Home | History | Annotate | Line # | Download | only in noieee_src
      1 /*	$NetBSD: n_erf.c,v 1.9 2013/11/24 15:16:49 martin Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #ifndef lint
     32 #if 0
     33 static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
     34 #endif
     35 #endif /* not lint */
     36 
     37 #include "mathimpl.h"
     38 
     39 /* Modified Nov 30, 1992 P. McILROY:
     40  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
     41  * Replaced even+odd with direct calculation for x < .84375,
     42  * to avoid destructive cancellation.
     43  *
     44  * Performance of erfc(x):
     45  * In 300000 trials in the range [.83, .84375] the
     46  * maximum observed error was 3.6ulp.
     47  *
     48  * In [.84735,1.25] the maximum observed error was <2.5ulp in
     49  * 100000 runs in the range [1.2, 1.25].
     50  *
     51  * In [1.25,26] (Not including subnormal results)
     52  * the error is < 1.7ulp.
     53  */
     54 
     55 /* double erf(double x)
     56  * double erfc(double x)
     57  *			     x
     58  *		      2      |\
     59  *     erf(x)  =  ---------  | exp(-t*t)dt
     60  *		   sqrt(pi) \|
     61  *			     0
     62  *
     63  *     erfc(x) =  1-erf(x)
     64  *
     65  * Method:
     66  *      1. Reduce x to |x| by erf(-x) = -erf(x)
     67  *	2. For x in [0, 0.84375]
     68  *	    erf(x)  = x + x*P(x^2)
     69  *          erfc(x) = 1 - erf(x)           if x<=0.25
     70  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
     71  *	   where
     72  *			2		 2	  4		  20
     73  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
     74  * 	   is an approximation to (erf(x)-x)/x with precision
     75  *
     76  *						 -56.45
     77  *			| P - (erf(x)-x)/x | <= 2
     78  *
     79  *
     80  *	   Remark. The formula is derived by noting
     81  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
     82  *	   and that
     83  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
     84  *	   is close to one. The interval is chosen because the fixed
     85  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
     86  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
     87  * 	   guarantee the error is less than one ulp for erf.
     88  *
     89  *      3. For x in [0.84375,1.25], let s = x - 1, and
     90  *         c = 0.84506291151 rounded to single (24 bits)
     91  *         	erf(x)  = c  + P1(s)/Q1(s)
     92  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
     93  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
     94  *	   Remark: here we use the taylor series expansion at x=1.
     95  *		erf(1+s) = erf(1) + s*Poly(s)
     96  *			 = 0.845.. + P1(s)/Q1(s)
     97  *	   That is, we use rational approximation to approximate
     98  *			erf(1+s) - (c = (single)0.84506291151)
     99  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
    100  *	   where
    101  *		P1(s) = degree 6 poly in s
    102  *		Q1(s) = degree 6 poly in s
    103  *
    104  *	4. For x in [1.25, 2]; [2, 4]
    105  *         	erf(x)  = 1.0 - tiny
    106  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
    107  *
    108  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
    109  *
    110  *      5. For x in [4,28]
    111  *         	erf(x)  = 1.0 - tiny
    112  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
    113  *
    114  *	Where P is degree 14 polynomial in 1/(x*x).
    115  *
    116  *      Notes:
    117  *	   Here 4 and 5 make use of the asymptotic series
    118  *			  exp(-x*x)
    119  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
    120  *			  x*sqrt(pi)
    121  *
    122  *		where for z = 1/(x*x)
    123  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
    124  *
    125  *	   Thus we use rational approximation to approximate
    126  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
    127  *
    128  *		The error bound for the target function, G(z) for
    129  *		the interval
    130  *		[4, 28]:
    131  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
    132  *		for [2, 4]:
    133  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
    134  *		for [1.25, 2]:
    135  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
    136  *
    137  *      6. For inf > x >= 28
    138  *         	erf(x)  = 1 - tiny  (raise inexact)
    139  *         	erfc(x) = tiny*tiny (raise underflow)
    140  *
    141  *      7. Special cases:
    142  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
    143  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
    144  *	   	erfc/erf(NaN) is NaN
    145  */
    146 
    147 #if defined(__vax__) || defined(tahoe)
    148 #define _IEEE	0
    149 #define TRUNC(x) (x) = (float)(x)
    150 #else
    151 #define _IEEE	1
    152 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
    153 #define infnan(x) 0.0
    154 #endif
    155 
    156 #ifdef _IEEE_LIBM
    157 /*
    158  * redefining "___function" to "function" in _IEEE_LIBM mode
    159  */
    160 #include "ieee_libm.h"
    161 #endif
    162 
    163 static const double
    164 tiny	    = _TINY,
    165 half	    = 0.5,
    166 one	    = 1.0,
    167 two	    = 2.0,
    168 c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
    169 /*
    170  * Coefficients for approximation to erf in [0,0.84375]
    171  */
    172 p0t8 = 1.02703333676410051049867154944018394163280,
    173 p0 =   1.283791670955125638123339436800229927041e-0001,
    174 p1 =  -3.761263890318340796574473028946097022260e-0001,
    175 p2 =   1.128379167093567004871858633779992337238e-0001,
    176 p3 =  -2.686617064084433642889526516177508374437e-0002,
    177 p4 =   5.223977576966219409445780927846432273191e-0003,
    178 p5 =  -8.548323822001639515038738961618255438422e-0004,
    179 p6 =   1.205520092530505090384383082516403772317e-0004,
    180 p7 =  -1.492214100762529635365672665955239554276e-0005,
    181 p8 =   1.640186161764254363152286358441771740838e-0006,
    182 p9 =  -1.571599331700515057841960987689515895479e-0007,
    183 p10=   1.073087585213621540635426191486561494058e-0008;
    184 /*
    185  * Coefficients for approximation to erf in [0.84375,1.25]
    186  */
    187 static const double
    188 pa0 =  -2.362118560752659485957248365514511540287e-0003,
    189 pa1 =   4.148561186837483359654781492060070469522e-0001,
    190 pa2 =  -3.722078760357013107593507594535478633044e-0001,
    191 pa3 =   3.183466199011617316853636418691420262160e-0001,
    192 pa4 =  -1.108946942823966771253985510891237782544e-0001,
    193 pa5 =   3.547830432561823343969797140537411825179e-0002,
    194 pa6 =  -2.166375594868790886906539848893221184820e-0003,
    195 qa1 =   1.064208804008442270765369280952419863524e-0001,
    196 qa2 =   5.403979177021710663441167681878575087235e-0001,
    197 qa3 =   7.182865441419627066207655332170665812023e-0002,
    198 qa4 =   1.261712198087616469108438860983447773726e-0001,
    199 qa5 =   1.363708391202905087876983523620537833157e-0002,
    200 qa6 =   1.198449984679910764099772682882189711364e-0002;
    201 /*
    202  * log(sqrt(pi)) for large x expansions.
    203  * The tail (lsqrtPI_lo) is included in the rational
    204  * approximations.
    205 */
    206 static const double
    207    lsqrtPI_hi = .5723649429247000819387380943226;
    208 /*
    209  * lsqrtPI_lo = .000000000000000005132975581353913;
    210  *
    211  * Coefficients for approximation to erfc in [2, 4]
    212 */
    213 static const double
    214 rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
    215 rb1  =	 2.15592846101742183841910806188e-008,
    216 rb2  =	 6.24998557732436510470108714799e-001,
    217 rb3  =	 8.24849222231141787631258921465e+000,
    218 rb4  =	 2.63974967372233173534823436057e+001,
    219 rb5  =	 9.86383092541570505318304640241e+000,
    220 rb6  =	-7.28024154841991322228977878694e+000,
    221 rb7  =	 5.96303287280680116566600190708e+000,
    222 rb8  =	-4.40070358507372993983608466806e+000,
    223 rb9  =	 2.39923700182518073731330332521e+000,
    224 rb10 =	-6.89257464785841156285073338950e-001,
    225 sb1  =	 1.56641558965626774835300238919e+001,
    226 sb2  =	 7.20522741000949622502957936376e+001,
    227 sb3  =	 9.60121069770492994166488642804e+001;
    228 /*
    229  * Coefficients for approximation to erfc in [1.25, 2]
    230 */
    231 static const double
    232 rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
    233 rc1  =	 1.28735722546372485255126993930e-005,
    234 rc2  =	 6.24664954087883916855616917019e-001,
    235 rc3  =	 4.69798884785807402408863708843e+000,
    236 rc4  =	 7.61618295853929705430118701770e+000,
    237 rc5  =	 9.15640208659364240872946538730e-001,
    238 rc6  =	-3.59753040425048631334448145935e-001,
    239 rc7  =	 1.42862267989304403403849619281e-001,
    240 rc8  =	-4.74392758811439801958087514322e-002,
    241 rc9  =	 1.09964787987580810135757047874e-002,
    242 rc10 =	-1.28856240494889325194638463046e-003,
    243 sc1  =	 9.97395106984001955652274773456e+000,
    244 sc2  =	 2.80952153365721279953959310660e+001,
    245 sc3  =	 2.19826478142545234106819407316e+001;
    246 /*
    247  * Coefficients for approximation to  erfc in [4,28]
    248  */
    249 static const double
    250 rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
    251 rd1  =	-4.99999999999640086151350330820e-001,
    252 rd2  =	 6.24999999772906433825880867516e-001,
    253 rd3  =	-1.54166659428052432723177389562e+000,
    254 rd4  =	 5.51561147405411844601985649206e+000,
    255 rd5  =	-2.55046307982949826964613748714e+001,
    256 rd6  =	 1.43631424382843846387913799845e+002,
    257 rd7  =	-9.45789244999420134263345971704e+002,
    258 rd8  =	 6.94834146607051206956384703517e+003,
    259 rd9  =	-5.27176414235983393155038356781e+004,
    260 rd10 =	 3.68530281128672766499221324921e+005,
    261 rd11 =	-2.06466642800404317677021026611e+006,
    262 rd12 =	 7.78293889471135381609201431274e+006,
    263 rd13 =	-1.42821001129434127360582351685e+007;
    264 
    265 double
    266 erf(double x)
    267 {
    268 	double R,S,P,Q,ax,s,y,z,r;
    269 	if(!finite(x)) {		/* erf(nan)=nan */
    270 	    if (isnan(x))
    271 		return(x);
    272 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
    273 	}
    274 	if ((ax = x) < 0)
    275 		ax = - ax;
    276 	if (ax < .84375) {
    277 	    if (ax < 3.7e-09) {
    278 		if (ax < _TINYER)
    279 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
    280 		return x + p0*x;
    281 	    }
    282 	    y = x*x;
    283 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    284 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    285 	    return x + x*(p0+r);
    286 	}
    287 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    288 	    s = fabs(x)-one;
    289 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    290 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    291 	    if (x>=0)
    292 		return (c + P/Q);
    293 	    else
    294 		return (-c - P/Q);
    295 	}
    296 	if (ax >= 6.0) {		/* inf>|x|>=6 */
    297 	    if (x >= 0.0)
    298 		return (one-tiny);
    299 	    else
    300 		return (tiny-one);
    301 	}
    302     /* 1.25 <= |x| < 6 */
    303 	z = -ax*ax;
    304 	s = -one/z;
    305 	if (ax < 2.0) {
    306 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    307 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    308 		S = one+s*(sc1+s*(sc2+s*sc3));
    309 	} else {
    310 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    311 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    312 		S = one+s*(sb1+s*(sb2+s*sb3));
    313 	}
    314 	y = (R/S -.5*s) - lsqrtPI_hi;
    315 	z += y;
    316 	z = exp(z)/ax;
    317 	if (x >= 0)
    318 		return (one-z);
    319 	else
    320 		return (z-one);
    321 }
    322 
    323 float
    324 erff(float x)
    325 {
    326 	return (float)erf(x);
    327 }
    328 
    329 double
    330 erfc(double x)
    331 {
    332 	double R,S,P,Q,s,ax,y,z,r;
    333 	if (!finite(x)) {
    334 		if (isnan(x))		/* erfc(NaN) = NaN */
    335 			return(x);
    336 		else if (x > 0)		/* erfc(+-inf)=0,2 */
    337 			return 0.0;
    338 		else
    339 			return 2.0;
    340 	}
    341 	if ((ax = x) < 0)
    342 		ax = -ax;
    343 	if (ax < .84375) {			/* |x|<0.84375 */
    344 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
    345 		return one-x;
    346 	    y = x*x;
    347 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    348 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    349 	    if (ax < .0625) {  	/* |x|<2**-4 */
    350 		return (one-(x+x*(p0+r)));
    351 	    } else {
    352 		r = x*(p0+r);
    353 		r += (x-half);
    354 	        return (half - r);
    355 	    }
    356 	}
    357 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    358 	    s = ax-one;
    359 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    360 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    361 	    if (x>=0) {
    362 	        z  = one-c; return z - P/Q;
    363 	    } else {
    364 		z = c+P/Q; return one+z;
    365 	    }
    366 	}
    367 	if (ax >= 28) {	/* Out of range */
    368  		if (x>0)
    369 			return (tiny*tiny);
    370 		else
    371 			return (two-tiny);
    372 	}
    373 	z = ax;
    374 	TRUNC(z);
    375 	y = z - ax; y *= (ax+z);
    376 	z *= -z;			/* Here z + y = -x^2 */
    377 		s = one/(-z-y);		/* 1/(x*x) */
    378 	if (ax >= 4) {			/* 6 <= ax */
    379 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
    380 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
    381 			+s*(rd11+s*(rd12+s*rd13))))))))))));
    382 		y += rd0;
    383 	} else if (ax >= 2) {
    384 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    385 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    386 		S = one+s*(sb1+s*(sb2+s*sb3));
    387 		y += R/S;
    388 		R = -.5*s;
    389 	} else {
    390 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    391 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    392 		S = one+s*(sc1+s*(sc2+s*sc3));
    393 		y += R/S;
    394 		R = -.5*s;
    395 	}
    396 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
    397 	s = ((R + y) - lsqrtPI_hi) + z;
    398 	y = (((z-s) - lsqrtPI_hi) + R) + y;
    399 	r = __exp__D(s, y)/x;
    400 	if (x>0)
    401 		return r;
    402 	else
    403 		return two-r;
    404 }
    405 
    406 float
    407 erfcf(float x)
    408 {
    409 	return (float)erfc(x);
    410 }
    411 
    412 
    413