1 1.1 christos /*- 2 1.1 christos * Copyright (c) 2008 Stephen L. Moshier <steve (at) moshier.net> 3 1.1 christos * 4 1.1 christos * Permission to use, copy, modify, and distribute this software for any 5 1.1 christos * purpose with or without fee is hereby granted, provided that the above 6 1.1 christos * copyright notice and this permission notice appear in all copies. 7 1.1 christos * 8 1.1 christos * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 1.1 christos * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 1.1 christos * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 1.1 christos * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 1.1 christos * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 1.1 christos * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 1.1 christos * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 1.1 christos */ 16 1.1 christos 17 1.1 christos #include <sys/cdefs.h> 18 1.1 christos #include <math.h> 19 1.1 christos 20 1.1 christos #include "math_private.h" 21 1.1 christos 22 1.1 christos /* 23 1.1 christos * Polynomial evaluator: 24 1.1 christos * P[0] x^n + P[1] x^(n-1) + ... + P[n] 25 1.1 christos */ 26 1.1 christos static inline long double 27 1.1 christos __polevll(long double x, long double *PP, int n) 28 1.1 christos { 29 1.1 christos long double y; 30 1.1 christos long double *P; 31 1.1 christos 32 1.1 christos P = PP; 33 1.1 christos y = *P++; 34 1.1 christos do { 35 1.1 christos y = y * x + *P++; 36 1.1 christos } while (--n); 37 1.1 christos 38 1.1 christos return (y); 39 1.1 christos } 40 1.1 christos 41 1.1 christos /* 42 1.1 christos * Polynomial evaluator: 43 1.1 christos * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] 44 1.1 christos */ 45 1.1 christos static inline long double 46 1.1 christos __p1evll(long double x, long double *PP, int n) 47 1.1 christos { 48 1.1 christos long double y; 49 1.1 christos long double *P; 50 1.1 christos 51 1.1 christos P = PP; 52 1.1 christos n -= 1; 53 1.1 christos y = x + *P++; 54 1.1 christos do { 55 1.1 christos y = y * x + *P++; 56 1.1 christos } while (--n); 57 1.1 christos 58 1.1 christos return (y); 59 1.1 christos } 60 1.1 christos 61 1.1 christos /* powl.c 62 1.1 christos * 63 1.1 christos * Power function, long double precision 64 1.1 christos * 65 1.1 christos * 66 1.1 christos * 67 1.1 christos * SYNOPSIS: 68 1.1 christos * 69 1.1 christos * long double x, y, z, powl(); 70 1.1 christos * 71 1.1 christos * z = powl( x, y ); 72 1.1 christos * 73 1.1 christos * 74 1.1 christos * 75 1.1 christos * DESCRIPTION: 76 1.1 christos * 77 1.1 christos * Computes x raised to the yth power. Analytically, 78 1.1 christos * 79 1.1 christos * x**y = exp( y log(x) ). 80 1.1 christos * 81 1.1 christos * Following Cody and Waite, this program uses a lookup table 82 1.1 christos * of 2**-i/32 and pseudo extended precision arithmetic to 83 1.1 christos * obtain several extra bits of accuracy in both the logarithm 84 1.1 christos * and the exponential. 85 1.1 christos * 86 1.1 christos * 87 1.1 christos * 88 1.1 christos * ACCURACY: 89 1.1 christos * 90 1.1 christos * The relative error of pow(x,y) can be estimated 91 1.1 christos * by y dl ln(2), where dl is the absolute error of 92 1.1 christos * the internally computed base 2 logarithm. At the ends 93 1.1 christos * of the approximation interval the logarithm equal 1/32 94 1.1 christos * and its relative error is about 1 lsb = 1.1e-19. Hence 95 1.1 christos * the predicted relative error in the result is 2.3e-21 y . 96 1.1 christos * 97 1.1 christos * Relative error: 98 1.1 christos * arithmetic domain # trials peak rms 99 1.1 christos * 100 1.1 christos * IEEE +-1000 40000 2.8e-18 3.7e-19 101 1.1 christos * .001 < x < 1000, with log(x) uniformly distributed. 102 1.1 christos * -1000 < y < 1000, y uniformly distributed. 103 1.1 christos * 104 1.1 christos * IEEE 0,8700 60000 6.5e-18 1.0e-18 105 1.1 christos * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. 106 1.1 christos * 107 1.1 christos * 108 1.1 christos * ERROR MESSAGES: 109 1.1 christos * 110 1.1 christos * message condition value returned 111 1.1 christos * pow overflow x**y > MAXNUM INFINITY 112 1.1 christos * pow underflow x**y < 1/MAXNUM 0.0 113 1.1 christos * pow domain x<0 and y noninteger 0.0 114 1.1 christos * 115 1.1 christos */ 116 1.1 christos 117 1.1 christos #include <sys/cdefs.h> 118 1.1 christos #include <float.h> 119 1.1 christos #include <math.h> 120 1.1 christos 121 1.1 christos #include "math_private.h" 122 1.1 christos 123 1.1 christos /* Table size */ 124 1.1 christos #define NXT 32 125 1.1 christos /* log2(Table size) */ 126 1.1 christos #define LNXT 5 127 1.1 christos 128 1.1 christos /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) 129 1.1 christos * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 130 1.1 christos */ 131 1.1 christos static long double P[] = { 132 1.1 christos 8.3319510773868690346226E-4L, 133 1.1 christos 4.9000050881978028599627E-1L, 134 1.1 christos 1.7500123722550302671919E0L, 135 1.1 christos 1.4000100839971580279335E0L, 136 1.1 christos }; 137 1.1 christos static long double Q[] = { 138 1.1 christos /* 1.0000000000000000000000E0L,*/ 139 1.1 christos 5.2500282295834889175431E0L, 140 1.1 christos 8.4000598057587009834666E0L, 141 1.1 christos 4.2000302519914740834728E0L, 142 1.1 christos }; 143 1.1 christos /* A[i] = 2^(-i/32), rounded to IEEE long double precision. 144 1.1 christos * If i is even, A[i] + B[i/2] gives additional accuracy. 145 1.1 christos */ 146 1.1 christos static long double A[33] = { 147 1.1 christos 1.0000000000000000000000E0L, 148 1.1 christos 9.7857206208770013448287E-1L, 149 1.1 christos 9.5760328069857364691013E-1L, 150 1.1 christos 9.3708381705514995065011E-1L, 151 1.1 christos 9.1700404320467123175367E-1L, 152 1.1 christos 8.9735453750155359320742E-1L, 153 1.1 christos 8.7812608018664974155474E-1L, 154 1.1 christos 8.5930964906123895780165E-1L, 155 1.1 christos 8.4089641525371454301892E-1L, 156 1.1 christos 8.2287773907698242225554E-1L, 157 1.1 christos 8.0524516597462715409607E-1L, 158 1.1 christos 7.8799042255394324325455E-1L, 159 1.1 christos 7.7110541270397041179298E-1L, 160 1.1 christos 7.5458221379671136985669E-1L, 161 1.1 christos 7.3841307296974965571198E-1L, 162 1.1 christos 7.2259040348852331001267E-1L, 163 1.1 christos 7.0710678118654752438189E-1L, 164 1.1 christos 6.9195494098191597746178E-1L, 165 1.1 christos 6.7712777346844636413344E-1L, 166 1.1 christos 6.6261832157987064729696E-1L, 167 1.1 christos 6.4841977732550483296079E-1L, 168 1.1 christos 6.3452547859586661129850E-1L, 169 1.1 christos 6.2092890603674202431705E-1L, 170 1.1 christos 6.0762367999023443907803E-1L, 171 1.1 christos 5.9460355750136053334378E-1L, 172 1.1 christos 5.8186242938878875689693E-1L, 173 1.1 christos 5.6939431737834582684856E-1L, 174 1.1 christos 5.5719337129794626814472E-1L, 175 1.1 christos 5.4525386633262882960438E-1L, 176 1.1 christos 5.3357020033841180906486E-1L, 177 1.1 christos 5.2213689121370692017331E-1L, 178 1.1 christos 5.1094857432705833910408E-1L, 179 1.1 christos 5.0000000000000000000000E-1L, 180 1.1 christos }; 181 1.1 christos static long double B[17] = { 182 1.1 christos 0.0000000000000000000000E0L, 183 1.1 christos 2.6176170809902549338711E-20L, 184 1.1 christos -1.0126791927256478897086E-20L, 185 1.1 christos 1.3438228172316276937655E-21L, 186 1.1 christos 1.2207982955417546912101E-20L, 187 1.1 christos -6.3084814358060867200133E-21L, 188 1.1 christos 1.3164426894366316434230E-20L, 189 1.1 christos -1.8527916071632873716786E-20L, 190 1.1 christos 1.8950325588932570796551E-20L, 191 1.1 christos 1.5564775779538780478155E-20L, 192 1.1 christos 6.0859793637556860974380E-21L, 193 1.1 christos -2.0208749253662532228949E-20L, 194 1.1 christos 1.4966292219224761844552E-20L, 195 1.1 christos 3.3540909728056476875639E-21L, 196 1.1 christos -8.6987564101742849540743E-22L, 197 1.1 christos -1.2327176863327626135542E-20L, 198 1.1 christos 0.0000000000000000000000E0L, 199 1.1 christos }; 200 1.1 christos 201 1.1 christos /* 2^x = 1 + x P(x), 202 1.1 christos * on the interval -1/32 <= x <= 0 203 1.1 christos */ 204 1.1 christos static long double R[] = { 205 1.1 christos 1.5089970579127659901157E-5L, 206 1.1 christos 1.5402715328927013076125E-4L, 207 1.1 christos 1.3333556028915671091390E-3L, 208 1.1 christos 9.6181291046036762031786E-3L, 209 1.1 christos 5.5504108664798463044015E-2L, 210 1.1 christos 2.4022650695910062854352E-1L, 211 1.1 christos 6.9314718055994530931447E-1L, 212 1.1 christos }; 213 1.1 christos 214 1.1 christos #define douba(k) A[k] 215 1.1 christos #define doubb(k) B[k] 216 1.1 christos #define MEXP (NXT*16384.0L) 217 1.1 christos /* The following if denormal numbers are supported, else -MEXP: */ 218 1.1 christos #define MNEXP (-NXT*(16384.0L+64.0L)) 219 1.1 christos /* log2(e) - 1 */ 220 1.1 christos #define LOG2EA 0.44269504088896340735992L 221 1.1 christos 222 1.1 christos #define F W 223 1.1 christos #define Fa Wa 224 1.1 christos #define Fb Wb 225 1.1 christos #define G W 226 1.1 christos #define Ga Wa 227 1.1 christos #define Gb u 228 1.1 christos #define H W 229 1.1 christos #define Ha Wb 230 1.1 christos #define Hb Wb 231 1.1 christos 232 1.1 christos static const long double MAXLOGL = 1.1356523406294143949492E4L; 233 1.1 christos static const long double MINLOGL = -1.13994985314888605586758E4L; 234 1.1 christos static const long double LOGE2L = 6.9314718055994530941723E-1L; 235 1.1 christos static volatile long double z; 236 1.1 christos static long double w, W, Wa, Wb, ya, yb, u; 237 1.1 christos static const long double huge = 0x1p10000L; 238 1.1 christos #if 0 /* XXX Prevent gcc from erroneously constant folding this. */ 239 1.1 christos static const long double twom10000 = 0x1p-10000L; 240 1.1 christos #else 241 1.1 christos static volatile long double twom10000 = 0x1p-10000L; 242 1.1 christos #endif 243 1.1 christos 244 1.1 christos static long double reducl( long double ); 245 1.1 christos static long double powil ( long double, int ); 246 1.1 christos 247 1.1 christos long double 248 1.1 christos powl(long double x, long double y) 249 1.1 christos { 250 1.1 christos /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ 251 1.1 christos int i, nflg, iyflg, yoddint; 252 1.1 christos long e; 253 1.1 christos 254 1.1 christos if( y == 0.0L ) 255 1.1 christos return( 1.0L ); 256 1.1 christos 257 1.1 christos if( x == 1.0L ) 258 1.1 christos return( 1.0L ); 259 1.1 christos 260 1.1 christos if( isnan(x) ) 261 1.1 christos return ( nan_mix(x, y) ); 262 1.1 christos if( isnan(y) ) 263 1.1 christos return ( nan_mix(x, y) ); 264 1.1 christos 265 1.1 christos if( y == 1.0L ) 266 1.1 christos return( x ); 267 1.1 christos 268 1.1 christos if( !isfinite(y) && x == -1.0L ) 269 1.1 christos return( 1.0L ); 270 1.1 christos 271 1.1 christos if( y >= LDBL_MAX ) 272 1.1 christos { 273 1.1 christos if( x > 1.0L ) 274 1.1 christos return( INFINITY ); 275 1.1 christos if( x > 0.0L && x < 1.0L ) 276 1.1 christos return( 0.0L ); 277 1.1 christos if( x < -1.0L ) 278 1.1 christos return( INFINITY ); 279 1.1 christos if( x > -1.0L && x < 0.0L ) 280 1.1 christos return( 0.0L ); 281 1.1 christos } 282 1.1 christos if( y <= -LDBL_MAX ) 283 1.1 christos { 284 1.1 christos if( x > 1.0L ) 285 1.1 christos return( 0.0L ); 286 1.1 christos if( x > 0.0L && x < 1.0L ) 287 1.1 christos return( INFINITY ); 288 1.1 christos if( x < -1.0L ) 289 1.1 christos return( 0.0L ); 290 1.1 christos if( x > -1.0L && x < 0.0L ) 291 1.1 christos return( INFINITY ); 292 1.1 christos } 293 1.1 christos if( x >= LDBL_MAX ) 294 1.1 christos { 295 1.1 christos if( y > 0.0L ) 296 1.1 christos return( INFINITY ); 297 1.1 christos return( 0.0L ); 298 1.1 christos } 299 1.1 christos 300 1.1 christos w = floorl(y); 301 1.1 christos /* Set iyflg to 1 if y is an integer. */ 302 1.1 christos iyflg = 0; 303 1.1 christos if( w == y ) 304 1.1 christos iyflg = 1; 305 1.1 christos 306 1.1 christos /* Test for odd integer y. */ 307 1.1 christos yoddint = 0; 308 1.1 christos if( iyflg ) 309 1.1 christos { 310 1.1 christos ya = fabsl(y); 311 1.1 christos ya = floorl(0.5L * ya); 312 1.1 christos yb = 0.5L * fabsl(w); 313 1.1 christos if( ya != yb ) 314 1.1 christos yoddint = 1; 315 1.1 christos } 316 1.1 christos 317 1.1 christos if( x <= -LDBL_MAX ) 318 1.1 christos { 319 1.1 christos if( y > 0.0L ) 320 1.1 christos { 321 1.1 christos if( yoddint ) 322 1.1 christos return( -INFINITY ); 323 1.1 christos return( INFINITY ); 324 1.1 christos } 325 1.1 christos if( y < 0.0L ) 326 1.1 christos { 327 1.1 christos if( yoddint ) 328 1.1 christos return( -0.0L ); 329 1.1 christos return( 0.0 ); 330 1.1 christos } 331 1.1 christos } 332 1.1 christos 333 1.1 christos 334 1.1 christos nflg = 0; /* flag = 1 if x<0 raised to integer power */ 335 1.1 christos if( x <= 0.0L ) 336 1.1 christos { 337 1.1 christos if( x == 0.0L ) 338 1.1 christos { 339 1.1 christos if( y < 0.0 ) 340 1.1 christos { 341 1.1 christos if( signbit(x) && yoddint ) 342 1.1 christos return( -INFINITY ); 343 1.1 christos return( INFINITY ); 344 1.1 christos } 345 1.1 christos if( y > 0.0 ) 346 1.1 christos { 347 1.1 christos if( signbit(x) && yoddint ) 348 1.1 christos return( -0.0L ); 349 1.1 christos return( 0.0 ); 350 1.1 christos } 351 1.1 christos if( y == 0.0L ) 352 1.1 christos return( 1.0L ); /* 0**0 */ 353 1.1 christos else 354 1.1 christos return( 0.0L ); /* 0**y */ 355 1.1 christos } 356 1.1 christos else 357 1.1 christos { 358 1.1 christos if( iyflg == 0 ) 359 1.1 christos return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ 360 1.1 christos nflg = 1; 361 1.1 christos } 362 1.1 christos } 363 1.1 christos 364 1.1 christos /* Integer power of an integer. */ 365 1.1 christos 366 1.1 christos if( iyflg ) 367 1.1 christos { 368 1.1 christos i = w; 369 1.1 christos w = floorl(x); 370 1.1 christos if( (w == x) && (fabsl(y) < 32768.0) ) 371 1.1 christos { 372 1.1 christos w = powil( x, (int) y ); 373 1.1 christos return( w ); 374 1.1 christos } 375 1.1 christos } 376 1.1 christos 377 1.1 christos 378 1.1 christos if( nflg ) 379 1.1 christos x = fabsl(x); 380 1.1 christos 381 1.1 christos /* separate significand from exponent */ 382 1.1 christos x = frexpl( x, &i ); 383 1.1 christos e = i; 384 1.1 christos 385 1.1 christos /* find significand in antilog table A[] */ 386 1.1 christos i = 1; 387 1.1 christos if( x <= douba(17) ) 388 1.1 christos i = 17; 389 1.1 christos if( x <= douba(i+8) ) 390 1.1 christos i += 8; 391 1.1 christos if( x <= douba(i+4) ) 392 1.1 christos i += 4; 393 1.1 christos if( x <= douba(i+2) ) 394 1.1 christos i += 2; 395 1.1 christos if( x >= douba(1) ) 396 1.1 christos i = -1; 397 1.1 christos i += 1; 398 1.1 christos 399 1.1 christos 400 1.1 christos /* Find (x - A[i])/A[i] 401 1.1 christos * in order to compute log(x/A[i]): 402 1.1 christos * 403 1.1 christos * log(x) = log( a x/a ) = log(a) + log(x/a) 404 1.1 christos * 405 1.1 christos * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a 406 1.1 christos */ 407 1.1 christos x -= douba(i); 408 1.1 christos x -= doubb(i/2); 409 1.1 christos x /= douba(i); 410 1.1 christos 411 1.1 christos 412 1.1 christos /* rational approximation for log(1+v): 413 1.1 christos * 414 1.1 christos * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) 415 1.1 christos */ 416 1.1 christos z = x*x; 417 1.1 christos w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) ); 418 1.1 christos w = w - ldexpl( z, -1 ); /* w - 0.5 * z */ 419 1.1 christos 420 1.1 christos /* Convert to base 2 logarithm: 421 1.1 christos * multiply by log2(e) = 1 + LOG2EA 422 1.1 christos */ 423 1.1 christos z = LOG2EA * w; 424 1.1 christos z += w; 425 1.1 christos z += LOG2EA * x; 426 1.1 christos z += x; 427 1.1 christos 428 1.1 christos /* Compute exponent term of the base 2 logarithm. */ 429 1.1 christos w = -i; 430 1.1 christos w = ldexpl( w, -LNXT ); /* divide by NXT */ 431 1.1 christos w += e; 432 1.1 christos /* Now base 2 log of x is w + z. */ 433 1.1 christos 434 1.1 christos /* Multiply base 2 log by y, in extended precision. */ 435 1.1 christos 436 1.1 christos /* separate y into large part ya 437 1.1 christos * and small part yb less than 1/NXT 438 1.1 christos */ 439 1.1 christos ya = reducl(y); 440 1.1 christos yb = y - ya; 441 1.1 christos 442 1.1 christos /* (w+z)(ya+yb) 443 1.1 christos * = w*ya + w*yb + z*y 444 1.1 christos */ 445 1.1 christos F = z * y + w * yb; 446 1.1 christos Fa = reducl(F); 447 1.1 christos Fb = F - Fa; 448 1.1 christos 449 1.1 christos G = Fa + w * ya; 450 1.1 christos Ga = reducl(G); 451 1.1 christos Gb = G - Ga; 452 1.1 christos 453 1.1 christos H = Fb + Gb; 454 1.1 christos Ha = reducl(H); 455 1.1 christos w = ldexpl( Ga+Ha, LNXT ); 456 1.1 christos 457 1.1 christos /* Test the power of 2 for overflow */ 458 1.1 christos if( w > MEXP ) 459 1.1 christos return (huge * huge); /* overflow */ 460 1.1 christos 461 1.1 christos if( w < MNEXP ) 462 1.1 christos return (twom10000 * twom10000); /* underflow */ 463 1.1 christos 464 1.1 christos e = w; 465 1.1 christos Hb = H - Ha; 466 1.1 christos 467 1.1 christos if( Hb > 0.0L ) 468 1.1 christos { 469 1.1 christos e += 1; 470 1.1 christos Hb -= (1.0L/NXT); /*0.0625L;*/ 471 1.1 christos } 472 1.1 christos 473 1.1 christos /* Now the product y * log2(x) = Hb + e/NXT. 474 1.1 christos * 475 1.1 christos * Compute base 2 exponential of Hb, 476 1.1 christos * where -0.0625 <= Hb <= 0. 477 1.1 christos */ 478 1.1 christos z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */ 479 1.1 christos 480 1.1 christos /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. 481 1.1 christos * Find lookup table entry for the fractional power of 2. 482 1.1 christos */ 483 1.1 christos if( e < 0 ) 484 1.1 christos i = 0; 485 1.1 christos else 486 1.1 christos i = 1; 487 1.1 christos i = e/NXT + i; 488 1.1 christos e = NXT*i - e; 489 1.1 christos w = douba( e ); 490 1.1 christos z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ 491 1.1 christos z = z + w; 492 1.1 christos z = ldexpl( z, i ); /* multiply by integer power of 2 */ 493 1.1 christos 494 1.1 christos if( nflg ) 495 1.1 christos { 496 1.1 christos /* For negative x, 497 1.1 christos * find out if the integer exponent 498 1.1 christos * is odd or even. 499 1.1 christos */ 500 1.1 christos w = ldexpl( y, -1 ); 501 1.1 christos w = floorl(w); 502 1.1 christos w = ldexpl( w, 1 ); 503 1.1 christos if( w != y ) 504 1.1 christos z = -z; /* odd exponent */ 505 1.1 christos } 506 1.1 christos 507 1.1 christos return( z ); 508 1.1 christos } 509 1.1 christos 510 1.1 christos 511 1.1 christos /* Find a multiple of 1/NXT that is within 1/NXT of x. */ 512 1.1 christos static inline long double 513 1.1 christos reducl(long double x) 514 1.1 christos { 515 1.1 christos long double t; 516 1.1 christos 517 1.1 christos t = ldexpl( x, LNXT ); 518 1.1 christos t = floorl( t ); 519 1.1 christos t = ldexpl( t, -LNXT ); 520 1.1 christos return(t); 521 1.1 christos } 522 1.1 christos 523 1.1 christos /* powil.c 524 1.1 christos * 525 1.1 christos * Real raised to integer power, long double precision 526 1.1 christos * 527 1.1 christos * 528 1.1 christos * 529 1.1 christos * SYNOPSIS: 530 1.1 christos * 531 1.1 christos * long double x, y, powil(); 532 1.1 christos * int n; 533 1.1 christos * 534 1.1 christos * y = powil( x, n ); 535 1.1 christos * 536 1.1 christos * 537 1.1 christos * 538 1.1 christos * DESCRIPTION: 539 1.1 christos * 540 1.1 christos * Returns argument x raised to the nth power. 541 1.1 christos * The routine efficiently decomposes n as a sum of powers of 542 1.1 christos * two. The desired power is a product of two-to-the-kth 543 1.1 christos * powers of x. Thus to compute the 32767 power of x requires 544 1.1 christos * 28 multiplications instead of 32767 multiplications. 545 1.1 christos * 546 1.1 christos * 547 1.1 christos * 548 1.1 christos * ACCURACY: 549 1.1 christos * 550 1.1 christos * 551 1.1 christos * Relative error: 552 1.1 christos * arithmetic x domain n domain # trials peak rms 553 1.1 christos * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 554 1.1 christos * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 555 1.1 christos * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 556 1.1 christos * 557 1.1 christos * Returns MAXNUM on overflow, zero on underflow. 558 1.1 christos * 559 1.1 christos */ 560 1.1 christos 561 1.1 christos static long double 562 1.1 christos powil(long double x, int nn) 563 1.1 christos { 564 1.1 christos long double ww, y; 565 1.1 christos long double s; 566 1.1 christos int n, e, sign, asign, lx; 567 1.1 christos 568 1.1 christos if( x == 0.0L ) 569 1.1 christos { 570 1.1 christos if( nn == 0 ) 571 1.1 christos return( 1.0L ); 572 1.1 christos else if( nn < 0 ) 573 1.1 christos return( LDBL_MAX ); 574 1.1 christos else 575 1.1 christos return( 0.0L ); 576 1.1 christos } 577 1.1 christos 578 1.1 christos if( nn == 0 ) 579 1.1 christos return( 1.0L ); 580 1.1 christos 581 1.1 christos 582 1.1 christos if( x < 0.0L ) 583 1.1 christos { 584 1.1 christos asign = -1; 585 1.1 christos x = -x; 586 1.1 christos } 587 1.1 christos else 588 1.1 christos asign = 0; 589 1.1 christos 590 1.1 christos 591 1.1 christos if( nn < 0 ) 592 1.1 christos { 593 1.1 christos sign = -1; 594 1.1 christos n = -nn; 595 1.1 christos } 596 1.1 christos else 597 1.1 christos { 598 1.1 christos sign = 1; 599 1.1 christos n = nn; 600 1.1 christos } 601 1.1 christos 602 1.1 christos /* Overflow detection */ 603 1.1 christos 604 1.1 christos /* Calculate approximate logarithm of answer */ 605 1.1 christos s = x; 606 1.1 christos s = frexpl( s, &lx ); 607 1.1 christos e = (lx - 1)*n; 608 1.1 christos if( (e == 0) || (e > 64) || (e < -64) ) 609 1.1 christos { 610 1.1 christos s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); 611 1.1 christos s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L; 612 1.1 christos } 613 1.1 christos else 614 1.1 christos { 615 1.1 christos s = LOGE2L * e; 616 1.1 christos } 617 1.1 christos 618 1.1 christos if( s > MAXLOGL ) 619 1.1 christos return (huge * huge); /* overflow */ 620 1.1 christos 621 1.1 christos if( s < MINLOGL ) 622 1.1 christos return (twom10000 * twom10000); /* underflow */ 623 1.1 christos /* Handle tiny denormal answer, but with less accuracy 624 1.1 christos * since roundoff error in 1.0/x will be amplified. 625 1.1 christos * The precise demarcation should be the gradual underflow threshold. 626 1.1 christos */ 627 1.1 christos if( s < (-MAXLOGL+2.0L) ) 628 1.1 christos { 629 1.1 christos x = 1.0L/x; 630 1.1 christos sign = -sign; 631 1.1 christos } 632 1.1 christos 633 1.1 christos /* First bit of the power */ 634 1.1 christos if( n & 1 ) 635 1.1 christos y = x; 636 1.1 christos 637 1.1 christos else 638 1.1 christos { 639 1.1 christos y = 1.0L; 640 1.1 christos asign = 0; 641 1.1 christos } 642 1.1 christos 643 1.1 christos ww = x; 644 1.1 christos n >>= 1; 645 1.1 christos while( n ) 646 1.1 christos { 647 1.1 christos ww = ww * ww; /* arg to the 2-to-the-kth power */ 648 1.1 christos if( n & 1 ) /* if that bit is set, then include in product */ 649 1.1 christos y *= ww; 650 1.1 christos n >>= 1; 651 1.1 christos } 652 1.1 christos 653 1.1 christos if( asign ) 654 1.1 christos y = -y; /* odd power of negative number */ 655 1.1 christos if( sign < 0 ) 656 1.1 christos y = 1.0L/y; 657 1.1 christos return(y); 658 1.1 christos } 659