n_exp.c revision 1.4 1 /* $NetBSD: n_exp.c,v 1.4 1998/11/08 19:29:34 ragge Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";
38 #endif
39 #endif /* not lint */
40
41 /* EXP(X)
42 * RETURN THE EXPONENTIAL OF X
43 * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
44 * CODED IN C BY K.C. NG, 1/19/85;
45 * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
46 *
47 * Required system supported functions:
48 * scalb(x,n)
49 * copysign(x,y)
50 * finite(x)
51 *
52 * Method:
53 * 1. Argument Reduction: given the input x, find r and integer k such
54 * that
55 * x = k*ln2 + r, |r| <= 0.5*ln2 .
56 * r will be represented as r := z+c for better accuracy.
57 *
58 * 2. Compute exp(r) by
59 *
60 * exp(r) = 1 + r + r*R1/(2-R1),
61 * where
62 * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
63 *
64 * 3. exp(x) = 2^k * exp(r) .
65 *
66 * Special cases:
67 * exp(INF) is INF, exp(NaN) is NaN;
68 * exp(-INF)= 0;
69 * for finite argument, only exp(0)=1 is exact.
70 *
71 * Accuracy:
72 * exp(x) returns the exponential of x nearly rounded. In a test run
73 * with 1,156,000 random arguments on a VAX, the maximum observed
74 * error was 0.869 ulps (units in the last place).
75 *
76 * Constants:
77 * The hexadecimal values are the intended ones for the following constants.
78 * The decimal values may be used, provided that the compiler will convert
79 * from decimal to binary accurately enough to produce the hexadecimal values
80 * shown.
81 */
82
83 #include "mathimpl.h"
84
85 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
86 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
87 vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
88 vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)
89 vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
90 vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)
91 vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)
92 vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
93 vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
94 vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
95
96 #ifdef vccast
97 #define ln2hi vccast(ln2hi)
98 #define ln2lo vccast(ln2lo)
99 #define lnhuge vccast(lnhuge)
100 #define lntiny vccast(lntiny)
101 #define invln2 vccast(invln2)
102 #define p1 vccast(p1)
103 #define p2 vccast(p2)
104 #define p3 vccast(p3)
105 #define p4 vccast(p4)
106 #define p5 vccast(p5)
107 #endif
108
109 ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)
110 ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)
111 ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)
112 ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
113 ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)
114 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
115 ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
116 ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
117 ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)
118 ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
119
120 double exp(x)
121 double x;
122 {
123 double z,hi,lo,c;
124 int k;
125
126 #if !defined(__vax__)&&!defined(tahoe)
127 if(x!=x) return(x); /* x is NaN */
128 #endif /* !defined(__vax__)&&!defined(tahoe) */
129 if( x <= lnhuge ) {
130 if( x >= lntiny ) {
131
132 /* argument reduction : x --> x - k*ln2 */
133
134 k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
135
136 /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
137
138 hi=x-k*ln2hi;
139 x=hi-(lo=k*ln2lo);
140
141 /* return 2^k*[1+x+x*c/(2+c)] */
142 z=x*x;
143 c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
144 return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
145
146 }
147 /* end of x > lntiny */
148
149 else
150 /* exp(-big#) underflows to zero */
151 if(finite(x)) return(scalb(1.0,-5000));
152
153 /* exp(-INF) is zero */
154 else return(0.0);
155 }
156 /* end of x < lnhuge */
157
158 else
159 /* exp(INF) is INF, exp(+big#) overflows to INF */
160 return( finite(x) ? scalb(1.0,5000) : x);
161 }
162
163 /* returns exp(r = x + c) for |c| < |x| with no overlap. */
164
165 double __exp__D(x, c)
166 double x, c;
167 {
168 double z,hi,lo;
169 int k;
170
171 #if !defined(__vax__)&&!defined(tahoe)
172 if (x!=x) return(x); /* x is NaN */
173 #endif /* !defined(__vax__)&&!defined(tahoe) */
174 if ( x <= lnhuge ) {
175 if ( x >= lntiny ) {
176
177 /* argument reduction : x --> x - k*ln2 */
178 z = invln2*x;
179 k = z + copysign(.5, x);
180
181 /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
182
183 hi=(x-k*ln2hi); /* Exact. */
184 x= hi - (lo = k*ln2lo-c);
185 /* return 2^k*[1+x+x*c/(2+c)] */
186 z=x*x;
187 c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
188 c = (x*c)/(2.0-c);
189
190 return scalb(1.+(hi-(lo - c)), k);
191 }
192 /* end of x > lntiny */
193
194 else
195 /* exp(-big#) underflows to zero */
196 if(finite(x)) return(scalb(1.0,-5000));
197
198 /* exp(-INF) is zero */
199 else return(0.0);
200 }
201 /* end of x < lnhuge */
202
203 else
204 /* exp(INF) is INF, exp(+big#) overflows to INF */
205 return( finite(x) ? scalb(1.0,5000) : x);
206 }
207