n_exp.c revision 1.1 1 /* $NetBSD: n_exp.c,v 1.1 1995/10/10 23:36:44 ragge Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";
37 #endif /* not lint */
38
39 /* EXP(X)
40 * RETURN THE EXPONENTIAL OF X
41 * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
42 * CODED IN C BY K.C. NG, 1/19/85;
43 * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
44 *
45 * Required system supported functions:
46 * scalb(x,n)
47 * copysign(x,y)
48 * finite(x)
49 *
50 * Method:
51 * 1. Argument Reduction: given the input x, find r and integer k such
52 * that
53 * x = k*ln2 + r, |r| <= 0.5*ln2 .
54 * r will be represented as r := z+c for better accuracy.
55 *
56 * 2. Compute exp(r) by
57 *
58 * exp(r) = 1 + r + r*R1/(2-R1),
59 * where
60 * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
61 *
62 * 3. exp(x) = 2^k * exp(r) .
63 *
64 * Special cases:
65 * exp(INF) is INF, exp(NaN) is NaN;
66 * exp(-INF)= 0;
67 * for finite argument, only exp(0)=1 is exact.
68 *
69 * Accuracy:
70 * exp(x) returns the exponential of x nearly rounded. In a test run
71 * with 1,156,000 random arguments on a VAX, the maximum observed
72 * error was 0.869 ulps (units in the last place).
73 *
74 * Constants:
75 * The hexadecimal values are the intended ones for the following constants.
76 * The decimal values may be used, provided that the compiler will convert
77 * from decimal to binary accurately enough to produce the hexadecimal values
78 * shown.
79 */
80
81 #include "mathimpl.h"
82
83 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
84 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
85 vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
86 vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)
87 vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
88 vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)
89 vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)
90 vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
91 vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
92 vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
93
94 #ifdef vccast
95 #define ln2hi vccast(ln2hi)
96 #define ln2lo vccast(ln2lo)
97 #define lnhuge vccast(lnhuge)
98 #define lntiny vccast(lntiny)
99 #define invln2 vccast(invln2)
100 #define p1 vccast(p1)
101 #define p2 vccast(p2)
102 #define p3 vccast(p3)
103 #define p4 vccast(p4)
104 #define p5 vccast(p5)
105 #endif
106
107 ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)
108 ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)
109 ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)
110 ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
111 ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)
112 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
113 ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
114 ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
115 ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)
116 ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
117
118 double exp(x)
119 double x;
120 {
121 double z,hi,lo,c;
122 int k;
123
124 #if !defined(vax)&&!defined(tahoe)
125 if(x!=x) return(x); /* x is NaN */
126 #endif /* !defined(vax)&&!defined(tahoe) */
127 if( x <= lnhuge ) {
128 if( x >= lntiny ) {
129
130 /* argument reduction : x --> x - k*ln2 */
131
132 k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
133
134 /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
135
136 hi=x-k*ln2hi;
137 x=hi-(lo=k*ln2lo);
138
139 /* return 2^k*[1+x+x*c/(2+c)] */
140 z=x*x;
141 c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
142 return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
143
144 }
145 /* end of x > lntiny */
146
147 else
148 /* exp(-big#) underflows to zero */
149 if(finite(x)) return(scalb(1.0,-5000));
150
151 /* exp(-INF) is zero */
152 else return(0.0);
153 }
154 /* end of x < lnhuge */
155
156 else
157 /* exp(INF) is INF, exp(+big#) overflows to INF */
158 return( finite(x) ? scalb(1.0,5000) : x);
159 }
160
161 /* returns exp(r = x + c) for |c| < |x| with no overlap. */
162
163 double __exp__D(x, c)
164 double x, c;
165 {
166 double z,hi,lo, t;
167 int k;
168
169 #if !defined(vax)&&!defined(tahoe)
170 if (x!=x) return(x); /* x is NaN */
171 #endif /* !defined(vax)&&!defined(tahoe) */
172 if ( x <= lnhuge ) {
173 if ( x >= lntiny ) {
174
175 /* argument reduction : x --> x - k*ln2 */
176 z = invln2*x;
177 k = z + copysign(.5, x);
178
179 /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
180
181 hi=(x-k*ln2hi); /* Exact. */
182 x= hi - (lo = k*ln2lo-c);
183 /* return 2^k*[1+x+x*c/(2+c)] */
184 z=x*x;
185 c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
186 c = (x*c)/(2.0-c);
187
188 return scalb(1.+(hi-(lo - c)), k);
189 }
190 /* end of x > lntiny */
191
192 else
193 /* exp(-big#) underflows to zero */
194 if(finite(x)) return(scalb(1.0,-5000));
195
196 /* exp(-INF) is zero */
197 else return(0.0);
198 }
199 /* end of x < lnhuge */
200
201 else
202 /* exp(INF) is INF, exp(+big#) overflows to INF */
203 return( finite(x) ? scalb(1.0,5000) : x);
204 }
205