1 1.9 martin /* $NetBSD: n_erf.c,v 1.9 2013/11/24 15:16:49 martin Exp $ */ 2 1.1 ragge /*- 3 1.1 ragge * Copyright (c) 1992, 1993 4 1.1 ragge * The Regents of the University of California. All rights reserved. 5 1.1 ragge * 6 1.1 ragge * Redistribution and use in source and binary forms, with or without 7 1.1 ragge * modification, are permitted provided that the following conditions 8 1.1 ragge * are met: 9 1.1 ragge * 1. Redistributions of source code must retain the above copyright 10 1.1 ragge * notice, this list of conditions and the following disclaimer. 11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 ragge * notice, this list of conditions and the following disclaimer in the 13 1.1 ragge * documentation and/or other materials provided with the distribution. 14 1.6 agc * 3. Neither the name of the University nor the names of its contributors 15 1.1 ragge * may be used to endorse or promote products derived from this software 16 1.1 ragge * without specific prior written permission. 17 1.1 ragge * 18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 1.1 ragge * SUCH DAMAGE. 29 1.1 ragge */ 30 1.1 ragge 31 1.1 ragge #ifndef lint 32 1.2 ragge #if 0 33 1.1 ragge static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93"; 34 1.2 ragge #endif 35 1.1 ragge #endif /* not lint */ 36 1.1 ragge 37 1.1 ragge #include "mathimpl.h" 38 1.1 ragge 39 1.1 ragge /* Modified Nov 30, 1992 P. McILROY: 40 1.1 ragge * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp) 41 1.1 ragge * Replaced even+odd with direct calculation for x < .84375, 42 1.1 ragge * to avoid destructive cancellation. 43 1.1 ragge * 44 1.1 ragge * Performance of erfc(x): 45 1.1 ragge * In 300000 trials in the range [.83, .84375] the 46 1.1 ragge * maximum observed error was 3.6ulp. 47 1.1 ragge * 48 1.1 ragge * In [.84735,1.25] the maximum observed error was <2.5ulp in 49 1.1 ragge * 100000 runs in the range [1.2, 1.25]. 50 1.1 ragge * 51 1.1 ragge * In [1.25,26] (Not including subnormal results) 52 1.1 ragge * the error is < 1.7ulp. 53 1.1 ragge */ 54 1.1 ragge 55 1.1 ragge /* double erf(double x) 56 1.1 ragge * double erfc(double x) 57 1.1 ragge * x 58 1.1 ragge * 2 |\ 59 1.1 ragge * erf(x) = --------- | exp(-t*t)dt 60 1.1 ragge * sqrt(pi) \| 61 1.1 ragge * 0 62 1.1 ragge * 63 1.1 ragge * erfc(x) = 1-erf(x) 64 1.1 ragge * 65 1.1 ragge * Method: 66 1.1 ragge * 1. Reduce x to |x| by erf(-x) = -erf(x) 67 1.1 ragge * 2. For x in [0, 0.84375] 68 1.1 ragge * erf(x) = x + x*P(x^2) 69 1.1 ragge * erfc(x) = 1 - erf(x) if x<=0.25 70 1.1 ragge * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375] 71 1.1 ragge * where 72 1.4 simonb * 2 2 4 20 73 1.1 ragge * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x ) 74 1.1 ragge * is an approximation to (erf(x)-x)/x with precision 75 1.1 ragge * 76 1.1 ragge * -56.45 77 1.1 ragge * | P - (erf(x)-x)/x | <= 2 78 1.4 simonb * 79 1.1 ragge * 80 1.1 ragge * Remark. The formula is derived by noting 81 1.1 ragge * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) 82 1.1 ragge * and that 83 1.1 ragge * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 84 1.1 ragge * is close to one. The interval is chosen because the fixed 85 1.1 ragge * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is 86 1.1 ragge * near 0.6174), and by some experiment, 0.84375 is chosen to 87 1.1 ragge * guarantee the error is less than one ulp for erf. 88 1.1 ragge * 89 1.1 ragge * 3. For x in [0.84375,1.25], let s = x - 1, and 90 1.1 ragge * c = 0.84506291151 rounded to single (24 bits) 91 1.1 ragge * erf(x) = c + P1(s)/Q1(s) 92 1.1 ragge * erfc(x) = (1-c) - P1(s)/Q1(s) 93 1.1 ragge * |P1/Q1 - (erf(x)-c)| <= 2**-59.06 94 1.1 ragge * Remark: here we use the taylor series expansion at x=1. 95 1.1 ragge * erf(1+s) = erf(1) + s*Poly(s) 96 1.1 ragge * = 0.845.. + P1(s)/Q1(s) 97 1.1 ragge * That is, we use rational approximation to approximate 98 1.1 ragge * erf(1+s) - (c = (single)0.84506291151) 99 1.1 ragge * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] 100 1.4 simonb * where 101 1.1 ragge * P1(s) = degree 6 poly in s 102 1.1 ragge * Q1(s) = degree 6 poly in s 103 1.1 ragge * 104 1.1 ragge * 4. For x in [1.25, 2]; [2, 4] 105 1.1 ragge * erf(x) = 1.0 - tiny 106 1.1 ragge * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z)) 107 1.1 ragge * 108 1.1 ragge * Where z = 1/(x*x), R is degree 9, and S is degree 3; 109 1.4 simonb * 110 1.1 ragge * 5. For x in [4,28] 111 1.1 ragge * erf(x) = 1.0 - tiny 112 1.1 ragge * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z)) 113 1.1 ragge * 114 1.1 ragge * Where P is degree 14 polynomial in 1/(x*x). 115 1.1 ragge * 116 1.1 ragge * Notes: 117 1.1 ragge * Here 4 and 5 make use of the asymptotic series 118 1.1 ragge * exp(-x*x) 119 1.1 ragge * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ); 120 1.1 ragge * x*sqrt(pi) 121 1.1 ragge * 122 1.1 ragge * where for z = 1/(x*x) 123 1.1 ragge * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...)))) 124 1.1 ragge * 125 1.1 ragge * Thus we use rational approximation to approximate 126 1.1 ragge * erfc*x*exp(x*x) ~ 1/sqrt(pi); 127 1.1 ragge * 128 1.1 ragge * The error bound for the target function, G(z) for 129 1.1 ragge * the interval 130 1.1 ragge * [4, 28]: 131 1.1 ragge * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61) 132 1.1 ragge * for [2, 4]: 133 1.1 ragge * |R(z)/S(z) - G(z)| < 2**(-58.24) 134 1.1 ragge * for [1.25, 2]: 135 1.1 ragge * |R(z)/S(z) - G(z)| < 2**(-58.12) 136 1.1 ragge * 137 1.1 ragge * 6. For inf > x >= 28 138 1.1 ragge * erf(x) = 1 - tiny (raise inexact) 139 1.1 ragge * erfc(x) = tiny*tiny (raise underflow) 140 1.1 ragge * 141 1.1 ragge * 7. Special cases: 142 1.1 ragge * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, 143 1.4 simonb * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 144 1.1 ragge * erfc/erf(NaN) is NaN 145 1.1 ragge */ 146 1.1 ragge 147 1.3 matt #if defined(__vax__) || defined(tahoe) 148 1.1 ragge #define _IEEE 0 149 1.7 matt #define TRUNC(x) (x) = (float)(x) 150 1.1 ragge #else 151 1.1 ragge #define _IEEE 1 152 1.1 ragge #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000 153 1.1 ragge #define infnan(x) 0.0 154 1.1 ragge #endif 155 1.1 ragge 156 1.1 ragge #ifdef _IEEE_LIBM 157 1.1 ragge /* 158 1.1 ragge * redefining "___function" to "function" in _IEEE_LIBM mode 159 1.1 ragge */ 160 1.1 ragge #include "ieee_libm.h" 161 1.1 ragge #endif 162 1.1 ragge 163 1.5 matt static const double 164 1.8 christos tiny = _TINY, 165 1.1 ragge half = 0.5, 166 1.1 ragge one = 1.0, 167 1.1 ragge two = 2.0, 168 1.1 ragge c = 8.45062911510467529297e-01, /* (float)0.84506291151 */ 169 1.1 ragge /* 170 1.1 ragge * Coefficients for approximation to erf in [0,0.84375] 171 1.1 ragge */ 172 1.1 ragge p0t8 = 1.02703333676410051049867154944018394163280, 173 1.1 ragge p0 = 1.283791670955125638123339436800229927041e-0001, 174 1.1 ragge p1 = -3.761263890318340796574473028946097022260e-0001, 175 1.1 ragge p2 = 1.128379167093567004871858633779992337238e-0001, 176 1.1 ragge p3 = -2.686617064084433642889526516177508374437e-0002, 177 1.1 ragge p4 = 5.223977576966219409445780927846432273191e-0003, 178 1.1 ragge p5 = -8.548323822001639515038738961618255438422e-0004, 179 1.1 ragge p6 = 1.205520092530505090384383082516403772317e-0004, 180 1.1 ragge p7 = -1.492214100762529635365672665955239554276e-0005, 181 1.1 ragge p8 = 1.640186161764254363152286358441771740838e-0006, 182 1.1 ragge p9 = -1.571599331700515057841960987689515895479e-0007, 183 1.1 ragge p10= 1.073087585213621540635426191486561494058e-0008; 184 1.1 ragge /* 185 1.4 simonb * Coefficients for approximation to erf in [0.84375,1.25] 186 1.1 ragge */ 187 1.5 matt static const double 188 1.1 ragge pa0 = -2.362118560752659485957248365514511540287e-0003, 189 1.1 ragge pa1 = 4.148561186837483359654781492060070469522e-0001, 190 1.1 ragge pa2 = -3.722078760357013107593507594535478633044e-0001, 191 1.1 ragge pa3 = 3.183466199011617316853636418691420262160e-0001, 192 1.1 ragge pa4 = -1.108946942823966771253985510891237782544e-0001, 193 1.1 ragge pa5 = 3.547830432561823343969797140537411825179e-0002, 194 1.1 ragge pa6 = -2.166375594868790886906539848893221184820e-0003, 195 1.1 ragge qa1 = 1.064208804008442270765369280952419863524e-0001, 196 1.1 ragge qa2 = 5.403979177021710663441167681878575087235e-0001, 197 1.1 ragge qa3 = 7.182865441419627066207655332170665812023e-0002, 198 1.1 ragge qa4 = 1.261712198087616469108438860983447773726e-0001, 199 1.1 ragge qa5 = 1.363708391202905087876983523620537833157e-0002, 200 1.1 ragge qa6 = 1.198449984679910764099772682882189711364e-0002; 201 1.1 ragge /* 202 1.1 ragge * log(sqrt(pi)) for large x expansions. 203 1.1 ragge * The tail (lsqrtPI_lo) is included in the rational 204 1.1 ragge * approximations. 205 1.1 ragge */ 206 1.5 matt static const double 207 1.1 ragge lsqrtPI_hi = .5723649429247000819387380943226; 208 1.1 ragge /* 209 1.1 ragge * lsqrtPI_lo = .000000000000000005132975581353913; 210 1.1 ragge * 211 1.1 ragge * Coefficients for approximation to erfc in [2, 4] 212 1.1 ragge */ 213 1.5 matt static const double 214 1.1 ragge rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */ 215 1.1 ragge rb1 = 2.15592846101742183841910806188e-008, 216 1.1 ragge rb2 = 6.24998557732436510470108714799e-001, 217 1.1 ragge rb3 = 8.24849222231141787631258921465e+000, 218 1.1 ragge rb4 = 2.63974967372233173534823436057e+001, 219 1.1 ragge rb5 = 9.86383092541570505318304640241e+000, 220 1.1 ragge rb6 = -7.28024154841991322228977878694e+000, 221 1.1 ragge rb7 = 5.96303287280680116566600190708e+000, 222 1.1 ragge rb8 = -4.40070358507372993983608466806e+000, 223 1.1 ragge rb9 = 2.39923700182518073731330332521e+000, 224 1.1 ragge rb10 = -6.89257464785841156285073338950e-001, 225 1.1 ragge sb1 = 1.56641558965626774835300238919e+001, 226 1.1 ragge sb2 = 7.20522741000949622502957936376e+001, 227 1.1 ragge sb3 = 9.60121069770492994166488642804e+001; 228 1.1 ragge /* 229 1.1 ragge * Coefficients for approximation to erfc in [1.25, 2] 230 1.1 ragge */ 231 1.5 matt static const double 232 1.1 ragge rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */ 233 1.1 ragge rc1 = 1.28735722546372485255126993930e-005, 234 1.1 ragge rc2 = 6.24664954087883916855616917019e-001, 235 1.1 ragge rc3 = 4.69798884785807402408863708843e+000, 236 1.1 ragge rc4 = 7.61618295853929705430118701770e+000, 237 1.1 ragge rc5 = 9.15640208659364240872946538730e-001, 238 1.1 ragge rc6 = -3.59753040425048631334448145935e-001, 239 1.1 ragge rc7 = 1.42862267989304403403849619281e-001, 240 1.1 ragge rc8 = -4.74392758811439801958087514322e-002, 241 1.1 ragge rc9 = 1.09964787987580810135757047874e-002, 242 1.1 ragge rc10 = -1.28856240494889325194638463046e-003, 243 1.1 ragge sc1 = 9.97395106984001955652274773456e+000, 244 1.1 ragge sc2 = 2.80952153365721279953959310660e+001, 245 1.1 ragge sc3 = 2.19826478142545234106819407316e+001; 246 1.1 ragge /* 247 1.1 ragge * Coefficients for approximation to erfc in [4,28] 248 1.1 ragge */ 249 1.5 matt static const double 250 1.1 ragge rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */ 251 1.1 ragge rd1 = -4.99999999999640086151350330820e-001, 252 1.1 ragge rd2 = 6.24999999772906433825880867516e-001, 253 1.1 ragge rd3 = -1.54166659428052432723177389562e+000, 254 1.1 ragge rd4 = 5.51561147405411844601985649206e+000, 255 1.1 ragge rd5 = -2.55046307982949826964613748714e+001, 256 1.1 ragge rd6 = 1.43631424382843846387913799845e+002, 257 1.1 ragge rd7 = -9.45789244999420134263345971704e+002, 258 1.1 ragge rd8 = 6.94834146607051206956384703517e+003, 259 1.1 ragge rd9 = -5.27176414235983393155038356781e+004, 260 1.1 ragge rd10 = 3.68530281128672766499221324921e+005, 261 1.1 ragge rd11 = -2.06466642800404317677021026611e+006, 262 1.1 ragge rd12 = 7.78293889471135381609201431274e+006, 263 1.1 ragge rd13 = -1.42821001129434127360582351685e+007; 264 1.1 ragge 265 1.5 matt double 266 1.5 matt erf(double x) 267 1.1 ragge { 268 1.2 ragge double R,S,P,Q,ax,s,y,z,r; 269 1.1 ragge if(!finite(x)) { /* erf(nan)=nan */ 270 1.1 ragge if (isnan(x)) 271 1.1 ragge return(x); 272 1.1 ragge return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */ 273 1.1 ragge } 274 1.1 ragge if ((ax = x) < 0) 275 1.1 ragge ax = - ax; 276 1.1 ragge if (ax < .84375) { 277 1.1 ragge if (ax < 3.7e-09) { 278 1.8 christos if (ax < _TINYER) 279 1.1 ragge return 0.125*(8.0*x+p0t8*x); /*avoid underflow */ 280 1.1 ragge return x + p0*x; 281 1.1 ragge } 282 1.1 ragge y = x*x; 283 1.1 ragge r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+ 284 1.1 ragge y*(p6+y*(p7+y*(p8+y*(p9+y*p10))))))))); 285 1.1 ragge return x + x*(p0+r); 286 1.1 ragge } 287 1.1 ragge if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */ 288 1.1 ragge s = fabs(x)-one; 289 1.1 ragge P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 290 1.1 ragge Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 291 1.1 ragge if (x>=0) 292 1.1 ragge return (c + P/Q); 293 1.1 ragge else 294 1.1 ragge return (-c - P/Q); 295 1.1 ragge } 296 1.1 ragge if (ax >= 6.0) { /* inf>|x|>=6 */ 297 1.1 ragge if (x >= 0.0) 298 1.1 ragge return (one-tiny); 299 1.1 ragge else 300 1.1 ragge return (tiny-one); 301 1.1 ragge } 302 1.1 ragge /* 1.25 <= |x| < 6 */ 303 1.1 ragge z = -ax*ax; 304 1.1 ragge s = -one/z; 305 1.1 ragge if (ax < 2.0) { 306 1.1 ragge R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+ 307 1.1 ragge s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10))))))))); 308 1.1 ragge S = one+s*(sc1+s*(sc2+s*sc3)); 309 1.1 ragge } else { 310 1.1 ragge R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+ 311 1.1 ragge s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10))))))))); 312 1.1 ragge S = one+s*(sb1+s*(sb2+s*sb3)); 313 1.1 ragge } 314 1.1 ragge y = (R/S -.5*s) - lsqrtPI_hi; 315 1.1 ragge z += y; 316 1.1 ragge z = exp(z)/ax; 317 1.1 ragge if (x >= 0) 318 1.1 ragge return (one-z); 319 1.1 ragge else 320 1.1 ragge return (z-one); 321 1.1 ragge } 322 1.1 ragge 323 1.9 martin float 324 1.9 martin erff(float x) 325 1.9 martin { 326 1.9 martin return (float)erf(x); 327 1.9 martin } 328 1.9 martin 329 1.5 matt double 330 1.5 matt erfc(double x) 331 1.1 ragge { 332 1.2 ragge double R,S,P,Q,s,ax,y,z,r; 333 1.1 ragge if (!finite(x)) { 334 1.1 ragge if (isnan(x)) /* erfc(NaN) = NaN */ 335 1.1 ragge return(x); 336 1.1 ragge else if (x > 0) /* erfc(+-inf)=0,2 */ 337 1.1 ragge return 0.0; 338 1.1 ragge else 339 1.1 ragge return 2.0; 340 1.1 ragge } 341 1.1 ragge if ((ax = x) < 0) 342 1.1 ragge ax = -ax; 343 1.1 ragge if (ax < .84375) { /* |x|<0.84375 */ 344 1.1 ragge if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */ 345 1.1 ragge return one-x; 346 1.1 ragge y = x*x; 347 1.1 ragge r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+ 348 1.1 ragge y*(p6+y*(p7+y*(p8+y*(p9+y*p10))))))))); 349 1.1 ragge if (ax < .0625) { /* |x|<2**-4 */ 350 1.1 ragge return (one-(x+x*(p0+r))); 351 1.1 ragge } else { 352 1.1 ragge r = x*(p0+r); 353 1.1 ragge r += (x-half); 354 1.1 ragge return (half - r); 355 1.1 ragge } 356 1.1 ragge } 357 1.1 ragge if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */ 358 1.1 ragge s = ax-one; 359 1.1 ragge P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 360 1.1 ragge Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 361 1.1 ragge if (x>=0) { 362 1.4 simonb z = one-c; return z - P/Q; 363 1.1 ragge } else { 364 1.1 ragge z = c+P/Q; return one+z; 365 1.1 ragge } 366 1.1 ragge } 367 1.3 matt if (ax >= 28) { /* Out of range */ 368 1.1 ragge if (x>0) 369 1.1 ragge return (tiny*tiny); 370 1.1 ragge else 371 1.1 ragge return (two-tiny); 372 1.3 matt } 373 1.1 ragge z = ax; 374 1.1 ragge TRUNC(z); 375 1.1 ragge y = z - ax; y *= (ax+z); 376 1.1 ragge z *= -z; /* Here z + y = -x^2 */ 377 1.1 ragge s = one/(-z-y); /* 1/(x*x) */ 378 1.1 ragge if (ax >= 4) { /* 6 <= ax */ 379 1.1 ragge R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+ 380 1.1 ragge s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10 381 1.1 ragge +s*(rd11+s*(rd12+s*rd13)))))))))))); 382 1.1 ragge y += rd0; 383 1.1 ragge } else if (ax >= 2) { 384 1.1 ragge R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+ 385 1.1 ragge s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10))))))))); 386 1.1 ragge S = one+s*(sb1+s*(sb2+s*sb3)); 387 1.1 ragge y += R/S; 388 1.1 ragge R = -.5*s; 389 1.1 ragge } else { 390 1.1 ragge R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+ 391 1.1 ragge s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10))))))))); 392 1.1 ragge S = one+s*(sc1+s*(sc2+s*sc3)); 393 1.1 ragge y += R/S; 394 1.1 ragge R = -.5*s; 395 1.1 ragge } 396 1.1 ragge /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */ 397 1.1 ragge s = ((R + y) - lsqrtPI_hi) + z; 398 1.1 ragge y = (((z-s) - lsqrtPI_hi) + R) + y; 399 1.1 ragge r = __exp__D(s, y)/x; 400 1.1 ragge if (x>0) 401 1.1 ragge return r; 402 1.1 ragge else 403 1.1 ragge return two-r; 404 1.1 ragge } 405 1.9 martin 406 1.9 martin float 407 1.9 martin erfcf(float x) 408 1.9 martin { 409 1.9 martin return (float)erfc(x); 410 1.9 martin } 411 1.9 martin 412 1.9 martin 413