Home | History | Annotate | Line # | Download | only in ld80
      1 /*-
      2  * SPDX-License-Identifier: BSD-2-Clause
      3  *
      4  * Copyright (c) 2005-2008 David Schultz <das (at) FreeBSD.ORG>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 #include <float.h>
     31 #include <stdint.h>
     32 
     33 #ifdef __FreeBSD__
     34 #include "fpmath.h"
     35 #endif
     36 #include "math.h"
     37 #include "math_private.h"
     38 
     39 #define	TBLBITS	7
     40 #define	TBLSIZE	(1 << TBLBITS)
     41 
     42 #define	BIAS	(LDBL_MAX_EXP - 1)
     43 
     44 static volatile long double
     45     huge = 0x1p10000L,
     46     twom10000 = 0x1p-10000L;
     47 
     48 static const union ieee_ext_u
     49 P1 = LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309429e-1L);
     50 
     51 static const double
     52 redux = 0x1.8p63 / TBLSIZE,
     53 /*
     54  * Domain [-0.00390625, 0.00390625], range ~[-1.7079e-23, 1.7079e-23]
     55  * |exp(x) - p(x)| < 2**-75.6
     56  */
     57 P2 = 2.4022650695910072e-1,		/*  0x1ebfbdff82c58f.0p-55 */
     58 P3 = 5.5504108664816879e-2,		/*  0x1c6b08d7049e1a.0p-57 */
     59 P4 = 9.6181291055695180e-3,		/*  0x13b2ab6fa8321a.0p-59 */
     60 P5 = 1.3333563089183052e-3,		/*  0x15d8806f67f251.0p-62 */
     61 P6 = 1.5413361552277414e-4;		/*  0x1433ddacff3441.0p-65 */
     62 
     63 static const double tbl[TBLSIZE * 2] = {
     64 	0x1.6a09e667f3bcdp-1,	-0x1.bdd3413b2648p-55,
     65 	0x1.6c012750bdabfp-1,	-0x1.2895667ff0cp-57,
     66 	0x1.6dfb23c651a2fp-1,	-0x1.bbe3a683c88p-58,
     67 	0x1.6ff7df9519484p-1,	-0x1.83c0f25860fp-56,
     68 	0x1.71f75e8ec5f74p-1,	-0x1.16e4786887bp-56,
     69 	0x1.73f9a48a58174p-1,	-0x1.0a8d96c65d5p-55,
     70 	0x1.75feb564267c9p-1,	-0x1.0245957316ep-55,
     71 	0x1.780694fde5d3fp-1,	 0x1.866b80a0216p-55,
     72 	0x1.7a11473eb0187p-1,	-0x1.41577ee0499p-56,
     73 	0x1.7c1ed0130c132p-1,	 0x1.f124cd1164ep-55,
     74 	0x1.7e2f336cf4e62p-1,	 0x1.05d02ba157ap-57,
     75 	0x1.80427543e1a12p-1,	-0x1.27c86626d97p-55,
     76 	0x1.82589994cce13p-1,	-0x1.d4c1dd41533p-55,
     77 	0x1.8471a4623c7adp-1,	-0x1.8d684a341cep-56,
     78 	0x1.868d99b4492edp-1,	-0x1.fc6f89bd4f68p-55,
     79 	0x1.88ac7d98a6699p-1,	 0x1.994c2f37cb5p-55,
     80 	0x1.8ace5422aa0dbp-1,	 0x1.6e9f156864bp-55,
     81 	0x1.8cf3216b5448cp-1,	-0x1.0d55e32e9e4p-57,
     82 	0x1.8f1ae99157736p-1,	 0x1.5cc13a2e397p-56,
     83 	0x1.9145b0b91ffc6p-1,	-0x1.dd6792e5825p-55,
     84 	0x1.93737b0cdc5e5p-1,	-0x1.75fc781b58p-58,
     85 	0x1.95a44cbc8520fp-1,	-0x1.64b7c96a5fp-57,
     86 	0x1.97d829fde4e5p-1,	-0x1.d185b7c1b86p-55,
     87 	0x1.9a0f170ca07bap-1,	-0x1.173bd91cee6p-55,
     88 	0x1.9c49182a3f09p-1,	 0x1.c7c46b071f2p-57,
     89 	0x1.9e86319e32323p-1,	 0x1.824ca78e64cp-57,
     90 	0x1.a0c667b5de565p-1,	-0x1.359495d1cd5p-55,
     91 	0x1.a309bec4a2d33p-1,	 0x1.6305c7ddc368p-55,
     92 	0x1.a5503b23e255dp-1,	-0x1.d2f6edb8d42p-55,
     93 	0x1.a799e1330b358p-1,	 0x1.bcb7ecac564p-55,
     94 	0x1.a9e6b5579fdbfp-1,	 0x1.0fac90ef7fdp-55,
     95 	0x1.ac36bbfd3f37ap-1,	-0x1.f9234cae76dp-56,
     96 	0x1.ae89f995ad3adp-1,	 0x1.7a1cd345dcc8p-55,
     97 	0x1.b0e07298db666p-1,	-0x1.bdef54c80e4p-55,
     98 	0x1.b33a2b84f15fbp-1,	-0x1.2805e3084d8p-58,
     99 	0x1.b59728de5593ap-1,	-0x1.c71dfbbba6ep-55,
    100 	0x1.b7f76f2fb5e47p-1,	-0x1.5584f7e54acp-57,
    101 	0x1.ba5b030a1064ap-1,	-0x1.efcd30e5429p-55,
    102 	0x1.bcc1e904bc1d2p-1,	 0x1.23dd07a2d9fp-56,
    103 	0x1.bf2c25bd71e09p-1,	-0x1.efdca3f6b9c8p-55,
    104 	0x1.c199bdd85529cp-1,	 0x1.11065895049p-56,
    105 	0x1.c40ab5fffd07ap-1,	 0x1.b4537e083c6p-55,
    106 	0x1.c67f12e57d14bp-1,	 0x1.2884dff483c8p-55,
    107 	0x1.c8f6d9406e7b5p-1,	 0x1.1acbc48805cp-57,
    108 	0x1.cb720dcef9069p-1,	 0x1.503cbd1e94ap-57,
    109 	0x1.cdf0b555dc3fap-1,	-0x1.dd83b53829dp-56,
    110 	0x1.d072d4a07897cp-1,	-0x1.cbc3743797a8p-55,
    111 	0x1.d2f87080d89f2p-1,	-0x1.d487b719d858p-55,
    112 	0x1.d5818dcfba487p-1,	 0x1.2ed02d75b37p-56,
    113 	0x1.d80e316c98398p-1,	-0x1.11ec18bedep-55,
    114 	0x1.da9e603db3285p-1,	 0x1.c2300696db5p-55,
    115 	0x1.dd321f301b46p-1,	 0x1.2da5778f019p-55,
    116 	0x1.dfc97337b9b5fp-1,	-0x1.1a5cd4f184b8p-55,
    117 	0x1.e264614f5a129p-1,	-0x1.7b627817a148p-55,
    118 	0x1.e502ee78b3ff6p-1,	 0x1.39e8980a9cdp-56,
    119 	0x1.e7a51fbc74c83p-1,	 0x1.2d522ca0c8ep-55,
    120 	0x1.ea4afa2a490dap-1,	-0x1.e9c23179c288p-55,
    121 	0x1.ecf482d8e67f1p-1,	-0x1.c93f3b411ad8p-55,
    122 	0x1.efa1bee615a27p-1,	 0x1.dc7f486a4b68p-55,
    123 	0x1.f252b376bba97p-1,	 0x1.3a1a5bf0d8e8p-55,
    124 	0x1.f50765b6e454p-1,	 0x1.9d3e12dd8a18p-55,
    125 	0x1.f7bfdad9cbe14p-1,	-0x1.dbb12d00635p-55,
    126 	0x1.fa7c1819e90d8p-1,	 0x1.74853f3a593p-56,
    127 	0x1.fd3c22b8f71f1p-1,	 0x1.2eb74966578p-58,
    128 	0x1p+0,	 0x0p+0,
    129 	0x1.0163da9fb3335p+0,	 0x1.b61299ab8cd8p-54,
    130 	0x1.02c9a3e778061p+0,	-0x1.19083535b08p-56,
    131 	0x1.04315e86e7f85p+0,	-0x1.0a31c1977c98p-54,
    132 	0x1.059b0d3158574p+0,	 0x1.d73e2a475b4p-55,
    133 	0x1.0706b29ddf6dep+0,	-0x1.c91dfe2b13cp-55,
    134 	0x1.0874518759bc8p+0,	 0x1.186be4bb284p-57,
    135 	0x1.09e3ecac6f383p+0,	 0x1.14878183161p-54,
    136 	0x1.0b5586cf9890fp+0,	 0x1.8a62e4adc61p-54,
    137 	0x1.0cc922b7247f7p+0,	 0x1.01edc16e24f8p-54,
    138 	0x1.0e3ec32d3d1a2p+0,	 0x1.03a1727c58p-59,
    139 	0x1.0fb66affed31bp+0,	-0x1.b9bedc44ebcp-57,
    140 	0x1.11301d0125b51p+0,	-0x1.6c51039449bp-54,
    141 	0x1.12abdc06c31ccp+0,	-0x1.1b514b36ca8p-58,
    142 	0x1.1429aaea92dep+0,	-0x1.32fbf9af1368p-54,
    143 	0x1.15a98c8a58e51p+0,	 0x1.2406ab9eeabp-55,
    144 	0x1.172b83c7d517bp+0,	-0x1.19041b9d78ap-55,
    145 	0x1.18af9388c8deap+0,	-0x1.11023d1970f8p-54,
    146 	0x1.1a35beb6fcb75p+0,	 0x1.e5b4c7b4969p-55,
    147 	0x1.1bbe084045cd4p+0,	-0x1.95386352ef6p-54,
    148 	0x1.1d4873168b9aap+0,	 0x1.e016e00a264p-54,
    149 	0x1.1ed5022fcd91dp+0,	-0x1.1df98027bb78p-54,
    150 	0x1.2063b88628cd6p+0,	 0x1.dc775814a85p-55,
    151 	0x1.21f49917ddc96p+0,	 0x1.2a97e9494a6p-55,
    152 	0x1.2387a6e756238p+0,	 0x1.9b07eb6c7058p-54,
    153 	0x1.251ce4fb2a63fp+0,	 0x1.ac155bef4f5p-55,
    154 	0x1.26b4565e27cddp+0,	 0x1.2bd339940eap-55,
    155 	0x1.284dfe1f56381p+0,	-0x1.a4c3a8c3f0d8p-54,
    156 	0x1.29e9df51fdee1p+0,	 0x1.612e8afad12p-55,
    157 	0x1.2b87fd0dad99p+0,	-0x1.10adcd6382p-59,
    158 	0x1.2d285a6e4030bp+0,	 0x1.0024754db42p-54,
    159 	0x1.2ecafa93e2f56p+0,	 0x1.1ca0f45d524p-56,
    160 	0x1.306fe0a31b715p+0,	 0x1.6f46ad23183p-55,
    161 	0x1.32170fc4cd831p+0,	 0x1.a9ce78e1804p-55,
    162 	0x1.33c08b26416ffp+0,	 0x1.327218436598p-54,
    163 	0x1.356c55f929ff1p+0,	-0x1.b5cee5c4e46p-55,
    164 	0x1.371a7373aa9cbp+0,	-0x1.63aeabf42ebp-54,
    165 	0x1.38cae6d05d866p+0,	-0x1.e958d3c99048p-54,
    166 	0x1.3a7db34e59ff7p+0,	-0x1.5e436d661f6p-56,
    167 	0x1.3c32dc313a8e5p+0,	-0x1.efff8375d2ap-54,
    168 	0x1.3dea64c123422p+0,	 0x1.ada0911f09fp-55,
    169 	0x1.3fa4504ac801cp+0,	-0x1.7d023f956fap-54,
    170 	0x1.4160a21f72e2ap+0,	-0x1.ef3691c309p-58,
    171 	0x1.431f5d950a897p+0,	-0x1.1c7dde35f7ap-55,
    172 	0x1.44e086061892dp+0,	 0x1.89b7a04ef8p-59,
    173 	0x1.46a41ed1d0057p+0,	 0x1.c944bd1648a8p-54,
    174 	0x1.486a2b5c13cdp+0,	 0x1.3c1a3b69062p-56,
    175 	0x1.4a32af0d7d3dep+0,	 0x1.9cb62f3d1be8p-54,
    176 	0x1.4bfdad5362a27p+0,	 0x1.d4397afec42p-56,
    177 	0x1.4dcb299fddd0dp+0,	 0x1.8ecdbbc6a78p-54,
    178 	0x1.4f9b2769d2ca7p+0,	-0x1.4b309d25958p-54,
    179 	0x1.516daa2cf6642p+0,	-0x1.f768569bd94p-55,
    180 	0x1.5342b569d4f82p+0,	-0x1.07abe1db13dp-55,
    181 	0x1.551a4ca5d920fp+0,	-0x1.d689cefede6p-55,
    182 	0x1.56f4736b527dap+0,	 0x1.9bb2c011d938p-54,
    183 	0x1.58d12d497c7fdp+0,	 0x1.295e15b9a1ep-55,
    184 	0x1.5ab07dd485429p+0,	 0x1.6324c0546478p-54,
    185 	0x1.5c9268a5946b7p+0,	 0x1.c4b1b81698p-60,
    186 	0x1.5e76f15ad2148p+0,	 0x1.ba6f93080e68p-54,
    187 	0x1.605e1b976dc09p+0,	-0x1.3e2429b56de8p-54,
    188 	0x1.6247eb03a5585p+0,	-0x1.383c17e40b48p-54,
    189 	0x1.6434634ccc32p+0,	-0x1.c483c759d89p-55,
    190 	0x1.6623882552225p+0,	-0x1.bb60987591cp-54,
    191 	0x1.68155d44ca973p+0,	 0x1.038ae44f74p-57,
    192 };
    193 
    194 /**
    195  * Compute the base 2 exponential of x for Intel 80-bit format.
    196  *
    197  * Accuracy: Peak error < 0.511 ulp.
    198  *
    199  * Method: (equally-spaced tables)
    200  *
    201  *   Reduce x:
    202  *     x = 2**k + y, for integer k and |y| <= 1/2.
    203  *     Thus we have exp2l(x) = 2**k * exp2(y).
    204  *
    205  *   Reduce y:
    206  *     y = i/TBLSIZE + z for integer i near y * TBLSIZE.
    207  *     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
    208  *     with |z| <= 2**-(TBLBITS+1).
    209  *
    210  *   We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
    211  *   degree-6 minimax polynomial with maximum error under 2**-75.6.
    212  *   The table entries each have 104 bits of accuracy, encoded as
    213  *   a pair of double precision values.
    214  */
    215 long double
    216 exp2l(long double x)
    217 {
    218 	union ieee_ext_u u, v;
    219 	long double r, twopk, twopkp10000, z;
    220 	uint32_t hx, ix, i0;
    221 	int k;
    222 
    223 	/* Filter out exceptional cases. */
    224 	u.extu_ld = x;
    225 	hx = GET_EXPSIGN(&u);
    226 	ix = hx & 0x7fff;
    227 	if (ix >= BIAS + 14) {		/* |x| >= 16384 or x is NaN */
    228 		if (ix == BIAS + LDBL_MAX_EXP) {
    229 			if (hx & 0x8000 && GET_LDBL80_MAN(&u) == 1ULL << 63)
    230 				return (0.0L);	/* x is -Inf */
    231 			return (x + x); /* x is +Inf, NaN or unsupported */
    232 		}
    233 		if (x >= 16384)
    234 			return (huge * huge);	/* overflow */
    235 		if (x <= -16446)
    236 			return (twom10000 * twom10000);	/* underflow */
    237 	} else if (ix <= BIAS - 66) {	/* |x| < 0x1p-65 (includes pseudos) */
    238 		return (1.0L + x);	/* 1 with inexact */
    239 	}
    240 
    241 	ENTERI();
    242 
    243 	/*
    244 	 * Reduce x, computing z, i0, and k. The low bits of x + redux
    245 	 * contain the 16-bit integer part of the exponent (k) followed by
    246 	 * TBLBITS fractional bits (i0). We use bit tricks to extract these
    247 	 * as integers, then set z to the remainder.
    248 	 *
    249 	 * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
    250 	 * Then the low-order word of x + redux is 0x000abc12,
    251 	 * We split this into k = 0xabc and i0 = 0x12 (adjusted to
    252 	 * index into the table), then we compute z = 0x0.003456p0.
    253 	 *
    254 	 * XXX If the exponent is negative, the computation of k depends on
    255 	 *     '>>' doing sign extension.
    256 	 */
    257 	u.extu_ld = x + redux;
    258 	i0 = u.extu_fracl + TBLSIZE / 2;
    259 	k = (int)i0 >> TBLBITS;
    260 	i0 = (i0 & (TBLSIZE - 1)) << 1;
    261 	u.extu_ld -= redux;
    262 	z = x - u.extu_ld;
    263 	SET_LDBL80_MAN(&v, 1ULL << 63);
    264 	if (k >= LDBL_MIN_EXP) {
    265 		SET_EXPSIGN(&v, BIAS + k);
    266 		twopk = v.extu_ld;
    267 	} else {
    268 		SET_EXPSIGN(&v, BIAS + k + 10000);
    269 		twopkp10000 = v.extu_ld;
    270 	}
    271 
    272 	/* Compute r = exp2l(y) = exp2lt[i0] * p(z). */
    273 	long double t_hi = tbl[i0];
    274 	long double t_lo = tbl[i0 + 1];
    275 	r = t_lo + (t_hi + t_lo) * z * (P1.extu_ld + z * (P2 + z * (P3 + z * (P4
    276 	    + z * (P5 + z * P6))))) + t_hi;
    277 
    278 	/* Scale by 2**k. */
    279 	if (k >= LDBL_MIN_EXP) {
    280 		if (k == LDBL_MAX_EXP)
    281 			RETURNI(r * 2.0 * 0x1p16383L);
    282 		RETURNI(r * twopk);
    283 	} else {
    284 		RETURNI(r * twopkp10000 * twom10000);
    285 	}
    286 }
    287