n_exp.c revision 1.3 1 1.3 matt /* $NetBSD: n_exp.c,v 1.3 1998/10/20 02:26:10 matt Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1985, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge /* EXP(X)
42 1.1 ragge * RETURN THE EXPONENTIAL OF X
43 1.1 ragge * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
44 1.1 ragge * CODED IN C BY K.C. NG, 1/19/85;
45 1.1 ragge * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
46 1.1 ragge *
47 1.1 ragge * Required system supported functions:
48 1.1 ragge * scalb(x,n)
49 1.1 ragge * copysign(x,y)
50 1.1 ragge * finite(x)
51 1.1 ragge *
52 1.1 ragge * Method:
53 1.1 ragge * 1. Argument Reduction: given the input x, find r and integer k such
54 1.1 ragge * that
55 1.1 ragge * x = k*ln2 + r, |r| <= 0.5*ln2 .
56 1.1 ragge * r will be represented as r := z+c for better accuracy.
57 1.1 ragge *
58 1.1 ragge * 2. Compute exp(r) by
59 1.1 ragge *
60 1.1 ragge * exp(r) = 1 + r + r*R1/(2-R1),
61 1.1 ragge * where
62 1.1 ragge * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
63 1.1 ragge *
64 1.1 ragge * 3. exp(x) = 2^k * exp(r) .
65 1.1 ragge *
66 1.1 ragge * Special cases:
67 1.1 ragge * exp(INF) is INF, exp(NaN) is NaN;
68 1.1 ragge * exp(-INF)= 0;
69 1.1 ragge * for finite argument, only exp(0)=1 is exact.
70 1.1 ragge *
71 1.1 ragge * Accuracy:
72 1.1 ragge * exp(x) returns the exponential of x nearly rounded. In a test run
73 1.1 ragge * with 1,156,000 random arguments on a VAX, the maximum observed
74 1.1 ragge * error was 0.869 ulps (units in the last place).
75 1.1 ragge *
76 1.1 ragge * Constants:
77 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
78 1.1 ragge * The decimal values may be used, provided that the compiler will convert
79 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
80 1.1 ragge * shown.
81 1.1 ragge */
82 1.1 ragge
83 1.1 ragge #include "mathimpl.h"
84 1.1 ragge
85 1.1 ragge vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
86 1.1 ragge vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
87 1.1 ragge vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
88 1.1 ragge vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)
89 1.1 ragge vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
90 1.1 ragge vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)
91 1.1 ragge vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)
92 1.1 ragge vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
93 1.1 ragge vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
94 1.1 ragge vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
95 1.1 ragge
96 1.1 ragge #ifdef vccast
97 1.1 ragge #define ln2hi vccast(ln2hi)
98 1.1 ragge #define ln2lo vccast(ln2lo)
99 1.1 ragge #define lnhuge vccast(lnhuge)
100 1.1 ragge #define lntiny vccast(lntiny)
101 1.1 ragge #define invln2 vccast(invln2)
102 1.1 ragge #define p1 vccast(p1)
103 1.1 ragge #define p2 vccast(p2)
104 1.1 ragge #define p3 vccast(p3)
105 1.1 ragge #define p4 vccast(p4)
106 1.1 ragge #define p5 vccast(p5)
107 1.1 ragge #endif
108 1.1 ragge
109 1.1 ragge ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)
110 1.1 ragge ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)
111 1.1 ragge ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)
112 1.1 ragge ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
113 1.1 ragge ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)
114 1.1 ragge ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
115 1.1 ragge ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
116 1.1 ragge ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
117 1.1 ragge ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)
118 1.1 ragge ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
119 1.1 ragge
120 1.1 ragge double exp(x)
121 1.1 ragge double x;
122 1.1 ragge {
123 1.1 ragge double z,hi,lo,c;
124 1.1 ragge int k;
125 1.1 ragge
126 1.3 matt #if !defined(__vax__)&&!defined(tahoe)
127 1.1 ragge if(x!=x) return(x); /* x is NaN */
128 1.3 matt #endif /* !defined(__vax__)&&!defined(tahoe) */
129 1.1 ragge if( x <= lnhuge ) {
130 1.1 ragge if( x >= lntiny ) {
131 1.1 ragge
132 1.1 ragge /* argument reduction : x --> x - k*ln2 */
133 1.1 ragge
134 1.1 ragge k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
135 1.1 ragge
136 1.1 ragge /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
137 1.1 ragge
138 1.1 ragge hi=x-k*ln2hi;
139 1.1 ragge x=hi-(lo=k*ln2lo);
140 1.1 ragge
141 1.1 ragge /* return 2^k*[1+x+x*c/(2+c)] */
142 1.1 ragge z=x*x;
143 1.1 ragge c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
144 1.1 ragge return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
145 1.1 ragge
146 1.1 ragge }
147 1.1 ragge /* end of x > lntiny */
148 1.1 ragge
149 1.1 ragge else
150 1.1 ragge /* exp(-big#) underflows to zero */
151 1.1 ragge if(finite(x)) return(scalb(1.0,-5000));
152 1.1 ragge
153 1.1 ragge /* exp(-INF) is zero */
154 1.1 ragge else return(0.0);
155 1.1 ragge }
156 1.1 ragge /* end of x < lnhuge */
157 1.1 ragge
158 1.1 ragge else
159 1.1 ragge /* exp(INF) is INF, exp(+big#) overflows to INF */
160 1.1 ragge return( finite(x) ? scalb(1.0,5000) : x);
161 1.1 ragge }
162 1.1 ragge
163 1.1 ragge /* returns exp(r = x + c) for |c| < |x| with no overlap. */
164 1.1 ragge
165 1.1 ragge double __exp__D(x, c)
166 1.1 ragge double x, c;
167 1.1 ragge {
168 1.2 ragge double z,hi,lo;
169 1.1 ragge int k;
170 1.1 ragge
171 1.1 ragge #if !defined(vax)&&!defined(tahoe)
172 1.1 ragge if (x!=x) return(x); /* x is NaN */
173 1.1 ragge #endif /* !defined(vax)&&!defined(tahoe) */
174 1.1 ragge if ( x <= lnhuge ) {
175 1.1 ragge if ( x >= lntiny ) {
176 1.1 ragge
177 1.1 ragge /* argument reduction : x --> x - k*ln2 */
178 1.1 ragge z = invln2*x;
179 1.1 ragge k = z + copysign(.5, x);
180 1.1 ragge
181 1.1 ragge /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
182 1.1 ragge
183 1.1 ragge hi=(x-k*ln2hi); /* Exact. */
184 1.1 ragge x= hi - (lo = k*ln2lo-c);
185 1.1 ragge /* return 2^k*[1+x+x*c/(2+c)] */
186 1.1 ragge z=x*x;
187 1.1 ragge c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
188 1.1 ragge c = (x*c)/(2.0-c);
189 1.1 ragge
190 1.1 ragge return scalb(1.+(hi-(lo - c)), k);
191 1.1 ragge }
192 1.1 ragge /* end of x > lntiny */
193 1.1 ragge
194 1.1 ragge else
195 1.1 ragge /* exp(-big#) underflows to zero */
196 1.1 ragge if(finite(x)) return(scalb(1.0,-5000));
197 1.1 ragge
198 1.1 ragge /* exp(-INF) is zero */
199 1.1 ragge else return(0.0);
200 1.1 ragge }
201 1.1 ragge /* end of x < lnhuge */
202 1.1 ragge
203 1.1 ragge else
204 1.1 ragge /* exp(INF) is INF, exp(+big#) overflows to INF */
205 1.1 ragge return( finite(x) ? scalb(1.0,5000) : x);
206 1.1 ragge }
207