Home | History | Annotate | Line # | Download | only in noieee_src
n_erf.c revision 1.4.10.1
      1  1.4.10.1   lukem /*	$NetBSD: n_erf.c,v 1.4.10.1 2002/06/18 13:38:36 lukem Exp $	*/
      2       1.1   ragge /*-
      3       1.1   ragge  * Copyright (c) 1992, 1993
      4       1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5       1.1   ragge  *
      6       1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7       1.1   ragge  * modification, are permitted provided that the following conditions
      8       1.1   ragge  * are met:
      9       1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10       1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11       1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14       1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15       1.1   ragge  *    must display the following acknowledgement:
     16       1.1   ragge  *	This product includes software developed by the University of
     17       1.1   ragge  *	California, Berkeley and its contributors.
     18       1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19       1.1   ragge  *    may be used to endorse or promote products derived from this software
     20       1.1   ragge  *    without specific prior written permission.
     21       1.1   ragge  *
     22       1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1   ragge  * SUCH DAMAGE.
     33       1.1   ragge  */
     34       1.1   ragge 
     35       1.1   ragge #ifndef lint
     36       1.2   ragge #if 0
     37       1.1   ragge static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
     38       1.2   ragge #endif
     39       1.1   ragge #endif /* not lint */
     40       1.1   ragge 
     41       1.1   ragge #include "mathimpl.h"
     42       1.1   ragge 
     43       1.1   ragge /* Modified Nov 30, 1992 P. McILROY:
     44       1.1   ragge  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
     45       1.1   ragge  * Replaced even+odd with direct calculation for x < .84375,
     46       1.1   ragge  * to avoid destructive cancellation.
     47       1.1   ragge  *
     48       1.1   ragge  * Performance of erfc(x):
     49       1.1   ragge  * In 300000 trials in the range [.83, .84375] the
     50       1.1   ragge  * maximum observed error was 3.6ulp.
     51       1.1   ragge  *
     52       1.1   ragge  * In [.84735,1.25] the maximum observed error was <2.5ulp in
     53       1.1   ragge  * 100000 runs in the range [1.2, 1.25].
     54       1.1   ragge  *
     55       1.1   ragge  * In [1.25,26] (Not including subnormal results)
     56       1.1   ragge  * the error is < 1.7ulp.
     57       1.1   ragge  */
     58       1.1   ragge 
     59       1.1   ragge /* double erf(double x)
     60       1.1   ragge  * double erfc(double x)
     61       1.1   ragge  *			     x
     62       1.1   ragge  *		      2      |\
     63       1.1   ragge  *     erf(x)  =  ---------  | exp(-t*t)dt
     64       1.1   ragge  *		   sqrt(pi) \|
     65       1.1   ragge  *			     0
     66       1.1   ragge  *
     67       1.1   ragge  *     erfc(x) =  1-erf(x)
     68       1.1   ragge  *
     69       1.1   ragge  * Method:
     70       1.1   ragge  *      1. Reduce x to |x| by erf(-x) = -erf(x)
     71       1.1   ragge  *	2. For x in [0, 0.84375]
     72       1.1   ragge  *	    erf(x)  = x + x*P(x^2)
     73       1.1   ragge  *          erfc(x) = 1 - erf(x)           if x<=0.25
     74       1.1   ragge  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
     75       1.1   ragge  *	   where
     76       1.4  simonb  *			2		 2	  4		  20
     77       1.1   ragge  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
     78       1.1   ragge  * 	   is an approximation to (erf(x)-x)/x with precision
     79       1.1   ragge  *
     80       1.1   ragge  *						 -56.45
     81       1.1   ragge  *			| P - (erf(x)-x)/x | <= 2
     82       1.4  simonb  *
     83       1.1   ragge  *
     84       1.1   ragge  *	   Remark. The formula is derived by noting
     85       1.1   ragge  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
     86       1.1   ragge  *	   and that
     87       1.1   ragge  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
     88       1.1   ragge  *	   is close to one. The interval is chosen because the fixed
     89       1.1   ragge  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
     90       1.1   ragge  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
     91       1.1   ragge  * 	   guarantee the error is less than one ulp for erf.
     92       1.1   ragge  *
     93       1.1   ragge  *      3. For x in [0.84375,1.25], let s = x - 1, and
     94       1.1   ragge  *         c = 0.84506291151 rounded to single (24 bits)
     95       1.1   ragge  *         	erf(x)  = c  + P1(s)/Q1(s)
     96       1.1   ragge  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
     97       1.1   ragge  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
     98       1.1   ragge  *	   Remark: here we use the taylor series expansion at x=1.
     99       1.1   ragge  *		erf(1+s) = erf(1) + s*Poly(s)
    100       1.1   ragge  *			 = 0.845.. + P1(s)/Q1(s)
    101       1.1   ragge  *	   That is, we use rational approximation to approximate
    102       1.1   ragge  *			erf(1+s) - (c = (single)0.84506291151)
    103       1.1   ragge  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
    104       1.4  simonb  *	   where
    105       1.1   ragge  *		P1(s) = degree 6 poly in s
    106       1.1   ragge  *		Q1(s) = degree 6 poly in s
    107       1.1   ragge  *
    108       1.1   ragge  *	4. For x in [1.25, 2]; [2, 4]
    109       1.1   ragge  *         	erf(x)  = 1.0 - tiny
    110       1.1   ragge  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
    111       1.1   ragge  *
    112       1.1   ragge  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
    113       1.4  simonb  *
    114       1.1   ragge  *      5. For x in [4,28]
    115       1.1   ragge  *         	erf(x)  = 1.0 - tiny
    116       1.1   ragge  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
    117       1.1   ragge  *
    118       1.1   ragge  *	Where P is degree 14 polynomial in 1/(x*x).
    119       1.1   ragge  *
    120       1.1   ragge  *      Notes:
    121       1.1   ragge  *	   Here 4 and 5 make use of the asymptotic series
    122       1.1   ragge  *			  exp(-x*x)
    123       1.1   ragge  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
    124       1.1   ragge  *			  x*sqrt(pi)
    125       1.1   ragge  *
    126       1.1   ragge  *		where for z = 1/(x*x)
    127       1.1   ragge  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
    128       1.1   ragge  *
    129       1.1   ragge  *	   Thus we use rational approximation to approximate
    130       1.1   ragge  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
    131       1.1   ragge  *
    132       1.1   ragge  *		The error bound for the target function, G(z) for
    133       1.1   ragge  *		the interval
    134       1.1   ragge  *		[4, 28]:
    135       1.1   ragge  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
    136       1.1   ragge  *		for [2, 4]:
    137       1.1   ragge  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
    138       1.1   ragge  *		for [1.25, 2]:
    139       1.1   ragge  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
    140       1.1   ragge  *
    141       1.1   ragge  *      6. For inf > x >= 28
    142       1.1   ragge  *         	erf(x)  = 1 - tiny  (raise inexact)
    143       1.1   ragge  *         	erfc(x) = tiny*tiny (raise underflow)
    144       1.1   ragge  *
    145       1.1   ragge  *      7. Special cases:
    146       1.1   ragge  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
    147       1.4  simonb  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
    148       1.1   ragge  *	   	erfc/erf(NaN) is NaN
    149       1.1   ragge  */
    150       1.1   ragge 
    151       1.3    matt #if defined(__vax__) || defined(tahoe)
    152       1.1   ragge #define _IEEE	0
    153       1.2   ragge #define TRUNC(x) (double)(x) = (float)(x)
    154       1.1   ragge #else
    155       1.1   ragge #define _IEEE	1
    156       1.1   ragge #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
    157       1.1   ragge #define infnan(x) 0.0
    158       1.1   ragge #endif
    159       1.1   ragge 
    160       1.1   ragge #ifdef _IEEE_LIBM
    161       1.1   ragge /*
    162       1.1   ragge  * redefining "___function" to "function" in _IEEE_LIBM mode
    163       1.1   ragge  */
    164       1.1   ragge #include "ieee_libm.h"
    165       1.1   ragge #endif
    166       1.1   ragge 
    167  1.4.10.1   lukem static const double
    168       1.1   ragge tiny	    = 1e-300,
    169       1.1   ragge half	    = 0.5,
    170       1.1   ragge one	    = 1.0,
    171       1.1   ragge two	    = 2.0,
    172       1.1   ragge c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
    173       1.1   ragge /*
    174       1.1   ragge  * Coefficients for approximation to erf in [0,0.84375]
    175       1.1   ragge  */
    176       1.1   ragge p0t8 = 1.02703333676410051049867154944018394163280,
    177       1.1   ragge p0 =   1.283791670955125638123339436800229927041e-0001,
    178       1.1   ragge p1 =  -3.761263890318340796574473028946097022260e-0001,
    179       1.1   ragge p2 =   1.128379167093567004871858633779992337238e-0001,
    180       1.1   ragge p3 =  -2.686617064084433642889526516177508374437e-0002,
    181       1.1   ragge p4 =   5.223977576966219409445780927846432273191e-0003,
    182       1.1   ragge p5 =  -8.548323822001639515038738961618255438422e-0004,
    183       1.1   ragge p6 =   1.205520092530505090384383082516403772317e-0004,
    184       1.1   ragge p7 =  -1.492214100762529635365672665955239554276e-0005,
    185       1.1   ragge p8 =   1.640186161764254363152286358441771740838e-0006,
    186       1.1   ragge p9 =  -1.571599331700515057841960987689515895479e-0007,
    187       1.1   ragge p10=   1.073087585213621540635426191486561494058e-0008;
    188       1.1   ragge /*
    189       1.4  simonb  * Coefficients for approximation to erf in [0.84375,1.25]
    190       1.1   ragge  */
    191  1.4.10.1   lukem static const double
    192       1.1   ragge pa0 =  -2.362118560752659485957248365514511540287e-0003,
    193       1.1   ragge pa1 =   4.148561186837483359654781492060070469522e-0001,
    194       1.1   ragge pa2 =  -3.722078760357013107593507594535478633044e-0001,
    195       1.1   ragge pa3 =   3.183466199011617316853636418691420262160e-0001,
    196       1.1   ragge pa4 =  -1.108946942823966771253985510891237782544e-0001,
    197       1.1   ragge pa5 =   3.547830432561823343969797140537411825179e-0002,
    198       1.1   ragge pa6 =  -2.166375594868790886906539848893221184820e-0003,
    199       1.1   ragge qa1 =   1.064208804008442270765369280952419863524e-0001,
    200       1.1   ragge qa2 =   5.403979177021710663441167681878575087235e-0001,
    201       1.1   ragge qa3 =   7.182865441419627066207655332170665812023e-0002,
    202       1.1   ragge qa4 =   1.261712198087616469108438860983447773726e-0001,
    203       1.1   ragge qa5 =   1.363708391202905087876983523620537833157e-0002,
    204       1.1   ragge qa6 =   1.198449984679910764099772682882189711364e-0002;
    205       1.1   ragge /*
    206       1.1   ragge  * log(sqrt(pi)) for large x expansions.
    207       1.1   ragge  * The tail (lsqrtPI_lo) is included in the rational
    208       1.1   ragge  * approximations.
    209       1.1   ragge */
    210  1.4.10.1   lukem static const double
    211       1.1   ragge    lsqrtPI_hi = .5723649429247000819387380943226;
    212       1.1   ragge /*
    213       1.1   ragge  * lsqrtPI_lo = .000000000000000005132975581353913;
    214       1.1   ragge  *
    215       1.1   ragge  * Coefficients for approximation to erfc in [2, 4]
    216       1.1   ragge */
    217  1.4.10.1   lukem static const double
    218       1.1   ragge rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
    219       1.1   ragge rb1  =	 2.15592846101742183841910806188e-008,
    220       1.1   ragge rb2  =	 6.24998557732436510470108714799e-001,
    221       1.1   ragge rb3  =	 8.24849222231141787631258921465e+000,
    222       1.1   ragge rb4  =	 2.63974967372233173534823436057e+001,
    223       1.1   ragge rb5  =	 9.86383092541570505318304640241e+000,
    224       1.1   ragge rb6  =	-7.28024154841991322228977878694e+000,
    225       1.1   ragge rb7  =	 5.96303287280680116566600190708e+000,
    226       1.1   ragge rb8  =	-4.40070358507372993983608466806e+000,
    227       1.1   ragge rb9  =	 2.39923700182518073731330332521e+000,
    228       1.1   ragge rb10 =	-6.89257464785841156285073338950e-001,
    229       1.1   ragge sb1  =	 1.56641558965626774835300238919e+001,
    230       1.1   ragge sb2  =	 7.20522741000949622502957936376e+001,
    231       1.1   ragge sb3  =	 9.60121069770492994166488642804e+001;
    232       1.1   ragge /*
    233       1.1   ragge  * Coefficients for approximation to erfc in [1.25, 2]
    234       1.1   ragge */
    235  1.4.10.1   lukem static const double
    236       1.1   ragge rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
    237       1.1   ragge rc1  =	 1.28735722546372485255126993930e-005,
    238       1.1   ragge rc2  =	 6.24664954087883916855616917019e-001,
    239       1.1   ragge rc3  =	 4.69798884785807402408863708843e+000,
    240       1.1   ragge rc4  =	 7.61618295853929705430118701770e+000,
    241       1.1   ragge rc5  =	 9.15640208659364240872946538730e-001,
    242       1.1   ragge rc6  =	-3.59753040425048631334448145935e-001,
    243       1.1   ragge rc7  =	 1.42862267989304403403849619281e-001,
    244       1.1   ragge rc8  =	-4.74392758811439801958087514322e-002,
    245       1.1   ragge rc9  =	 1.09964787987580810135757047874e-002,
    246       1.1   ragge rc10 =	-1.28856240494889325194638463046e-003,
    247       1.1   ragge sc1  =	 9.97395106984001955652274773456e+000,
    248       1.1   ragge sc2  =	 2.80952153365721279953959310660e+001,
    249       1.1   ragge sc3  =	 2.19826478142545234106819407316e+001;
    250       1.1   ragge /*
    251       1.1   ragge  * Coefficients for approximation to  erfc in [4,28]
    252       1.1   ragge  */
    253  1.4.10.1   lukem static const double
    254       1.1   ragge rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
    255       1.1   ragge rd1  =	-4.99999999999640086151350330820e-001,
    256       1.1   ragge rd2  =	 6.24999999772906433825880867516e-001,
    257       1.1   ragge rd3  =	-1.54166659428052432723177389562e+000,
    258       1.1   ragge rd4  =	 5.51561147405411844601985649206e+000,
    259       1.1   ragge rd5  =	-2.55046307982949826964613748714e+001,
    260       1.1   ragge rd6  =	 1.43631424382843846387913799845e+002,
    261       1.1   ragge rd7  =	-9.45789244999420134263345971704e+002,
    262       1.1   ragge rd8  =	 6.94834146607051206956384703517e+003,
    263       1.1   ragge rd9  =	-5.27176414235983393155038356781e+004,
    264       1.1   ragge rd10 =	 3.68530281128672766499221324921e+005,
    265       1.1   ragge rd11 =	-2.06466642800404317677021026611e+006,
    266       1.1   ragge rd12 =	 7.78293889471135381609201431274e+006,
    267       1.1   ragge rd13 =	-1.42821001129434127360582351685e+007;
    268       1.1   ragge 
    269  1.4.10.1   lukem double
    270  1.4.10.1   lukem erf(double x)
    271       1.1   ragge {
    272       1.2   ragge 	double R,S,P,Q,ax,s,y,z,r;
    273       1.1   ragge 	if(!finite(x)) {		/* erf(nan)=nan */
    274       1.1   ragge 	    if (isnan(x))
    275       1.1   ragge 		return(x);
    276       1.1   ragge 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
    277       1.1   ragge 	}
    278       1.1   ragge 	if ((ax = x) < 0)
    279       1.1   ragge 		ax = - ax;
    280       1.1   ragge 	if (ax < .84375) {
    281       1.1   ragge 	    if (ax < 3.7e-09) {
    282       1.1   ragge 		if (ax < 1.0e-308)
    283       1.1   ragge 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
    284       1.1   ragge 		return x + p0*x;
    285       1.1   ragge 	    }
    286       1.1   ragge 	    y = x*x;
    287       1.1   ragge 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    288       1.1   ragge 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    289       1.1   ragge 	    return x + x*(p0+r);
    290       1.1   ragge 	}
    291       1.1   ragge 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    292       1.1   ragge 	    s = fabs(x)-one;
    293       1.1   ragge 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    294       1.1   ragge 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    295       1.1   ragge 	    if (x>=0)
    296       1.1   ragge 		return (c + P/Q);
    297       1.1   ragge 	    else
    298       1.1   ragge 		return (-c - P/Q);
    299       1.1   ragge 	}
    300       1.1   ragge 	if (ax >= 6.0) {		/* inf>|x|>=6 */
    301       1.1   ragge 	    if (x >= 0.0)
    302       1.1   ragge 		return (one-tiny);
    303       1.1   ragge 	    else
    304       1.1   ragge 		return (tiny-one);
    305       1.1   ragge 	}
    306       1.1   ragge     /* 1.25 <= |x| < 6 */
    307       1.1   ragge 	z = -ax*ax;
    308       1.1   ragge 	s = -one/z;
    309       1.1   ragge 	if (ax < 2.0) {
    310       1.1   ragge 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    311       1.1   ragge 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    312       1.1   ragge 		S = one+s*(sc1+s*(sc2+s*sc3));
    313       1.1   ragge 	} else {
    314       1.1   ragge 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    315       1.1   ragge 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    316       1.1   ragge 		S = one+s*(sb1+s*(sb2+s*sb3));
    317       1.1   ragge 	}
    318       1.1   ragge 	y = (R/S -.5*s) - lsqrtPI_hi;
    319       1.1   ragge 	z += y;
    320       1.1   ragge 	z = exp(z)/ax;
    321       1.1   ragge 	if (x >= 0)
    322       1.1   ragge 		return (one-z);
    323       1.1   ragge 	else
    324       1.1   ragge 		return (z-one);
    325       1.1   ragge }
    326       1.1   ragge 
    327  1.4.10.1   lukem double
    328  1.4.10.1   lukem erfc(double x)
    329       1.1   ragge {
    330       1.2   ragge 	double R,S,P,Q,s,ax,y,z,r;
    331       1.1   ragge 	if (!finite(x)) {
    332       1.1   ragge 		if (isnan(x))		/* erfc(NaN) = NaN */
    333       1.1   ragge 			return(x);
    334       1.1   ragge 		else if (x > 0)		/* erfc(+-inf)=0,2 */
    335       1.1   ragge 			return 0.0;
    336       1.1   ragge 		else
    337       1.1   ragge 			return 2.0;
    338       1.1   ragge 	}
    339       1.1   ragge 	if ((ax = x) < 0)
    340       1.1   ragge 		ax = -ax;
    341       1.1   ragge 	if (ax < .84375) {			/* |x|<0.84375 */
    342       1.1   ragge 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
    343       1.1   ragge 		return one-x;
    344       1.1   ragge 	    y = x*x;
    345       1.1   ragge 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    346       1.1   ragge 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    347       1.1   ragge 	    if (ax < .0625) {  	/* |x|<2**-4 */
    348       1.1   ragge 		return (one-(x+x*(p0+r)));
    349       1.1   ragge 	    } else {
    350       1.1   ragge 		r = x*(p0+r);
    351       1.1   ragge 		r += (x-half);
    352       1.1   ragge 	        return (half - r);
    353       1.1   ragge 	    }
    354       1.1   ragge 	}
    355       1.1   ragge 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    356       1.1   ragge 	    s = ax-one;
    357       1.1   ragge 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    358       1.1   ragge 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    359       1.1   ragge 	    if (x>=0) {
    360       1.4  simonb 	        z  = one-c; return z - P/Q;
    361       1.1   ragge 	    } else {
    362       1.1   ragge 		z = c+P/Q; return one+z;
    363       1.1   ragge 	    }
    364       1.1   ragge 	}
    365       1.3    matt 	if (ax >= 28) {	/* Out of range */
    366       1.1   ragge  		if (x>0)
    367       1.1   ragge 			return (tiny*tiny);
    368       1.1   ragge 		else
    369       1.1   ragge 			return (two-tiny);
    370       1.3    matt 	}
    371       1.1   ragge 	z = ax;
    372       1.1   ragge 	TRUNC(z);
    373       1.1   ragge 	y = z - ax; y *= (ax+z);
    374       1.1   ragge 	z *= -z;			/* Here z + y = -x^2 */
    375       1.1   ragge 		s = one/(-z-y);		/* 1/(x*x) */
    376       1.1   ragge 	if (ax >= 4) {			/* 6 <= ax */
    377       1.1   ragge 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
    378       1.1   ragge 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
    379       1.1   ragge 			+s*(rd11+s*(rd12+s*rd13))))))))))));
    380       1.1   ragge 		y += rd0;
    381       1.1   ragge 	} else if (ax >= 2) {
    382       1.1   ragge 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    383       1.1   ragge 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    384       1.1   ragge 		S = one+s*(sb1+s*(sb2+s*sb3));
    385       1.1   ragge 		y += R/S;
    386       1.1   ragge 		R = -.5*s;
    387       1.1   ragge 	} else {
    388       1.1   ragge 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    389       1.1   ragge 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    390       1.1   ragge 		S = one+s*(sc1+s*(sc2+s*sc3));
    391       1.1   ragge 		y += R/S;
    392       1.1   ragge 		R = -.5*s;
    393       1.1   ragge 	}
    394       1.1   ragge 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
    395       1.1   ragge 	s = ((R + y) - lsqrtPI_hi) + z;
    396       1.1   ragge 	y = (((z-s) - lsqrtPI_hi) + R) + y;
    397       1.1   ragge 	r = __exp__D(s, y)/x;
    398       1.1   ragge 	if (x>0)
    399       1.1   ragge 		return r;
    400       1.1   ragge 	else
    401       1.1   ragge 		return two-r;
    402       1.1   ragge }
    403