Home | History | Annotate | Line # | Download | only in noieee_src
      1 /*      $NetBSD: n_exp.c,v 1.9 2014/10/10 20:58:09 martin Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #ifndef lint
     32 #if 0
     33 static char sccsid[] = "@(#)exp.c	8.1 (Berkeley) 6/4/93";
     34 #endif
     35 #endif /* not lint */
     36 
     37 /* EXP(X)
     38  * RETURN THE EXPONENTIAL OF X
     39  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
     40  * CODED IN C BY K.C. NG, 1/19/85;
     41  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
     42  *
     43  * Required system supported functions:
     44  *	scalb(x,n)
     45  *	copysign(x,y)
     46  *	finite(x)
     47  *
     48  * Method:
     49  *	1. Argument Reduction: given the input x, find r and integer k such
     50  *	   that
     51  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     52  *	   r will be represented as r := z+c for better accuracy.
     53  *
     54  *	2. Compute exp(r) by
     55  *
     56  *		exp(r) = 1 + r + r*R1/(2-R1),
     57  *	   where
     58  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
     59  *
     60  *	3. exp(x) = 2^k * exp(r) .
     61  *
     62  * Special cases:
     63  *	exp(INF) is INF, exp(NaN) is NaN;
     64  *	exp(-INF)=  0;
     65  *	for finite argument, only exp(0)=1 is exact.
     66  *
     67  * Accuracy:
     68  *	exp(x) returns the exponential of x nearly rounded. In a test run
     69  *	with 1,156,000 random arguments on a VAX, the maximum observed
     70  *	error was 0.869 ulps (units in the last place).
     71  *
     72  * Constants:
     73  * The hexadecimal values are the intended ones for the following constants.
     74  * The decimal values may be used, provided that the compiler will convert
     75  * from decimal to binary accurately enough to produce the hexadecimal values
     76  * shown.
     77  */
     78 
     79 #define _LIBM_STATIC
     80 #include "../src/namespace.h"
     81 #include "mathimpl.h"
     82 
     83 #ifdef __weak_alias
     84 __weak_alias(exp, _exp);
     85 __weak_alias(_expl, _exp);
     86 __weak_alias(expf, _expf);
     87 #endif
     88 
     89 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     90 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     91 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     92 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
     93 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     94 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
     95 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
     96 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
     97 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
     98 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
     99 
    100 #ifdef vccast
    101 #define    ln2hi    vccast(ln2hi)
    102 #define    ln2lo    vccast(ln2lo)
    103 #define   lnhuge    vccast(lnhuge)
    104 #define   lntiny    vccast(lntiny)
    105 #define   invln2    vccast(invln2)
    106 #define       p1    vccast(p1)
    107 #define       p2    vccast(p2)
    108 #define       p3    vccast(p3)
    109 #define       p4    vccast(p4)
    110 #define       p5    vccast(p5)
    111 #endif
    112 
    113 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
    114 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
    115 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
    116 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
    117 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
    118 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
    119 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
    120 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
    121 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
    122 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
    123 
    124 double
    125 exp(double x)
    126 {
    127 	double  z,hi,lo,c;
    128 	int k;
    129 
    130 #if !defined(__vax__)&&!defined(tahoe)
    131 	if(x!=x) return(x);	/* x is NaN */
    132 #endif	/* !defined(__vax__)&&!defined(tahoe) */
    133 	if( x <= lnhuge ) {
    134 		if( x >= lntiny ) {
    135 
    136 		    /* argument reduction : x --> x - k*ln2 */
    137 
    138 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    139 
    140 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
    141 
    142 			hi=x-k*ln2hi;
    143 			x=hi-(lo=k*ln2lo);
    144 
    145 		    /* return 2^k*[1+x+x*c/(2+c)]  */
    146 			z=x*x;
    147 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
    148 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
    149 
    150 		}
    151 		/* end of x > lntiny */
    152 
    153 		else
    154 		     /* exp(-big#) underflows to zero */
    155 		     if(finite(x))  return(scalb(1.0,-5000));
    156 
    157 		     /* exp(-INF) is zero */
    158 		     else return(0.0);
    159 	}
    160 	/* end of x < lnhuge */
    161 
    162 	else
    163 	/* exp(INF) is INF, exp(+big#) overflows to INF */
    164 	    return( finite(x) ?  scalb(1.0,5000)  : x);
    165 }
    166 
    167 float
    168 expf(float x)
    169 {
    170 	return(exp((double)x));
    171 }
    172 
    173 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
    174 
    175 double
    176 __exp__D(double x, double c)
    177 {
    178 	double  z,hi,lo;
    179 	int k;
    180 
    181 #if !defined(__vax__)&&!defined(tahoe)
    182 	if (x!=x) return(x);	/* x is NaN */
    183 #endif	/* !defined(__vax__)&&!defined(tahoe) */
    184 	if ( x <= lnhuge ) {
    185 		if ( x >= lntiny ) {
    186 
    187 		    /* argument reduction : x --> x - k*ln2 */
    188 			z = invln2*x;
    189 			k = z + copysign(.5, x);
    190 
    191 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
    192 
    193 			hi=(x-k*ln2hi);			/* Exact. */
    194 			x= hi - (lo = k*ln2lo-c);
    195 		    /* return 2^k*[1+x+x*c/(2+c)]  */
    196 			z=x*x;
    197 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
    198 			c = (x*c)/(2.0-c);
    199 
    200 			return  scalb(1.+(hi-(lo - c)), k);
    201 		}
    202 		/* end of x > lntiny */
    203 
    204 		else
    205 		     /* exp(-big#) underflows to zero */
    206 		     if(finite(x))  return(scalb(1.0,-5000));
    207 
    208 		     /* exp(-INF) is zero */
    209 		     else return(0.0);
    210 	}
    211 	/* end of x < lnhuge */
    212 
    213 	else
    214 	/* exp(INF) is INF, exp(+big#) overflows to INF */
    215 	    return( finite(x) ?  scalb(1.0,5000)  : x);
    216 }
    217