Home | History | Annotate | Line # | Download | only in noieee_src
n_exp.c revision 1.2
      1 /*      $NetBSD: n_exp.c,v 1.2 1997/10/20 14:12:17 ragge Exp $ */
      2 /*
      3  * Copyright (c) 1985, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)exp.c	8.1 (Berkeley) 6/4/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 /* EXP(X)
     42  * RETURN THE EXPONENTIAL OF X
     43  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
     44  * CODED IN C BY K.C. NG, 1/19/85;
     45  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
     46  *
     47  * Required system supported functions:
     48  *	scalb(x,n)
     49  *	copysign(x,y)
     50  *	finite(x)
     51  *
     52  * Method:
     53  *	1. Argument Reduction: given the input x, find r and integer k such
     54  *	   that
     55  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
     56  *	   r will be represented as r := z+c for better accuracy.
     57  *
     58  *	2. Compute exp(r) by
     59  *
     60  *		exp(r) = 1 + r + r*R1/(2-R1),
     61  *	   where
     62  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
     63  *
     64  *	3. exp(x) = 2^k * exp(r) .
     65  *
     66  * Special cases:
     67  *	exp(INF) is INF, exp(NaN) is NaN;
     68  *	exp(-INF)=  0;
     69  *	for finite argument, only exp(0)=1 is exact.
     70  *
     71  * Accuracy:
     72  *	exp(x) returns the exponential of x nearly rounded. In a test run
     73  *	with 1,156,000 random arguments on a VAX, the maximum observed
     74  *	error was 0.869 ulps (units in the last place).
     75  *
     76  * Constants:
     77  * The hexadecimal values are the intended ones for the following constants.
     78  * The decimal values may be used, provided that the compiler will convert
     79  * from decimal to binary accurately enough to produce the hexadecimal values
     80  * shown.
     81  */
     82 
     83 #include "mathimpl.h"
     84 
     85 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
     86 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
     87 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
     88 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
     89 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
     90 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
     91 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
     92 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
     93 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
     94 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
     95 
     96 #ifdef vccast
     97 #define    ln2hi    vccast(ln2hi)
     98 #define    ln2lo    vccast(ln2lo)
     99 #define   lnhuge    vccast(lnhuge)
    100 #define   lntiny    vccast(lntiny)
    101 #define   invln2    vccast(invln2)
    102 #define       p1    vccast(p1)
    103 #define       p2    vccast(p2)
    104 #define       p3    vccast(p3)
    105 #define       p4    vccast(p4)
    106 #define       p5    vccast(p5)
    107 #endif
    108 
    109 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
    110 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
    111 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
    112 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
    113 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
    114 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
    115 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
    116 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
    117 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
    118 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
    119 
    120 double exp(x)
    121 double x;
    122 {
    123 	double  z,hi,lo,c;
    124 	int k;
    125 
    126 #if !defined(vax)&&!defined(tahoe)
    127 	if(x!=x) return(x);	/* x is NaN */
    128 #endif	/* !defined(vax)&&!defined(tahoe) */
    129 	if( x <= lnhuge ) {
    130 		if( x >= lntiny ) {
    131 
    132 		    /* argument reduction : x --> x - k*ln2 */
    133 
    134 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
    135 
    136 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
    137 
    138 			hi=x-k*ln2hi;
    139 			x=hi-(lo=k*ln2lo);
    140 
    141 		    /* return 2^k*[1+x+x*c/(2+c)]  */
    142 			z=x*x;
    143 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
    144 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
    145 
    146 		}
    147 		/* end of x > lntiny */
    148 
    149 		else
    150 		     /* exp(-big#) underflows to zero */
    151 		     if(finite(x))  return(scalb(1.0,-5000));
    152 
    153 		     /* exp(-INF) is zero */
    154 		     else return(0.0);
    155 	}
    156 	/* end of x < lnhuge */
    157 
    158 	else
    159 	/* exp(INF) is INF, exp(+big#) overflows to INF */
    160 	    return( finite(x) ?  scalb(1.0,5000)  : x);
    161 }
    162 
    163 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
    164 
    165 double __exp__D(x, c)
    166 double x, c;
    167 {
    168 	double  z,hi,lo;
    169 	int k;
    170 
    171 #if !defined(vax)&&!defined(tahoe)
    172 	if (x!=x) return(x);	/* x is NaN */
    173 #endif	/* !defined(vax)&&!defined(tahoe) */
    174 	if ( x <= lnhuge ) {
    175 		if ( x >= lntiny ) {
    176 
    177 		    /* argument reduction : x --> x - k*ln2 */
    178 			z = invln2*x;
    179 			k = z + copysign(.5, x);
    180 
    181 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
    182 
    183 			hi=(x-k*ln2hi);			/* Exact. */
    184 			x= hi - (lo = k*ln2lo-c);
    185 		    /* return 2^k*[1+x+x*c/(2+c)]  */
    186 			z=x*x;
    187 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
    188 			c = (x*c)/(2.0-c);
    189 
    190 			return  scalb(1.+(hi-(lo - c)), k);
    191 		}
    192 		/* end of x > lntiny */
    193 
    194 		else
    195 		     /* exp(-big#) underflows to zero */
    196 		     if(finite(x))  return(scalb(1.0,-5000));
    197 
    198 		     /* exp(-INF) is zero */
    199 		     else return(0.0);
    200 	}
    201 	/* end of x < lnhuge */
    202 
    203 	else
    204 	/* exp(INF) is INF, exp(+big#) overflows to INF */
    205 	    return( finite(x) ?  scalb(1.0,5000)  : x);
    206 }
    207