Home | History | Annotate | Line # | Download | only in noieee_src
      1  1.9  martin /*      $NetBSD: n_exp.c,v 1.9 2014/10/10 20:58:09 martin Exp $ */
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1985, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.7     agc  * 3. Neither the name of the University nor the names of its contributors
     15  1.1   ragge  *    may be used to endorse or promote products derived from this software
     16  1.1   ragge  *    without specific prior written permission.
     17  1.1   ragge  *
     18  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1   ragge  * SUCH DAMAGE.
     29  1.1   ragge  */
     30  1.1   ragge 
     31  1.1   ragge #ifndef lint
     32  1.2   ragge #if 0
     33  1.1   ragge static char sccsid[] = "@(#)exp.c	8.1 (Berkeley) 6/4/93";
     34  1.2   ragge #endif
     35  1.1   ragge #endif /* not lint */
     36  1.1   ragge 
     37  1.1   ragge /* EXP(X)
     38  1.1   ragge  * RETURN THE EXPONENTIAL OF X
     39  1.1   ragge  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
     40  1.5  simonb  * CODED IN C BY K.C. NG, 1/19/85;
     41  1.1   ragge  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
     42  1.1   ragge  *
     43  1.1   ragge  * Required system supported functions:
     44  1.5  simonb  *	scalb(x,n)
     45  1.5  simonb  *	copysign(x,y)
     46  1.1   ragge  *	finite(x)
     47  1.1   ragge  *
     48  1.1   ragge  * Method:
     49  1.5  simonb  *	1. Argument Reduction: given the input x, find r and integer k such
     50  1.1   ragge  *	   that
     51  1.5  simonb  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     52  1.1   ragge  *	   r will be represented as r := z+c for better accuracy.
     53  1.1   ragge  *
     54  1.5  simonb  *	2. Compute exp(r) by
     55  1.1   ragge  *
     56  1.1   ragge  *		exp(r) = 1 + r + r*R1/(2-R1),
     57  1.1   ragge  *	   where
     58  1.1   ragge  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
     59  1.1   ragge  *
     60  1.1   ragge  *	3. exp(x) = 2^k * exp(r) .
     61  1.1   ragge  *
     62  1.1   ragge  * Special cases:
     63  1.1   ragge  *	exp(INF) is INF, exp(NaN) is NaN;
     64  1.1   ragge  *	exp(-INF)=  0;
     65  1.1   ragge  *	for finite argument, only exp(0)=1 is exact.
     66  1.1   ragge  *
     67  1.1   ragge  * Accuracy:
     68  1.1   ragge  *	exp(x) returns the exponential of x nearly rounded. In a test run
     69  1.1   ragge  *	with 1,156,000 random arguments on a VAX, the maximum observed
     70  1.1   ragge  *	error was 0.869 ulps (units in the last place).
     71  1.1   ragge  *
     72  1.1   ragge  * Constants:
     73  1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
     74  1.1   ragge  * The decimal values may be used, provided that the compiler will convert
     75  1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
     76  1.1   ragge  * shown.
     77  1.1   ragge  */
     78  1.1   ragge 
     79  1.6    matt #define _LIBM_STATIC
     80  1.8  mhitch #include "../src/namespace.h"
     81  1.1   ragge #include "mathimpl.h"
     82  1.1   ragge 
     83  1.8  mhitch #ifdef __weak_alias
     84  1.8  mhitch __weak_alias(exp, _exp);
     85  1.9  martin __weak_alias(_expl, _exp);
     86  1.8  mhitch __weak_alias(expf, _expf);
     87  1.8  mhitch #endif
     88  1.8  mhitch 
     89  1.1   ragge vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     90  1.1   ragge vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     91  1.1   ragge vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     92  1.1   ragge vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
     93  1.1   ragge vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     94  1.1   ragge vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
     95  1.1   ragge vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
     96  1.1   ragge vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
     97  1.1   ragge vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
     98  1.1   ragge vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
     99  1.1   ragge 
    100  1.1   ragge #ifdef vccast
    101  1.1   ragge #define    ln2hi    vccast(ln2hi)
    102  1.1   ragge #define    ln2lo    vccast(ln2lo)
    103  1.1   ragge #define   lnhuge    vccast(lnhuge)
    104  1.1   ragge #define   lntiny    vccast(lntiny)
    105  1.1   ragge #define   invln2    vccast(invln2)
    106  1.1   ragge #define       p1    vccast(p1)
    107  1.1   ragge #define       p2    vccast(p2)
    108  1.1   ragge #define       p3    vccast(p3)
    109  1.1   ragge #define       p4    vccast(p4)
    110  1.1   ragge #define       p5    vccast(p5)
    111  1.1   ragge #endif
    112  1.1   ragge 
    113  1.1   ragge ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
    114  1.1   ragge ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
    115  1.1   ragge ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
    116  1.1   ragge ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
    117  1.1   ragge ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
    118  1.1   ragge ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
    119  1.1   ragge ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
    120  1.1   ragge ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
    121  1.1   ragge ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
    122  1.1   ragge ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
    123  1.1   ragge 
    124  1.6    matt double
    125  1.6    matt exp(double x)
    126  1.1   ragge {
    127  1.1   ragge 	double  z,hi,lo,c;
    128  1.1   ragge 	int k;
    129  1.1   ragge 
    130  1.3    matt #if !defined(__vax__)&&!defined(tahoe)
    131  1.1   ragge 	if(x!=x) return(x);	/* x is NaN */
    132  1.3    matt #endif	/* !defined(__vax__)&&!defined(tahoe) */
    133  1.1   ragge 	if( x <= lnhuge ) {
    134  1.1   ragge 		if( x >= lntiny ) {
    135  1.1   ragge 
    136  1.1   ragge 		    /* argument reduction : x --> x - k*ln2 */
    137  1.1   ragge 
    138  1.1   ragge 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    139  1.1   ragge 
    140  1.1   ragge 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
    141  1.1   ragge 
    142  1.1   ragge 			hi=x-k*ln2hi;
    143  1.1   ragge 			x=hi-(lo=k*ln2lo);
    144  1.1   ragge 
    145  1.1   ragge 		    /* return 2^k*[1+x+x*c/(2+c)]  */
    146  1.1   ragge 			z=x*x;
    147  1.1   ragge 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
    148  1.1   ragge 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
    149  1.1   ragge 
    150  1.1   ragge 		}
    151  1.1   ragge 		/* end of x > lntiny */
    152  1.1   ragge 
    153  1.5  simonb 		else
    154  1.1   ragge 		     /* exp(-big#) underflows to zero */
    155  1.1   ragge 		     if(finite(x))  return(scalb(1.0,-5000));
    156  1.1   ragge 
    157  1.1   ragge 		     /* exp(-INF) is zero */
    158  1.1   ragge 		     else return(0.0);
    159  1.1   ragge 	}
    160  1.1   ragge 	/* end of x < lnhuge */
    161  1.1   ragge 
    162  1.5  simonb 	else
    163  1.1   ragge 	/* exp(INF) is INF, exp(+big#) overflows to INF */
    164  1.1   ragge 	    return( finite(x) ?  scalb(1.0,5000)  : x);
    165  1.1   ragge }
    166  1.1   ragge 
    167  1.8  mhitch float
    168  1.8  mhitch expf(float x)
    169  1.8  mhitch {
    170  1.8  mhitch 	return(exp((double)x));
    171  1.8  mhitch }
    172  1.8  mhitch 
    173  1.1   ragge /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
    174  1.1   ragge 
    175  1.6    matt double
    176  1.6    matt __exp__D(double x, double c)
    177  1.1   ragge {
    178  1.2   ragge 	double  z,hi,lo;
    179  1.1   ragge 	int k;
    180  1.1   ragge 
    181  1.4   ragge #if !defined(__vax__)&&!defined(tahoe)
    182  1.1   ragge 	if (x!=x) return(x);	/* x is NaN */
    183  1.4   ragge #endif	/* !defined(__vax__)&&!defined(tahoe) */
    184  1.1   ragge 	if ( x <= lnhuge ) {
    185  1.1   ragge 		if ( x >= lntiny ) {
    186  1.1   ragge 
    187  1.1   ragge 		    /* argument reduction : x --> x - k*ln2 */
    188  1.1   ragge 			z = invln2*x;
    189  1.1   ragge 			k = z + copysign(.5, x);
    190  1.1   ragge 
    191  1.1   ragge 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
    192  1.1   ragge 
    193  1.1   ragge 			hi=(x-k*ln2hi);			/* Exact. */
    194  1.1   ragge 			x= hi - (lo = k*ln2lo-c);
    195  1.1   ragge 		    /* return 2^k*[1+x+x*c/(2+c)]  */
    196  1.1   ragge 			z=x*x;
    197  1.1   ragge 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
    198  1.1   ragge 			c = (x*c)/(2.0-c);
    199  1.1   ragge 
    200  1.1   ragge 			return  scalb(1.+(hi-(lo - c)), k);
    201  1.1   ragge 		}
    202  1.1   ragge 		/* end of x > lntiny */
    203  1.1   ragge 
    204  1.5  simonb 		else
    205  1.1   ragge 		     /* exp(-big#) underflows to zero */
    206  1.1   ragge 		     if(finite(x))  return(scalb(1.0,-5000));
    207  1.1   ragge 
    208  1.1   ragge 		     /* exp(-INF) is zero */
    209  1.1   ragge 		     else return(0.0);
    210  1.1   ragge 	}
    211  1.1   ragge 	/* end of x < lnhuge */
    212  1.1   ragge 
    213  1.5  simonb 	else
    214  1.1   ragge 	/* exp(INF) is INF, exp(+big#) overflows to INF */
    215  1.1   ragge 	    return( finite(x) ?  scalb(1.0,5000)  : x);
    216  1.1   ragge }
    217