
    227 	r.a = (float)(thi + a0_hi);
    228 	r.b = ((a0_hi - r.a) + thi) + tlo;
    229 	return (r);				/* r = a0 + t */
    230 }
    231 /*
    232  * x < 6
    233  *
    234  * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
    235  * 2.066124].  Use a rational approximation centered at the minimum
    236  * (x0+1) to ensure monotonicity.
    237  *
    238  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
    239  * It also has correct monotonicity.
    240  */
    241 static const union ieee_ext_u
    242   xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
    243 #define	x0	(xm1u.extu_ld)
    244 
    245 static const double
    246     left = -0.3955078125;	/* left boundary for rat. approx */
    247 
    248 static long double
    249 small_gam(long double x)
    250 {
    251 	long double t, y, ym1;
    252 	struct LDouble yy, r;
    253 
    254 	y = x - 1;
    255 
    256 	if (y <= 1 + (left + x0)) {
    257 		yy = ratfun_gam(y - x0, 0);
    258 		return (yy.a + yy.b);
    259 	}
    260 
    261 	r.a = (float)y;
    262 	yy.a = r.a - 1;
    263 	y = y - 1 ;
    264 	r.b = yy.b = y - yy.a;
    265 
    266 	/* Argument reduction: G(x+1) = x*G(x) */
    267 	for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
    268 		t = r.a * yy.a;
    269 		r.b = r.a * yy.b + y * r.b;
    270 		r.a = (float)t;
    271 		r.b += (t - r.a);
    272 	}
    273 
    274 	/* Return r*tgamma(y). */
    275 	yy = ratfun_gam(y - x0, 0);
    276 	y = r.b * (yy.a + yy.b) + r.a * yy.b;
    277 	y += yy.a * r.a;
    278 	return (y);
    279 }
    280 /*
    281  * Good on (0, 1+x0+left].  Accurate to 1 ulp.
    282  */
    283 static long double
    284 smaller_gam(long double x)
    285 {
    286 	long double d, t, xhi, xlo;
    287 	struct LDouble r;
    288 
    289 	if (x < x0 + left) {
    290 		t = (float)x;
    291 		d = (t + x) * (x - t);
    292 		t *= t;
    293 		xhi = (float)(t + x);
    294 		xlo = x - xhi;
    295 		xlo += t;
    296 		xlo += d;
    297 		t = 1 - x0;
    298 		t += x;
    299 		d = 1 - x0;
    300 		d -= t;
    301 		d += x;
    302 		x = xhi + xlo;
    303 	} else {
    304 		xhi = (float)x;
    305 		xlo = x - xhi;
    306 		t = x - x0;
    307 		d = - x0 - t;
    308 		d += x;
    309 	}
    310 
    311 	r = ratfun_gam(t, d);
    312 	d = (float)(r.a / x);
    313 	r.a -= d * xhi;
    314 	r.a -= d * xlo;
    315 	r.a += r.b;
    316 
    317 	return (d + r.a / x);
    318 }
    319 /*
    320  * x < 0
    321  *
    322  * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
    323  * At negative integers, return NaN and raise invalid.
    324  */
    325 static const union ieee_ext_u
    326 piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
    327 #define	pi	(piu.extu_ld)
    328 
    329 static long double
    330 neg_gam(long double x)
    331 {
    332 	int sgn = 1;
    333 	long double y, z;
    334 
    335 	y = ceill(x);
    336 	if (y == x)		/* Negative integer. */
    337 		return ((x - x) / zero);
    338 
    339 	z = y - x;
    340 	if (z > 0.5)
    341 		z = 1 - z;
    342 
    343 	y = y / 2;
    344 	if (y == ceill(y))
    345 		sgn = -1;
    346 
    347 	if (z < 0.25)
    348 		z = sinpil(z);
    349 	else
    350 		z = cospil(0.5 - z);
    351 
    352 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
    353 	if (x < -1753) {
    354 
    355 		if (x < -1760)
    356 			return (sgn * tiny * tiny);
    357 		y = expl(lgammal(x) / 2);
    358 		y *= y;
    359 		return (sgn < 0 ? -y : y);
    360 	}
    361 
    362 
    363 	y = 1 - x;
    364 	if (1 - y == x)
    365 		y = tgammal(y);
    366 	else		/* 1-x is inexact */
    367 		y = - x * tgammal(-x);
    368 
    369 	if (sgn < 0) y = -y;
    370 	return (pi / (y * z));
    371 }
    372 /*
    373  * xmax comes from lgamma(xmax) - emax * log(2) = 0.
    374  * static const float  xmax = 35.040095f
    375  * static const double xmax = 171.624376956302725;
    376  * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
    377  * ld128: 1.75554834290446291700388921607020320e+03L,
    378  *
    379  * iota is a sloppy threshold to isolate x = 0.
    380  */
    381 static const double xmax = 1755.54834290446291689;
    382 static const double iota = 0x1p-116;
    383 
    384 long double
    385 tgammal(long double x)
    386 {
    387 	struct LDouble u;
    388 
    389 	ENTERI();
    390 
    391 	if (x >= 6) {
    392 		if (x > xmax)
    393 			RETURNI(x / zero);
    394 		u = large_gam(x);
    395 		RETURNI(__exp__LD(u.a, u.b));
    396 	}
    397 
    398 	if (x >= 1 + left + x0)
    399 		RETURNI(small_gam(x));
    400 
    401 	if (x > iota)
    402 		RETURNI(smaller_gam(x));
    403 
    404 	if (x > -iota) {
    405 		if (x != 0)
    406 			u.a = 1 - tiny;	/* raise inexact */
    407 		RETURNI(1 / x);
    408 	}
    409 
    410 	if (!isfinite(x))
    411 		RETURNI(x - x);		/* x is NaN or -Inf */
    412 
    413 	RETURNI(neg_gam(x));
    414 }
    415