Home | History | Annotate | Line # | Download | only in noieee_src
n_erf.c revision 1.1
      1 /*	$NetBSD: n_erf.c,v 1.1 1995/10/10 23:36:43 ragge Exp $	*/
      2 /*-
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
     37 #endif /* not lint */
     38 
     39 #include "mathimpl.h"
     40 
     41 /* Modified Nov 30, 1992 P. McILROY:
     42  *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
     43  * Replaced even+odd with direct calculation for x < .84375,
     44  * to avoid destructive cancellation.
     45  *
     46  * Performance of erfc(x):
     47  * In 300000 trials in the range [.83, .84375] the
     48  * maximum observed error was 3.6ulp.
     49  *
     50  * In [.84735,1.25] the maximum observed error was <2.5ulp in
     51  * 100000 runs in the range [1.2, 1.25].
     52  *
     53  * In [1.25,26] (Not including subnormal results)
     54  * the error is < 1.7ulp.
     55  */
     56 
     57 /* double erf(double x)
     58  * double erfc(double x)
     59  *			     x
     60  *		      2      |\
     61  *     erf(x)  =  ---------  | exp(-t*t)dt
     62  *		   sqrt(pi) \|
     63  *			     0
     64  *
     65  *     erfc(x) =  1-erf(x)
     66  *
     67  * Method:
     68  *      1. Reduce x to |x| by erf(-x) = -erf(x)
     69  *	2. For x in [0, 0.84375]
     70  *	    erf(x)  = x + x*P(x^2)
     71  *          erfc(x) = 1 - erf(x)           if x<=0.25
     72  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
     73  *	   where
     74  *			2		 2	  4		  20
     75  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
     76  * 	   is an approximation to (erf(x)-x)/x with precision
     77  *
     78  *						 -56.45
     79  *			| P - (erf(x)-x)/x | <= 2
     80  *
     81  *
     82  *	   Remark. The formula is derived by noting
     83  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
     84  *	   and that
     85  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
     86  *	   is close to one. The interval is chosen because the fixed
     87  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
     88  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
     89  * 	   guarantee the error is less than one ulp for erf.
     90  *
     91  *      3. For x in [0.84375,1.25], let s = x - 1, and
     92  *         c = 0.84506291151 rounded to single (24 bits)
     93  *         	erf(x)  = c  + P1(s)/Q1(s)
     94  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
     95  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
     96  *	   Remark: here we use the taylor series expansion at x=1.
     97  *		erf(1+s) = erf(1) + s*Poly(s)
     98  *			 = 0.845.. + P1(s)/Q1(s)
     99  *	   That is, we use rational approximation to approximate
    100  *			erf(1+s) - (c = (single)0.84506291151)
    101  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
    102  *	   where
    103  *		P1(s) = degree 6 poly in s
    104  *		Q1(s) = degree 6 poly in s
    105  *
    106  *	4. For x in [1.25, 2]; [2, 4]
    107  *         	erf(x)  = 1.0 - tiny
    108  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
    109  *
    110  *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
    111  *
    112  *      5. For x in [4,28]
    113  *         	erf(x)  = 1.0 - tiny
    114  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
    115  *
    116  *	Where P is degree 14 polynomial in 1/(x*x).
    117  *
    118  *      Notes:
    119  *	   Here 4 and 5 make use of the asymptotic series
    120  *			  exp(-x*x)
    121  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
    122  *			  x*sqrt(pi)
    123  *
    124  *		where for z = 1/(x*x)
    125  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
    126  *
    127  *	   Thus we use rational approximation to approximate
    128  *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
    129  *
    130  *		The error bound for the target function, G(z) for
    131  *		the interval
    132  *		[4, 28]:
    133  * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
    134  *		for [2, 4]:
    135  *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
    136  *		for [1.25, 2]:
    137  *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
    138  *
    139  *      6. For inf > x >= 28
    140  *         	erf(x)  = 1 - tiny  (raise inexact)
    141  *         	erfc(x) = tiny*tiny (raise underflow)
    142  *
    143  *      7. Special cases:
    144  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
    145  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
    146  *	   	erfc/erf(NaN) is NaN
    147  */
    148 
    149 #if defined(vax) || defined(tahoe)
    150 #define _IEEE	0
    151 #define TRUNC(x) (double) (float) (x)
    152 #else
    153 #define _IEEE	1
    154 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
    155 #define infnan(x) 0.0
    156 #endif
    157 
    158 #ifdef _IEEE_LIBM
    159 /*
    160  * redefining "___function" to "function" in _IEEE_LIBM mode
    161  */
    162 #include "ieee_libm.h"
    163 #endif
    164 
    165 static double
    166 tiny	    = 1e-300,
    167 half	    = 0.5,
    168 one	    = 1.0,
    169 two	    = 2.0,
    170 c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
    171 /*
    172  * Coefficients for approximation to erf in [0,0.84375]
    173  */
    174 p0t8 = 1.02703333676410051049867154944018394163280,
    175 p0 =   1.283791670955125638123339436800229927041e-0001,
    176 p1 =  -3.761263890318340796574473028946097022260e-0001,
    177 p2 =   1.128379167093567004871858633779992337238e-0001,
    178 p3 =  -2.686617064084433642889526516177508374437e-0002,
    179 p4 =   5.223977576966219409445780927846432273191e-0003,
    180 p5 =  -8.548323822001639515038738961618255438422e-0004,
    181 p6 =   1.205520092530505090384383082516403772317e-0004,
    182 p7 =  -1.492214100762529635365672665955239554276e-0005,
    183 p8 =   1.640186161764254363152286358441771740838e-0006,
    184 p9 =  -1.571599331700515057841960987689515895479e-0007,
    185 p10=   1.073087585213621540635426191486561494058e-0008;
    186 /*
    187  * Coefficients for approximation to erf in [0.84375,1.25]
    188  */
    189 static double
    190 pa0 =  -2.362118560752659485957248365514511540287e-0003,
    191 pa1 =   4.148561186837483359654781492060070469522e-0001,
    192 pa2 =  -3.722078760357013107593507594535478633044e-0001,
    193 pa3 =   3.183466199011617316853636418691420262160e-0001,
    194 pa4 =  -1.108946942823966771253985510891237782544e-0001,
    195 pa5 =   3.547830432561823343969797140537411825179e-0002,
    196 pa6 =  -2.166375594868790886906539848893221184820e-0003,
    197 qa1 =   1.064208804008442270765369280952419863524e-0001,
    198 qa2 =   5.403979177021710663441167681878575087235e-0001,
    199 qa3 =   7.182865441419627066207655332170665812023e-0002,
    200 qa4 =   1.261712198087616469108438860983447773726e-0001,
    201 qa5 =   1.363708391202905087876983523620537833157e-0002,
    202 qa6 =   1.198449984679910764099772682882189711364e-0002;
    203 /*
    204  * log(sqrt(pi)) for large x expansions.
    205  * The tail (lsqrtPI_lo) is included in the rational
    206  * approximations.
    207 */
    208 static double
    209    lsqrtPI_hi = .5723649429247000819387380943226;
    210 /*
    211  * lsqrtPI_lo = .000000000000000005132975581353913;
    212  *
    213  * Coefficients for approximation to erfc in [2, 4]
    214 */
    215 static double
    216 rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
    217 rb1  =	 2.15592846101742183841910806188e-008,
    218 rb2  =	 6.24998557732436510470108714799e-001,
    219 rb3  =	 8.24849222231141787631258921465e+000,
    220 rb4  =	 2.63974967372233173534823436057e+001,
    221 rb5  =	 9.86383092541570505318304640241e+000,
    222 rb6  =	-7.28024154841991322228977878694e+000,
    223 rb7  =	 5.96303287280680116566600190708e+000,
    224 rb8  =	-4.40070358507372993983608466806e+000,
    225 rb9  =	 2.39923700182518073731330332521e+000,
    226 rb10 =	-6.89257464785841156285073338950e-001,
    227 sb1  =	 1.56641558965626774835300238919e+001,
    228 sb2  =	 7.20522741000949622502957936376e+001,
    229 sb3  =	 9.60121069770492994166488642804e+001;
    230 /*
    231  * Coefficients for approximation to erfc in [1.25, 2]
    232 */
    233 static double
    234 rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
    235 rc1  =	 1.28735722546372485255126993930e-005,
    236 rc2  =	 6.24664954087883916855616917019e-001,
    237 rc3  =	 4.69798884785807402408863708843e+000,
    238 rc4  =	 7.61618295853929705430118701770e+000,
    239 rc5  =	 9.15640208659364240872946538730e-001,
    240 rc6  =	-3.59753040425048631334448145935e-001,
    241 rc7  =	 1.42862267989304403403849619281e-001,
    242 rc8  =	-4.74392758811439801958087514322e-002,
    243 rc9  =	 1.09964787987580810135757047874e-002,
    244 rc10 =	-1.28856240494889325194638463046e-003,
    245 sc1  =	 9.97395106984001955652274773456e+000,
    246 sc2  =	 2.80952153365721279953959310660e+001,
    247 sc3  =	 2.19826478142545234106819407316e+001;
    248 /*
    249  * Coefficients for approximation to  erfc in [4,28]
    250  */
    251 static double
    252 rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
    253 rd1  =	-4.99999999999640086151350330820e-001,
    254 rd2  =	 6.24999999772906433825880867516e-001,
    255 rd3  =	-1.54166659428052432723177389562e+000,
    256 rd4  =	 5.51561147405411844601985649206e+000,
    257 rd5  =	-2.55046307982949826964613748714e+001,
    258 rd6  =	 1.43631424382843846387913799845e+002,
    259 rd7  =	-9.45789244999420134263345971704e+002,
    260 rd8  =	 6.94834146607051206956384703517e+003,
    261 rd9  =	-5.27176414235983393155038356781e+004,
    262 rd10 =	 3.68530281128672766499221324921e+005,
    263 rd11 =	-2.06466642800404317677021026611e+006,
    264 rd12 =	 7.78293889471135381609201431274e+006,
    265 rd13 =	-1.42821001129434127360582351685e+007;
    266 
    267 double erf(x)
    268 	double x;
    269 {
    270 	double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
    271 	if(!finite(x)) {		/* erf(nan)=nan */
    272 	    if (isnan(x))
    273 		return(x);
    274 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
    275 	}
    276 	if ((ax = x) < 0)
    277 		ax = - ax;
    278 	if (ax < .84375) {
    279 	    if (ax < 3.7e-09) {
    280 		if (ax < 1.0e-308)
    281 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
    282 		return x + p0*x;
    283 	    }
    284 	    y = x*x;
    285 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    286 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    287 	    return x + x*(p0+r);
    288 	}
    289 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    290 	    s = fabs(x)-one;
    291 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    292 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    293 	    if (x>=0)
    294 		return (c + P/Q);
    295 	    else
    296 		return (-c - P/Q);
    297 	}
    298 	if (ax >= 6.0) {		/* inf>|x|>=6 */
    299 	    if (x >= 0.0)
    300 		return (one-tiny);
    301 	    else
    302 		return (tiny-one);
    303 	}
    304     /* 1.25 <= |x| < 6 */
    305 	z = -ax*ax;
    306 	s = -one/z;
    307 	if (ax < 2.0) {
    308 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    309 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    310 		S = one+s*(sc1+s*(sc2+s*sc3));
    311 	} else {
    312 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    313 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    314 		S = one+s*(sb1+s*(sb2+s*sb3));
    315 	}
    316 	y = (R/S -.5*s) - lsqrtPI_hi;
    317 	z += y;
    318 	z = exp(z)/ax;
    319 	if (x >= 0)
    320 		return (one-z);
    321 	else
    322 		return (z-one);
    323 }
    324 
    325 double erfc(x)
    326 	double x;
    327 {
    328 	double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
    329 	if (!finite(x)) {
    330 		if (isnan(x))		/* erfc(NaN) = NaN */
    331 			return(x);
    332 		else if (x > 0)		/* erfc(+-inf)=0,2 */
    333 			return 0.0;
    334 		else
    335 			return 2.0;
    336 	}
    337 	if ((ax = x) < 0)
    338 		ax = -ax;
    339 	if (ax < .84375) {			/* |x|<0.84375 */
    340 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
    341 		return one-x;
    342 	    y = x*x;
    343 	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
    344 			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
    345 	    if (ax < .0625) {  	/* |x|<2**-4 */
    346 		return (one-(x+x*(p0+r)));
    347 	    } else {
    348 		r = x*(p0+r);
    349 		r += (x-half);
    350 	        return (half - r);
    351 	    }
    352 	}
    353 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
    354 	    s = ax-one;
    355 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
    356 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
    357 	    if (x>=0) {
    358 	        z  = one-c; return z - P/Q;
    359 	    } else {
    360 		z = c+P/Q; return one+z;
    361 	    }
    362 	}
    363 	if (ax >= 28)	/* Out of range */
    364  		if (x>0)
    365 			return (tiny*tiny);
    366 		else
    367 			return (two-tiny);
    368 	z = ax;
    369 	TRUNC(z);
    370 	y = z - ax; y *= (ax+z);
    371 	z *= -z;			/* Here z + y = -x^2 */
    372 		s = one/(-z-y);		/* 1/(x*x) */
    373 	if (ax >= 4) {			/* 6 <= ax */
    374 		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
    375 			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
    376 			+s*(rd11+s*(rd12+s*rd13))))))))))));
    377 		y += rd0;
    378 	} else if (ax >= 2) {
    379 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
    380 			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
    381 		S = one+s*(sb1+s*(sb2+s*sb3));
    382 		y += R/S;
    383 		R = -.5*s;
    384 	} else {
    385 		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
    386 			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
    387 		S = one+s*(sc1+s*(sc2+s*sc3));
    388 		y += R/S;
    389 		R = -.5*s;
    390 	}
    391 	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
    392 	s = ((R + y) - lsqrtPI_hi) + z;
    393 	y = (((z-s) - lsqrtPI_hi) + R) + y;
    394 	r = __exp__D(s, y)/x;
    395 	if (x>0)
    396 		return r;
    397 	else
    398 		return two-r;
    399 }
    400