n_erf.c revision 1.4 1 1.4 simonb /* $NetBSD: n_erf.c,v 1.4 1999/07/02 15:37:36 simonb Exp $ */
2 1.1 ragge /*-
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge #include "mathimpl.h"
42 1.1 ragge
43 1.1 ragge /* Modified Nov 30, 1992 P. McILROY:
44 1.1 ragge * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
45 1.1 ragge * Replaced even+odd with direct calculation for x < .84375,
46 1.1 ragge * to avoid destructive cancellation.
47 1.1 ragge *
48 1.1 ragge * Performance of erfc(x):
49 1.1 ragge * In 300000 trials in the range [.83, .84375] the
50 1.1 ragge * maximum observed error was 3.6ulp.
51 1.1 ragge *
52 1.1 ragge * In [.84735,1.25] the maximum observed error was <2.5ulp in
53 1.1 ragge * 100000 runs in the range [1.2, 1.25].
54 1.1 ragge *
55 1.1 ragge * In [1.25,26] (Not including subnormal results)
56 1.1 ragge * the error is < 1.7ulp.
57 1.1 ragge */
58 1.1 ragge
59 1.1 ragge /* double erf(double x)
60 1.1 ragge * double erfc(double x)
61 1.1 ragge * x
62 1.1 ragge * 2 |\
63 1.1 ragge * erf(x) = --------- | exp(-t*t)dt
64 1.1 ragge * sqrt(pi) \|
65 1.1 ragge * 0
66 1.1 ragge *
67 1.1 ragge * erfc(x) = 1-erf(x)
68 1.1 ragge *
69 1.1 ragge * Method:
70 1.1 ragge * 1. Reduce x to |x| by erf(-x) = -erf(x)
71 1.1 ragge * 2. For x in [0, 0.84375]
72 1.1 ragge * erf(x) = x + x*P(x^2)
73 1.1 ragge * erfc(x) = 1 - erf(x) if x<=0.25
74 1.1 ragge * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
75 1.1 ragge * where
76 1.4 simonb * 2 2 4 20
77 1.1 ragge * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
78 1.1 ragge * is an approximation to (erf(x)-x)/x with precision
79 1.1 ragge *
80 1.1 ragge * -56.45
81 1.1 ragge * | P - (erf(x)-x)/x | <= 2
82 1.4 simonb *
83 1.1 ragge *
84 1.1 ragge * Remark. The formula is derived by noting
85 1.1 ragge * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
86 1.1 ragge * and that
87 1.1 ragge * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
88 1.1 ragge * is close to one. The interval is chosen because the fixed
89 1.1 ragge * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
90 1.1 ragge * near 0.6174), and by some experiment, 0.84375 is chosen to
91 1.1 ragge * guarantee the error is less than one ulp for erf.
92 1.1 ragge *
93 1.1 ragge * 3. For x in [0.84375,1.25], let s = x - 1, and
94 1.1 ragge * c = 0.84506291151 rounded to single (24 bits)
95 1.1 ragge * erf(x) = c + P1(s)/Q1(s)
96 1.1 ragge * erfc(x) = (1-c) - P1(s)/Q1(s)
97 1.1 ragge * |P1/Q1 - (erf(x)-c)| <= 2**-59.06
98 1.1 ragge * Remark: here we use the taylor series expansion at x=1.
99 1.1 ragge * erf(1+s) = erf(1) + s*Poly(s)
100 1.1 ragge * = 0.845.. + P1(s)/Q1(s)
101 1.1 ragge * That is, we use rational approximation to approximate
102 1.1 ragge * erf(1+s) - (c = (single)0.84506291151)
103 1.1 ragge * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
104 1.4 simonb * where
105 1.1 ragge * P1(s) = degree 6 poly in s
106 1.1 ragge * Q1(s) = degree 6 poly in s
107 1.1 ragge *
108 1.1 ragge * 4. For x in [1.25, 2]; [2, 4]
109 1.1 ragge * erf(x) = 1.0 - tiny
110 1.1 ragge * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
111 1.1 ragge *
112 1.1 ragge * Where z = 1/(x*x), R is degree 9, and S is degree 3;
113 1.4 simonb *
114 1.1 ragge * 5. For x in [4,28]
115 1.1 ragge * erf(x) = 1.0 - tiny
116 1.1 ragge * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
117 1.1 ragge *
118 1.1 ragge * Where P is degree 14 polynomial in 1/(x*x).
119 1.1 ragge *
120 1.1 ragge * Notes:
121 1.1 ragge * Here 4 and 5 make use of the asymptotic series
122 1.1 ragge * exp(-x*x)
123 1.1 ragge * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
124 1.1 ragge * x*sqrt(pi)
125 1.1 ragge *
126 1.1 ragge * where for z = 1/(x*x)
127 1.1 ragge * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
128 1.1 ragge *
129 1.1 ragge * Thus we use rational approximation to approximate
130 1.1 ragge * erfc*x*exp(x*x) ~ 1/sqrt(pi);
131 1.1 ragge *
132 1.1 ragge * The error bound for the target function, G(z) for
133 1.1 ragge * the interval
134 1.1 ragge * [4, 28]:
135 1.1 ragge * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
136 1.1 ragge * for [2, 4]:
137 1.1 ragge * |R(z)/S(z) - G(z)| < 2**(-58.24)
138 1.1 ragge * for [1.25, 2]:
139 1.1 ragge * |R(z)/S(z) - G(z)| < 2**(-58.12)
140 1.1 ragge *
141 1.1 ragge * 6. For inf > x >= 28
142 1.1 ragge * erf(x) = 1 - tiny (raise inexact)
143 1.1 ragge * erfc(x) = tiny*tiny (raise underflow)
144 1.1 ragge *
145 1.1 ragge * 7. Special cases:
146 1.1 ragge * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
147 1.4 simonb * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
148 1.1 ragge * erfc/erf(NaN) is NaN
149 1.1 ragge */
150 1.1 ragge
151 1.3 matt #if defined(__vax__) || defined(tahoe)
152 1.1 ragge #define _IEEE 0
153 1.2 ragge #define TRUNC(x) (double)(x) = (float)(x)
154 1.1 ragge #else
155 1.1 ragge #define _IEEE 1
156 1.1 ragge #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
157 1.1 ragge #define infnan(x) 0.0
158 1.1 ragge #endif
159 1.1 ragge
160 1.1 ragge #ifdef _IEEE_LIBM
161 1.1 ragge /*
162 1.1 ragge * redefining "___function" to "function" in _IEEE_LIBM mode
163 1.1 ragge */
164 1.1 ragge #include "ieee_libm.h"
165 1.1 ragge #endif
166 1.1 ragge
167 1.1 ragge static double
168 1.1 ragge tiny = 1e-300,
169 1.1 ragge half = 0.5,
170 1.1 ragge one = 1.0,
171 1.1 ragge two = 2.0,
172 1.1 ragge c = 8.45062911510467529297e-01, /* (float)0.84506291151 */
173 1.1 ragge /*
174 1.1 ragge * Coefficients for approximation to erf in [0,0.84375]
175 1.1 ragge */
176 1.1 ragge p0t8 = 1.02703333676410051049867154944018394163280,
177 1.1 ragge p0 = 1.283791670955125638123339436800229927041e-0001,
178 1.1 ragge p1 = -3.761263890318340796574473028946097022260e-0001,
179 1.1 ragge p2 = 1.128379167093567004871858633779992337238e-0001,
180 1.1 ragge p3 = -2.686617064084433642889526516177508374437e-0002,
181 1.1 ragge p4 = 5.223977576966219409445780927846432273191e-0003,
182 1.1 ragge p5 = -8.548323822001639515038738961618255438422e-0004,
183 1.1 ragge p6 = 1.205520092530505090384383082516403772317e-0004,
184 1.1 ragge p7 = -1.492214100762529635365672665955239554276e-0005,
185 1.1 ragge p8 = 1.640186161764254363152286358441771740838e-0006,
186 1.1 ragge p9 = -1.571599331700515057841960987689515895479e-0007,
187 1.1 ragge p10= 1.073087585213621540635426191486561494058e-0008;
188 1.1 ragge /*
189 1.4 simonb * Coefficients for approximation to erf in [0.84375,1.25]
190 1.1 ragge */
191 1.1 ragge static double
192 1.1 ragge pa0 = -2.362118560752659485957248365514511540287e-0003,
193 1.1 ragge pa1 = 4.148561186837483359654781492060070469522e-0001,
194 1.1 ragge pa2 = -3.722078760357013107593507594535478633044e-0001,
195 1.1 ragge pa3 = 3.183466199011617316853636418691420262160e-0001,
196 1.1 ragge pa4 = -1.108946942823966771253985510891237782544e-0001,
197 1.1 ragge pa5 = 3.547830432561823343969797140537411825179e-0002,
198 1.1 ragge pa6 = -2.166375594868790886906539848893221184820e-0003,
199 1.1 ragge qa1 = 1.064208804008442270765369280952419863524e-0001,
200 1.1 ragge qa2 = 5.403979177021710663441167681878575087235e-0001,
201 1.1 ragge qa3 = 7.182865441419627066207655332170665812023e-0002,
202 1.1 ragge qa4 = 1.261712198087616469108438860983447773726e-0001,
203 1.1 ragge qa5 = 1.363708391202905087876983523620537833157e-0002,
204 1.1 ragge qa6 = 1.198449984679910764099772682882189711364e-0002;
205 1.1 ragge /*
206 1.1 ragge * log(sqrt(pi)) for large x expansions.
207 1.1 ragge * The tail (lsqrtPI_lo) is included in the rational
208 1.1 ragge * approximations.
209 1.1 ragge */
210 1.1 ragge static double
211 1.1 ragge lsqrtPI_hi = .5723649429247000819387380943226;
212 1.1 ragge /*
213 1.1 ragge * lsqrtPI_lo = .000000000000000005132975581353913;
214 1.1 ragge *
215 1.1 ragge * Coefficients for approximation to erfc in [2, 4]
216 1.1 ragge */
217 1.1 ragge static double
218 1.1 ragge rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
219 1.1 ragge rb1 = 2.15592846101742183841910806188e-008,
220 1.1 ragge rb2 = 6.24998557732436510470108714799e-001,
221 1.1 ragge rb3 = 8.24849222231141787631258921465e+000,
222 1.1 ragge rb4 = 2.63974967372233173534823436057e+001,
223 1.1 ragge rb5 = 9.86383092541570505318304640241e+000,
224 1.1 ragge rb6 = -7.28024154841991322228977878694e+000,
225 1.1 ragge rb7 = 5.96303287280680116566600190708e+000,
226 1.1 ragge rb8 = -4.40070358507372993983608466806e+000,
227 1.1 ragge rb9 = 2.39923700182518073731330332521e+000,
228 1.1 ragge rb10 = -6.89257464785841156285073338950e-001,
229 1.1 ragge sb1 = 1.56641558965626774835300238919e+001,
230 1.1 ragge sb2 = 7.20522741000949622502957936376e+001,
231 1.1 ragge sb3 = 9.60121069770492994166488642804e+001;
232 1.1 ragge /*
233 1.1 ragge * Coefficients for approximation to erfc in [1.25, 2]
234 1.1 ragge */
235 1.1 ragge static double
236 1.1 ragge rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
237 1.1 ragge rc1 = 1.28735722546372485255126993930e-005,
238 1.1 ragge rc2 = 6.24664954087883916855616917019e-001,
239 1.1 ragge rc3 = 4.69798884785807402408863708843e+000,
240 1.1 ragge rc4 = 7.61618295853929705430118701770e+000,
241 1.1 ragge rc5 = 9.15640208659364240872946538730e-001,
242 1.1 ragge rc6 = -3.59753040425048631334448145935e-001,
243 1.1 ragge rc7 = 1.42862267989304403403849619281e-001,
244 1.1 ragge rc8 = -4.74392758811439801958087514322e-002,
245 1.1 ragge rc9 = 1.09964787987580810135757047874e-002,
246 1.1 ragge rc10 = -1.28856240494889325194638463046e-003,
247 1.1 ragge sc1 = 9.97395106984001955652274773456e+000,
248 1.1 ragge sc2 = 2.80952153365721279953959310660e+001,
249 1.1 ragge sc3 = 2.19826478142545234106819407316e+001;
250 1.1 ragge /*
251 1.1 ragge * Coefficients for approximation to erfc in [4,28]
252 1.1 ragge */
253 1.1 ragge static double
254 1.1 ragge rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
255 1.1 ragge rd1 = -4.99999999999640086151350330820e-001,
256 1.1 ragge rd2 = 6.24999999772906433825880867516e-001,
257 1.1 ragge rd3 = -1.54166659428052432723177389562e+000,
258 1.1 ragge rd4 = 5.51561147405411844601985649206e+000,
259 1.1 ragge rd5 = -2.55046307982949826964613748714e+001,
260 1.1 ragge rd6 = 1.43631424382843846387913799845e+002,
261 1.1 ragge rd7 = -9.45789244999420134263345971704e+002,
262 1.1 ragge rd8 = 6.94834146607051206956384703517e+003,
263 1.1 ragge rd9 = -5.27176414235983393155038356781e+004,
264 1.1 ragge rd10 = 3.68530281128672766499221324921e+005,
265 1.1 ragge rd11 = -2.06466642800404317677021026611e+006,
266 1.1 ragge rd12 = 7.78293889471135381609201431274e+006,
267 1.1 ragge rd13 = -1.42821001129434127360582351685e+007;
268 1.1 ragge
269 1.1 ragge double erf(x)
270 1.1 ragge double x;
271 1.1 ragge {
272 1.2 ragge double R,S,P,Q,ax,s,y,z,r;
273 1.1 ragge if(!finite(x)) { /* erf(nan)=nan */
274 1.1 ragge if (isnan(x))
275 1.1 ragge return(x);
276 1.1 ragge return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
277 1.1 ragge }
278 1.1 ragge if ((ax = x) < 0)
279 1.1 ragge ax = - ax;
280 1.1 ragge if (ax < .84375) {
281 1.1 ragge if (ax < 3.7e-09) {
282 1.1 ragge if (ax < 1.0e-308)
283 1.1 ragge return 0.125*(8.0*x+p0t8*x); /*avoid underflow */
284 1.1 ragge return x + p0*x;
285 1.1 ragge }
286 1.1 ragge y = x*x;
287 1.1 ragge r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
288 1.1 ragge y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
289 1.1 ragge return x + x*(p0+r);
290 1.1 ragge }
291 1.1 ragge if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
292 1.1 ragge s = fabs(x)-one;
293 1.1 ragge P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
294 1.1 ragge Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
295 1.1 ragge if (x>=0)
296 1.1 ragge return (c + P/Q);
297 1.1 ragge else
298 1.1 ragge return (-c - P/Q);
299 1.1 ragge }
300 1.1 ragge if (ax >= 6.0) { /* inf>|x|>=6 */
301 1.1 ragge if (x >= 0.0)
302 1.1 ragge return (one-tiny);
303 1.1 ragge else
304 1.1 ragge return (tiny-one);
305 1.1 ragge }
306 1.1 ragge /* 1.25 <= |x| < 6 */
307 1.1 ragge z = -ax*ax;
308 1.1 ragge s = -one/z;
309 1.1 ragge if (ax < 2.0) {
310 1.1 ragge R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
311 1.1 ragge s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
312 1.1 ragge S = one+s*(sc1+s*(sc2+s*sc3));
313 1.1 ragge } else {
314 1.1 ragge R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
315 1.1 ragge s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
316 1.1 ragge S = one+s*(sb1+s*(sb2+s*sb3));
317 1.1 ragge }
318 1.1 ragge y = (R/S -.5*s) - lsqrtPI_hi;
319 1.1 ragge z += y;
320 1.1 ragge z = exp(z)/ax;
321 1.1 ragge if (x >= 0)
322 1.1 ragge return (one-z);
323 1.1 ragge else
324 1.1 ragge return (z-one);
325 1.1 ragge }
326 1.1 ragge
327 1.4 simonb double erfc(x)
328 1.1 ragge double x;
329 1.1 ragge {
330 1.2 ragge double R,S,P,Q,s,ax,y,z,r;
331 1.1 ragge if (!finite(x)) {
332 1.1 ragge if (isnan(x)) /* erfc(NaN) = NaN */
333 1.1 ragge return(x);
334 1.1 ragge else if (x > 0) /* erfc(+-inf)=0,2 */
335 1.1 ragge return 0.0;
336 1.1 ragge else
337 1.1 ragge return 2.0;
338 1.1 ragge }
339 1.1 ragge if ((ax = x) < 0)
340 1.1 ragge ax = -ax;
341 1.1 ragge if (ax < .84375) { /* |x|<0.84375 */
342 1.1 ragge if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */
343 1.1 ragge return one-x;
344 1.1 ragge y = x*x;
345 1.1 ragge r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
346 1.1 ragge y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
347 1.1 ragge if (ax < .0625) { /* |x|<2**-4 */
348 1.1 ragge return (one-(x+x*(p0+r)));
349 1.1 ragge } else {
350 1.1 ragge r = x*(p0+r);
351 1.1 ragge r += (x-half);
352 1.1 ragge return (half - r);
353 1.1 ragge }
354 1.1 ragge }
355 1.1 ragge if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
356 1.1 ragge s = ax-one;
357 1.1 ragge P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
358 1.1 ragge Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
359 1.1 ragge if (x>=0) {
360 1.4 simonb z = one-c; return z - P/Q;
361 1.1 ragge } else {
362 1.1 ragge z = c+P/Q; return one+z;
363 1.1 ragge }
364 1.1 ragge }
365 1.3 matt if (ax >= 28) { /* Out of range */
366 1.1 ragge if (x>0)
367 1.1 ragge return (tiny*tiny);
368 1.1 ragge else
369 1.1 ragge return (two-tiny);
370 1.3 matt }
371 1.1 ragge z = ax;
372 1.1 ragge TRUNC(z);
373 1.1 ragge y = z - ax; y *= (ax+z);
374 1.1 ragge z *= -z; /* Here z + y = -x^2 */
375 1.1 ragge s = one/(-z-y); /* 1/(x*x) */
376 1.1 ragge if (ax >= 4) { /* 6 <= ax */
377 1.1 ragge R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
378 1.1 ragge s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
379 1.1 ragge +s*(rd11+s*(rd12+s*rd13))))))))))));
380 1.1 ragge y += rd0;
381 1.1 ragge } else if (ax >= 2) {
382 1.1 ragge R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
383 1.1 ragge s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
384 1.1 ragge S = one+s*(sb1+s*(sb2+s*sb3));
385 1.1 ragge y += R/S;
386 1.1 ragge R = -.5*s;
387 1.1 ragge } else {
388 1.1 ragge R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
389 1.1 ragge s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
390 1.1 ragge S = one+s*(sc1+s*(sc2+s*sc3));
391 1.1 ragge y += R/S;
392 1.1 ragge R = -.5*s;
393 1.1 ragge }
394 1.1 ragge /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
395 1.1 ragge s = ((R + y) - lsqrtPI_hi) + z;
396 1.1 ragge y = (((z-s) - lsqrtPI_hi) + R) + y;
397 1.1 ragge r = __exp__D(s, y)/x;
398 1.1 ragge if (x>0)
399 1.1 ragge return r;
400 1.1 ragge else
401 1.1 ragge return two-r;
402 1.1 ragge }
403