Home | History | Annotate | Line # | Download | only in noieee_src
n_erf.c revision 1.8.8.1
      1  1.8.8.1       tls /*	$NetBSD: n_erf.c,v 1.8.8.1 2014/08/20 00:02:18 tls Exp $	*/
      2      1.1     ragge /*-
      3      1.1     ragge  * Copyright (c) 1992, 1993
      4      1.1     ragge  *	The Regents of the University of California.  All rights reserved.
      5      1.1     ragge  *
      6      1.1     ragge  * Redistribution and use in source and binary forms, with or without
      7      1.1     ragge  * modification, are permitted provided that the following conditions
      8      1.1     ragge  * are met:
      9      1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     10      1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     11      1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12      1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     13      1.1     ragge  *    documentation and/or other materials provided with the distribution.
     14      1.6       agc  * 3. Neither the name of the University nor the names of its contributors
     15      1.1     ragge  *    may be used to endorse or promote products derived from this software
     16      1.1     ragge  *    without specific prior written permission.
     17      1.1     ragge  *
     18      1.1     ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19      1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20      1.1     ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21      1.1     ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22      1.1     ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23      1.1     ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24      1.1     ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25      1.1     ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26      1.1     ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27      1.1     ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28      1.1     ragge  * SUCH DAMAGE.
     29      1.1     ragge  */
     30      1.1     ragge 
     31      1.1     ragge #ifndef lint
     32      1.2     ragge #if 0
     33      1.1     ragge static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
     34      1.2     ragge #endif
     35      1.1     ragge #endif /* not lint */
     36      1.1     ragge 
     37      1.1     ragge #include "mathimpl.h"
     38      1.1     ragge 
     39      1.1     ragge /* Modified Nov 30, 1992 P. McILROY:
     40      1.1     ragge  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
     41      1.1     ragge  * Replaced even+odd with direct calculation for x < .84375,
     42      1.1     ragge  * to avoid destructive cancellation.
     43      1.1     ragge  *
     44      1.1     ragge  * Performance of erfc(x):
     45      1.1     ragge  * In 300000 trials in the range [.83, .84375] the
     46      1.1     ragge  * maximum observed error was 3.6ulp.
     47      1.1     ragge  *
     48      1.1     ragge  * In [.84735,1.25] the maximum observed error was <2.5ulp in
     49      1.1     ragge  * 100000 runs in the range [1.2, 1.25].
     50      1.1     ragge  *
     51      1.1     ragge  * In [1.25,26] (Not including subnormal results)
     52      1.1     ragge  * the error is < 1.7ulp.
     53      1.1     ragge  */
     54      1.1     ragge 
     55      1.1     ragge /* double erf(double x)
     56      1.1     ragge  * double erfc(double x)
     57      1.1     ragge  *			     x
     58      1.1     ragge  *		      2      |\
     59      1.1     ragge  *     erf(x)  =  ---------  | exp(-t*t)dt
     60      1.1     ragge  *		   sqrt(pi) \|
     61      1.1     ragge  *			     0
     62      1.1     ragge  *
     63      1.1     ragge  *     erfc(x) =  1-erf(x)
     64      1.1     ragge  *
     65      1.1     ragge  * Method:
     66      1.1     ragge  *      1. Reduce x to |x| by erf(-x) = -erf(x)
     67      1.1     ragge  *	2. For x in [0, 0.84375]
     68      1.1     ragge  *	    erf(x)  = x + x*P(x^2)
     69      1.1     ragge  *          erfc(x) = 1 - erf(x)           if x<=0.25
     70      1.1     ragge  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
     71      1.1     ragge  *	   where
     72      1.4    simonb  *			2		 2	  4		  20
     73      1.1     ragge  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
     74      1.1     ragge  * 	   is an approximation to (erf(x)-x)/x with precision
     75      1.1     ragge  *
     76      1.1     ragge  *						 -56.45
     77      1.1     ragge  *			| P - (erf(x)-x)/x | <= 2
     78      1.4    simonb  *
     79      1.1     ragge  *
     80      1.1     ragge  *	   Remark. The formula is derived by noting
     81      1.1     ragge  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
     82      1.1     ragge  *	   and that
     83      1.1     ragge  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
     84      1.1     ragge  *	   is close to one. The interval is chosen because the fixed
     85      1.1     ragge  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
     86      1.1     ragge  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
     87      1.1     ragge  * 	   guarantee the error is less than one ulp for erf.
     88      1.1     ragge  *
     89      1.1     ragge  *      3. For x in [0.84375,1.25], let s = x - 1, and
     90      1.1     ragge  *         c = 0.84506291151 rounded to single (24 bits)
     91      1.1     ragge  *         	erf(x)  = c  + P1(s)/Q1(s)
     92      1.1     ragge  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
     93      1.1     ragge  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
     94      1.1     ragge  *	   Remark: here we use the taylor series expansion at x=1.
     95      1.1     ragge  *		erf(1+s) = erf(1) + s*Poly(s)
     96      1.1     ragge  *			 = 0.845.. + P1(s)/Q1(s)
     97      1.1     ragge  *	   That is, we use rational approximation to approximate
     98      1.1     ragge  *			erf(1+s) - (c = (single)0.84506291151)
     99      1.1     ragge  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
    100      1.4    simonb  *	   where
    101      1.1     ragge  *		P1(s) = degree 6 poly in s
    102      1.1     ragge  *		Q1(s) = degree 6 poly in s
    103      1.1     ragge  *
    104      1.1     ragge  *	4. For x in [1.25, 2]; [2, 4]
    105      1.1     ragge  *         	erf(x)  = 1.0 - tiny
    106      1.1     ragge  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
    107      1.1     ragge  *
    108      1.1     ragge  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
    109      1.4    simonb  *
    110      1.1     ragge  *      5. For x in [4,28]
    111      1.1     ragge  *         	erf(x)  = 1.0 - tiny
    112      1.1     ragge  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
    113      1.1     ragge  *
    114      1.1     ragge  *	Where P is degree 14 polynomial in 1/(x*x).
    115      1.1     ragge  *
    116      1.1     ragge  *      Notes:
    117      1.1     ragge  *	   Here 4 and 5 make use of the asymptotic series
    118      1.1     ragge  *			  exp(-x*x)
    119      1.1     ragge  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
    120      1.1     ragge  *			  x*sqrt(pi)
    121      1.1     ragge  *
    122      1.1     ragge  *		where for z = 1/(x*x)
    123      1.1     ragge  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
    124      1.1     ragge  *
    125      1.1     ragge  *	   Thus we use rational approximation to approximate
    126      1.1     ragge  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
    127      1.1     ragge  *
    128      1.1     ragge  *		The error bound for the target function, G(z) for
    129      1.1     ragge  *		the interval
    130      1.1     ragge  *		[4, 28]:
    131      1.1     ragge  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
    132      1.1     ragge  *		for [2, 4]:
    133      1.1     ragge  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
    134      1.1     ragge  *		for [1.25, 2]:
    135      1.1     ragge  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
    136      1.1     ragge  *
    137      1.1     ragge  *      6. For inf > x >= 28
    138      1.1     ragge  *         	erf(x)  = 1 - tiny  (raise inexact)
    139      1.1     ragge  *         	erfc(x) = tiny*tiny (raise underflow)
    140      1.1     ragge  *
    141      1.1     ragge  *      7. Special cases:
    142      1.1     ragge  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
    143      1.4    simonb  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
    144      1.1     ragge  *	   	erfc/erf(NaN) is NaN
    145      1.1     ragge  */
    146      1.1     ragge 
    147      1.3      matt #if defined(__vax__) || defined(tahoe)
    148      1.1     ragge #define _IEEE	0
    149      1.7      matt #define TRUNC(x) (x) = (float)(x)
    150      1.1     ragge #else
    151      1.1     ragge #define _IEEE	1
    152      1.1     ragge #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
    153      1.1     ragge #define infnan(x) 0.0
    154      1.1     ragge #endif
    155      1.1     ragge 
    156      1.1     ragge #ifdef _IEEE_LIBM
    157      1.1     ragge /*
    158      1.1     ragge  * redefining "___function" to "function" in _IEEE_LIBM mode
    159      1.1     ragge  */
    160      1.1     ragge #include "ieee_libm.h"
    161      1.1     ragge #endif
    162      1.1     ragge 
    163      1.5      matt static const double
    164      1.8  christos tiny	    = _TINY,
    165      1.1     ragge half	    = 0.5,
    166      1.1     ragge one	    = 1.0,
    167      1.1     ragge two	    = 2.0,
    168      1.1     ragge c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
    169      1.1     ragge /*
    170      1.1     ragge  * Coefficients for approximation to erf in [0,0.84375]
    171      1.1     ragge  */
    172      1.1     ragge p0t8 = 1.02703333676410051049867154944018394163280,
    173      1.1     ragge p0 =   1.283791670955125638123339436800229927041e-0001,
    174      1.1     ragge p1 =  -3.761263890318340796574473028946097022260e-0001,
    175      1.1     ragge p2 =   1.128379167093567004871858633779992337238e-0001,
    176      1.1     ragge p3 =  -2.686617064084433642889526516177508374437e-0002,
    177      1.1     ragge p4 =   5.223977576966219409445780927846432273191e-0003,
    178      1.1     ragge p5 =  -8.548323822001639515038738961618255438422e-0004,
    179      1.1     ragge p6 =   1.205520092530505090384383082516403772317e-0004,
    180      1.1     ragge p7 =  -1.492214100762529635365672665955239554276e-0005,
    181      1.1     ragge p8 =   1.640186161764254363152286358441771740838e-0006,
    182      1.1     ragge p9 =  -1.571599331700515057841960987689515895479e-0007,
    183      1.1     ragge p10=   1.073087585213621540635426191486561494058e-0008;
    184      1.1     ragge /*
    185      1.4    simonb  * Coefficients for approximation to erf in [0.84375,1.25]
    186      1.1     ragge  */
    187      1.5      matt static const double
    188      1.1     ragge pa0 =  -2.362118560752659485957248365514511540287e-0003,
    189      1.1     ragge pa1 =   4.148561186837483359654781492060070469522e-0001,
    190      1.1     ragge pa2 =  -3.722078760357013107593507594535478633044e-0001,
    191      1.1     ragge pa3 =   3.183466199011617316853636418691420262160e-0001,
    192      1.1     ragge pa4 =  -1.108946942823966771253985510891237782544e-0001,
    193      1.1     ragge pa5 =   3.547830432561823343969797140537411825179e-0002,
    194      1.1     ragge pa6 =  -2.166375594868790886906539848893221184820e-0003,
    195      1.1     ragge qa1 =   1.064208804008442270765369280952419863524e-0001,
    196      1.1     ragge qa2 =   5.403979177021710663441167681878575087235e-0001,
    197      1.1     ragge qa3 =   7.182865441419627066207655332170665812023e-0002,
    198      1.1     ragge qa4 =   1.261712198087616469108438860983447773726e-0001,
    199      1.1     ragge qa5 =   1.363708391202905087876983523620537833157e-0002,
    200      1.1     ragge qa6 =   1.198449984679910764099772682882189711364e-0002;
    201      1.1     ragge /*
    202      1.1     ragge  * log(sqrt(pi)) for large x expansions.
    203      1.1     ragge  * The tail (lsqrtPI_lo) is included in the rational
    204      1.1     ragge  * approximations.
    205      1.1     ragge */
    206      1.5      matt static const double
    207      1.1     ragge    lsqrtPI_hi = .5723649429247000819387380943226;
    208      1.1     ragge /*
    209      1.1     ragge  * lsqrtPI_lo = .000000000000000005132975581353913;
    210      1.1     ragge  *
    211      1.1     ragge  * Coefficients for approximation to erfc in [2, 4]
    212      1.1     ragge */
    213      1.5      matt static const double
    214      1.1     ragge rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
    215      1.1     ragge rb1  =	 2.15592846101742183841910806188e-008,
    216      1.1     ragge rb2  =	 6.24998557732436510470108714799e-001,
    217      1.1     ragge rb3  =	 8.24849222231141787631258921465e+000,
    218      1.1     ragge rb4  =	 2.63974967372233173534823436057e+001,
    219      1.1     ragge rb5  =	 9.86383092541570505318304640241e+000,
    220      1.1     ragge rb6  =	-7.28024154841991322228977878694e+000,
    221      1.1     ragge rb7  =	 5.96303287280680116566600190708e+000,
    222      1.1     ragge rb8  =	-4.40070358507372993983608466806e+000,
    223      1.1     ragge rb9  =	 2.39923700182518073731330332521e+000,
    224      1.1     ragge rb10 =	-6.89257464785841156285073338950e-001,
    225      1.1     ragge sb1  =	 1.56641558965626774835300238919e+001,
    226      1.1     ragge sb2  =	 7.20522741000949622502957936376e+001,
    227      1.1     ragge sb3  =	 9.60121069770492994166488642804e+001;
    228      1.1     ragge /*
    229      1.1     ragge  * Coefficients for approximation to erfc in [1.25, 2]
    230      1.1     ragge */
    231      1.5      matt static const double
    232      1.1     ragge rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
    233      1.1     ragge rc1  =	 1.28735722546372485255126993930e-005,
    234      1.1     ragge rc2  =	 6.24664954087883916855616917019e-001,
    235      1.1     ragge rc3  =	 4.69798884785807402408863708843e+000,
    236      1.1     ragge rc4  =	 7.61618295853929705430118701770e+000,
    237      1.1     ragge rc5  =	 9.15640208659364240872946538730e-001,
    238      1.1     ragge rc6  =	-3.59753040425048631334448145935e-001,
    239      1.1     ragge rc7  =	 1.42862267989304403403849619281e-001,
    240      1.1     ragge rc8  =	-4.74392758811439801958087514322e-002,
    241      1.1     ragge rc9  =	 1.09964787987580810135757047874e-002,
    242      1.1     ragge rc10 =	-1.28856240494889325194638463046e-003,
    243      1.1     ragge sc1  =	 9.97395106984001955652274773456e+000,
    244      1.1     ragge sc2  =	 2.80952153365721279953959310660e+001,
    245      1.1     ragge sc3  =	 2.19826478142545234106819407316e+001;
    246      1.1     ragge /*
    247      1.1     ragge  * Coefficients for approximation to  erfc in [4,28]
    248      1.1     ragge  */
    249      1.5      matt static const double
    250      1.1     ragge rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
    251      1.1     ragge rd1  =	-4.99999999999640086151350330820e-001,
    252      1.1     ragge rd2  =	 6.24999999772906433825880867516e-001,
    253      1.1     ragge rd3  =	-1.54166659428052432723177389562e+000,
    254      1.1     ragge rd4  =	 5.51561147405411844601985649206e+000,
    255      1.1     ragge rd5  =	-2.55046307982949826964613748714e+001,
    256      1.1     ragge rd6  =	 1.43631424382843846387913799845e+002,
    257      1.1     ragge rd7  =	-9.45789244999420134263345971704e+002,
    258      1.1     ragge rd8  =	 6.94834146607051206956384703517e+003,
    259      1.1     ragge rd9  =	-5.27176414235983393155038356781e+004,
    260      1.1     ragge rd10 =	 3.68530281128672766499221324921e+005,
    261      1.1     ragge rd11 =	-2.06466642800404317677021026611e+006,
    262      1.1     ragge rd12 =	 7.78293889471135381609201431274e+006,
    263      1.1     ragge rd13 =	-1.42821001129434127360582351685e+007;
    264      1.1     ragge 
    265      1.5      matt double
    266      1.5      matt erf(double x)
    267      1.1     ragge {
    268      1.2     ragge 	double R,S,P,Q,ax,s,y,z,r;
    269      1.1     ragge 	if(!finite(x)) {		/* erf(nan)=nan */
    270      1.1     ragge 	    if (isnan(x))
    271      1.1     ragge 		return(x);
    272      1.1     ragge 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
    273      1.1     ragge 	}
    274      1.1     ragge 	if ((ax = x) < 0)
    275      1.1     ragge 		ax = - ax;
    276      1.1     ragge 	if (ax < .84375) {
    277      1.1     ragge 	    if (ax < 3.7e-09) {
    278      1.8  christos 		if (ax < _TINYER)
    279      1.1     ragge 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
    280      1.1     ragge 		return x + p0*x;
    281      1.1     ragge 	    }
    282      1.1     ragge 	    y = x*x;
    283      1.1     ragge 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    284      1.1     ragge 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    285      1.1     ragge 	    return x + x*(p0+r);
    286      1.1     ragge 	}
    287      1.1     ragge 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    288      1.1     ragge 	    s = fabs(x)-one;
    289      1.1     ragge 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    290      1.1     ragge 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    291      1.1     ragge 	    if (x>=0)
    292      1.1     ragge 		return (c + P/Q);
    293      1.1     ragge 	    else
    294      1.1     ragge 		return (-c - P/Q);
    295      1.1     ragge 	}
    296      1.1     ragge 	if (ax >= 6.0) {		/* inf>|x|>=6 */
    297      1.1     ragge 	    if (x >= 0.0)
    298      1.1     ragge 		return (one-tiny);
    299      1.1     ragge 	    else
    300      1.1     ragge 		return (tiny-one);
    301      1.1     ragge 	}
    302      1.1     ragge     /* 1.25 <= |x| < 6 */
    303      1.1     ragge 	z = -ax*ax;
    304      1.1     ragge 	s = -one/z;
    305      1.1     ragge 	if (ax < 2.0) {
    306      1.1     ragge 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    307      1.1     ragge 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    308      1.1     ragge 		S = one+s*(sc1+s*(sc2+s*sc3));
    309      1.1     ragge 	} else {
    310      1.1     ragge 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    311      1.1     ragge 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    312      1.1     ragge 		S = one+s*(sb1+s*(sb2+s*sb3));
    313      1.1     ragge 	}
    314      1.1     ragge 	y = (R/S -.5*s) - lsqrtPI_hi;
    315      1.1     ragge 	z += y;
    316      1.1     ragge 	z = exp(z)/ax;
    317      1.1     ragge 	if (x >= 0)
    318      1.1     ragge 		return (one-z);
    319      1.1     ragge 	else
    320      1.1     ragge 		return (z-one);
    321      1.1     ragge }
    322      1.1     ragge 
    323  1.8.8.1       tls float
    324  1.8.8.1       tls erff(float x)
    325  1.8.8.1       tls {
    326  1.8.8.1       tls 	return (float)erf(x);
    327  1.8.8.1       tls }
    328  1.8.8.1       tls 
    329      1.5      matt double
    330      1.5      matt erfc(double x)
    331      1.1     ragge {
    332      1.2     ragge 	double R,S,P,Q,s,ax,y,z,r;
    333      1.1     ragge 	if (!finite(x)) {
    334      1.1     ragge 		if (isnan(x))		/* erfc(NaN) = NaN */
    335      1.1     ragge 			return(x);
    336      1.1     ragge 		else if (x > 0)		/* erfc(+-inf)=0,2 */
    337      1.1     ragge 			return 0.0;
    338      1.1     ragge 		else
    339      1.1     ragge 			return 2.0;
    340      1.1     ragge 	}
    341      1.1     ragge 	if ((ax = x) < 0)
    342      1.1     ragge 		ax = -ax;
    343      1.1     ragge 	if (ax < .84375) {			/* |x|<0.84375 */
    344      1.1     ragge 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
    345      1.1     ragge 		return one-x;
    346      1.1     ragge 	    y = x*x;
    347      1.1     ragge 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    348      1.1     ragge 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    349      1.1     ragge 	    if (ax < .0625) {  	/* |x|<2**-4 */
    350      1.1     ragge 		return (one-(x+x*(p0+r)));
    351      1.1     ragge 	    } else {
    352      1.1     ragge 		r = x*(p0+r);
    353      1.1     ragge 		r += (x-half);
    354      1.1     ragge 	        return (half - r);
    355      1.1     ragge 	    }
    356      1.1     ragge 	}
    357      1.1     ragge 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    358      1.1     ragge 	    s = ax-one;
    359      1.1     ragge 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    360      1.1     ragge 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    361      1.1     ragge 	    if (x>=0) {
    362      1.4    simonb 	        z  = one-c; return z - P/Q;
    363      1.1     ragge 	    } else {
    364      1.1     ragge 		z = c+P/Q; return one+z;
    365      1.1     ragge 	    }
    366      1.1     ragge 	}
    367      1.3      matt 	if (ax >= 28) {	/* Out of range */
    368      1.1     ragge  		if (x>0)
    369      1.1     ragge 			return (tiny*tiny);
    370      1.1     ragge 		else
    371      1.1     ragge 			return (two-tiny);
    372      1.3      matt 	}
    373      1.1     ragge 	z = ax;
    374      1.1     ragge 	TRUNC(z);
    375      1.1     ragge 	y = z - ax; y *= (ax+z);
    376      1.1     ragge 	z *= -z;			/* Here z + y = -x^2 */
    377      1.1     ragge 		s = one/(-z-y);		/* 1/(x*x) */
    378      1.1     ragge 	if (ax >= 4) {			/* 6 <= ax */
    379      1.1     ragge 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
    380      1.1     ragge 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
    381      1.1     ragge 			+s*(rd11+s*(rd12+s*rd13))))))))))));
    382      1.1     ragge 		y += rd0;
    383      1.1     ragge 	} else if (ax >= 2) {
    384      1.1     ragge 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    385      1.1     ragge 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    386      1.1     ragge 		S = one+s*(sb1+s*(sb2+s*sb3));
    387      1.1     ragge 		y += R/S;
    388      1.1     ragge 		R = -.5*s;
    389      1.1     ragge 	} else {
    390      1.1     ragge 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    391      1.1     ragge 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    392      1.1     ragge 		S = one+s*(sc1+s*(sc2+s*sc3));
    393      1.1     ragge 		y += R/S;
    394      1.1     ragge 		R = -.5*s;
    395      1.1     ragge 	}
    396      1.1     ragge 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
    397      1.1     ragge 	s = ((R + y) - lsqrtPI_hi) + z;
    398      1.1     ragge 	y = (((z-s) - lsqrtPI_hi) + R) + y;
    399      1.1     ragge 	r = __exp__D(s, y)/x;
    400      1.1     ragge 	if (x>0)
    401      1.1     ragge 		return r;
    402      1.1     ragge 	else
    403      1.1     ragge 		return two-r;
    404      1.1     ragge }
    405  1.8.8.1       tls 
    406  1.8.8.1       tls float
    407  1.8.8.1       tls erfcf(float x)
    408  1.8.8.1       tls {
    409  1.8.8.1       tls 	return (float)erfc(x);
    410  1.8.8.1       tls }
    411  1.8.8.1       tls 
    412  1.8.8.1       tls 
    413