Home | History | Annotate | Line # | Download | only in noieee_src
      1 /*      $NetBSD: n_log.c,v 1.9 2024/07/16 14:52:50 riastradh Exp $ */
      2 /*
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __RCSID("$NetBSD: n_log.c,v 1.9 2024/07/16 14:52:50 riastradh Exp $");
     33 
     34 #ifndef lint
     35 #if 0
     36 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
     37 #endif
     38 #endif /* not lint */
     39 
     40 #include "namespace.h"
     41 
     42 #include <math.h>
     43 #include <errno.h>
     44 
     45 #include "mathimpl.h"
     46 
     47 __weak_alias(logl, _logl)
     48 __strong_alias(_logl, _log)
     49 
     50 /* Table-driven natural logarithm.
     51  *
     52  * This code was derived, with minor modifications, from:
     53  *	Peter Tang, "Table-Driven Implementation of the
     54  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
     55  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
     56  *
     57  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
     58  * where F = j/128 for j an integer in [0, 128].
     59  *
     60  * log(2^m) = log2_hi*m + log2_tail*m
     61  * since m is an integer, the dominant term is exact.
     62  * m has at most 10 digits (for subnormal numbers),
     63  * and log2_hi has 11 trailing zero bits.
     64  *
     65  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
     66  * logF_hi[] + 512 is exact.
     67  *
     68  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
     69  * the leading term is calculated to extra precision in two
     70  * parts, the larger of which adds exactly to the dominant
     71  * m and F terms.
     72  * There are two cases:
     73  *	1. when m, j are non-zero (m | j), use absolute
     74  *	   precision for the leading term.
     75  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
     76  *	   In this case, use a relative precision of 24 bits.
     77  * (This is done differently in the original paper)
     78  *
     79  * Special cases:
     80  *	0	return signalling -Inf
     81  *	neg	return signalling NaN
     82  *	+Inf	return +Inf
     83 */
     84 
     85 #if defined(__vax__) || defined(tahoe)
     86 #define _IEEE		0
     87 #define TRUNC(x)	x = (double) (float) (x)
     88 #else
     89 #define _IEEE		1
     90 #define endian		(((*(int *) &one)) ? 1 : 0)
     91 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     92 #define infnan(x)	0.0
     93 #endif
     94 
     95 #define N 128
     96 
     97 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     98  * Used for generation of extend precision logarithms.
     99  * The constant 35184372088832 is 2^45, so the divide is exact.
    100  * It ensures correct reading of logF_head, even for inaccurate
    101  * decimal-to-binary conversion routines.  (Everybody gets the
    102  * right answer for integers less than 2^53.)
    103  * Values for log(F) were generated using error < 10^-57 absolute
    104  * with the bc -l package.
    105 */
    106 static const double	A1 = 	  .08333333333333178827;
    107 static const double	A2 = 	  .01250000000377174923;
    108 static const double	A3 =	 .002232139987919447809;
    109 static const double	A4 =	.0004348877777076145742;
    110 
    111 static const double logF_head[N+1] = {
    112 	0.,
    113 	.007782140442060381246,
    114 	.015504186535963526694,
    115 	.023167059281547608406,
    116 	.030771658666765233647,
    117 	.038318864302141264488,
    118 	.045809536031242714670,
    119 	.053244514518837604555,
    120 	.060624621816486978786,
    121 	.067950661908525944454,
    122 	.075223421237524235039,
    123 	.082443669210988446138,
    124 	.089612158689760690322,
    125 	.096729626458454731618,
    126 	.103796793681567578460,
    127 	.110814366340264314203,
    128 	.117783035656430001836,
    129 	.124703478501032805070,
    130 	.131576357788617315236,
    131 	.138402322859292326029,
    132 	.145182009844575077295,
    133 	.151916042025732167530,
    134 	.158605030176659056451,
    135 	.165249572895390883786,
    136 	.171850256926518341060,
    137 	.178407657472689606947,
    138 	.184922338493834104156,
    139 	.191394852999565046047,
    140 	.197825743329758552135,
    141 	.204215541428766300668,
    142 	.210564769107350002741,
    143 	.216873938300523150246,
    144 	.223143551314024080056,
    145 	.229374101064877322642,
    146 	.235566071312860003672,
    147 	.241719936886966024758,
    148 	.247836163904594286577,
    149 	.253915209980732470285,
    150 	.259957524436686071567,
    151 	.265963548496984003577,
    152 	.271933715484010463114,
    153 	.277868451003087102435,
    154 	.283768173130738432519,
    155 	.289633292582948342896,
    156 	.295464212893421063199,
    157 	.301261330578199704177,
    158 	.307025035294827830512,
    159 	.312755710004239517729,
    160 	.318453731118097493890,
    161 	.324119468654316733591,
    162 	.329753286372579168528,
    163 	.335355541920762334484,
    164 	.340926586970454081892,
    165 	.346466767346100823488,
    166 	.351976423156884266063,
    167 	.357455888922231679316,
    168 	.362905493689140712376,
    169 	.368325561158599157352,
    170 	.373716409793814818840,
    171 	.379078352934811846353,
    172 	.384411698910298582632,
    173 	.389716751140440464951,
    174 	.394993808240542421117,
    175 	.400243164127459749579,
    176 	.405465108107819105498,
    177 	.410659924985338875558,
    178 	.415827895143593195825,
    179 	.420969294644237379543,
    180 	.426084395310681429691,
    181 	.431173464818130014464,
    182 	.436236766774527495726,
    183 	.441274560805140936281,
    184 	.446287102628048160113,
    185 	.451274644139630254358,
    186 	.456237433481874177232,
    187 	.461175715122408291790,
    188 	.466089729924533457960,
    189 	.470979715219073113985,
    190 	.475845904869856894947,
    191 	.480688529345570714212,
    192 	.485507815781602403149,
    193 	.490303988045525329653,
    194 	.495077266798034543171,
    195 	.499827869556611403822,
    196 	.504556010751912253908,
    197 	.509261901790523552335,
    198 	.513945751101346104405,
    199 	.518607764208354637958,
    200 	.523248143765158602036,
    201 	.527867089620485785417,
    202 	.532464798869114019908,
    203 	.537041465897345915436,
    204 	.541597282432121573947,
    205 	.546132437597407260909,
    206 	.550647117952394182793,
    207 	.555141507540611200965,
    208 	.559615787935399566777,
    209 	.564070138285387656651,
    210 	.568504735352689749561,
    211 	.572919753562018740922,
    212 	.577315365035246941260,
    213 	.581691739635061821900,
    214 	.586049045003164792433,
    215 	.590387446602107957005,
    216 	.594707107746216934174,
    217 	.599008189645246602594,
    218 	.603290851438941899687,
    219 	.607555250224322662688,
    220 	.611801541106615331955,
    221 	.616029877215623855590,
    222 	.620240409751204424537,
    223 	.624433288012369303032,
    224 	.628608659422752680256,
    225 	.632766669570628437213,
    226 	.636907462236194987781,
    227 	.641031179420679109171,
    228 	.645137961373620782978,
    229 	.649227946625615004450,
    230 	.653301272011958644725,
    231 	.657358072709030238911,
    232 	.661398482245203922502,
    233 	.665422632544505177065,
    234 	.669430653942981734871,
    235 	.673422675212350441142,
    236 	.677398823590920073911,
    237 	.681359224807238206267,
    238 	.685304003098281100392,
    239 	.689233281238557538017,
    240 	.693147180560117703862
    241 };
    242 
    243 static const double logF_tail[N+1] = {
    244 	0.,
    245 	-.00000000000000543229938420049,
    246 	 .00000000000000172745674997061,
    247 	-.00000000000001323017818229233,
    248 	-.00000000000001154527628289872,
    249 	-.00000000000000466529469958300,
    250 	 .00000000000005148849572685810,
    251 	-.00000000000002532168943117445,
    252 	-.00000000000005213620639136504,
    253 	-.00000000000001819506003016881,
    254 	 .00000000000006329065958724544,
    255 	 .00000000000008614512936087814,
    256 	-.00000000000007355770219435028,
    257 	 .00000000000009638067658552277,
    258 	 .00000000000007598636597194141,
    259 	 .00000000000002579999128306990,
    260 	-.00000000000004654729747598444,
    261 	-.00000000000007556920687451336,
    262 	 .00000000000010195735223708472,
    263 	-.00000000000017319034406422306,
    264 	-.00000000000007718001336828098,
    265 	 .00000000000010980754099855238,
    266 	-.00000000000002047235780046195,
    267 	-.00000000000008372091099235912,
    268 	 .00000000000014088127937111135,
    269 	 .00000000000012869017157588257,
    270 	 .00000000000017788850778198106,
    271 	 .00000000000006440856150696891,
    272 	 .00000000000016132822667240822,
    273 	-.00000000000007540916511956188,
    274 	-.00000000000000036507188831790,
    275 	 .00000000000009120937249914984,
    276 	 .00000000000018567570959796010,
    277 	-.00000000000003149265065191483,
    278 	-.00000000000009309459495196889,
    279 	 .00000000000017914338601329117,
    280 	-.00000000000001302979717330866,
    281 	 .00000000000023097385217586939,
    282 	 .00000000000023999540484211737,
    283 	 .00000000000015393776174455408,
    284 	-.00000000000036870428315837678,
    285 	 .00000000000036920375082080089,
    286 	-.00000000000009383417223663699,
    287 	 .00000000000009433398189512690,
    288 	 .00000000000041481318704258568,
    289 	-.00000000000003792316480209314,
    290 	 .00000000000008403156304792424,
    291 	-.00000000000034262934348285429,
    292 	 .00000000000043712191957429145,
    293 	-.00000000000010475750058776541,
    294 	-.00000000000011118671389559323,
    295 	 .00000000000037549577257259853,
    296 	 .00000000000013912841212197565,
    297 	 .00000000000010775743037572640,
    298 	 .00000000000029391859187648000,
    299 	-.00000000000042790509060060774,
    300 	 .00000000000022774076114039555,
    301 	 .00000000000010849569622967912,
    302 	-.00000000000023073801945705758,
    303 	 .00000000000015761203773969435,
    304 	 .00000000000003345710269544082,
    305 	-.00000000000041525158063436123,
    306 	 .00000000000032655698896907146,
    307 	-.00000000000044704265010452446,
    308 	 .00000000000034527647952039772,
    309 	-.00000000000007048962392109746,
    310 	 .00000000000011776978751369214,
    311 	-.00000000000010774341461609578,
    312 	 .00000000000021863343293215910,
    313 	 .00000000000024132639491333131,
    314 	 .00000000000039057462209830700,
    315 	-.00000000000026570679203560751,
    316 	 .00000000000037135141919592021,
    317 	-.00000000000017166921336082431,
    318 	-.00000000000028658285157914353,
    319 	-.00000000000023812542263446809,
    320 	 .00000000000006576659768580062,
    321 	-.00000000000028210143846181267,
    322 	 .00000000000010701931762114254,
    323 	 .00000000000018119346366441110,
    324 	 .00000000000009840465278232627,
    325 	-.00000000000033149150282752542,
    326 	-.00000000000018302857356041668,
    327 	-.00000000000016207400156744949,
    328 	 .00000000000048303314949553201,
    329 	-.00000000000071560553172382115,
    330 	 .00000000000088821239518571855,
    331 	-.00000000000030900580513238244,
    332 	-.00000000000061076551972851496,
    333 	 .00000000000035659969663347830,
    334 	 .00000000000035782396591276383,
    335 	-.00000000000046226087001544578,
    336 	 .00000000000062279762917225156,
    337 	 .00000000000072838947272065741,
    338 	 .00000000000026809646615211673,
    339 	-.00000000000010960825046059278,
    340 	 .00000000000002311949383800537,
    341 	-.00000000000058469058005299247,
    342 	-.00000000000002103748251144494,
    343 	-.00000000000023323182945587408,
    344 	-.00000000000042333694288141916,
    345 	-.00000000000043933937969737844,
    346 	 .00000000000041341647073835565,
    347 	 .00000000000006841763641591466,
    348 	 .00000000000047585534004430641,
    349 	 .00000000000083679678674757695,
    350 	-.00000000000085763734646658640,
    351 	 .00000000000021913281229340092,
    352 	-.00000000000062242842536431148,
    353 	-.00000000000010983594325438430,
    354 	 .00000000000065310431377633651,
    355 	-.00000000000047580199021710769,
    356 	-.00000000000037854251265457040,
    357 	 .00000000000040939233218678664,
    358 	 .00000000000087424383914858291,
    359 	 .00000000000025218188456842882,
    360 	-.00000000000003608131360422557,
    361 	-.00000000000050518555924280902,
    362 	 .00000000000078699403323355317,
    363 	-.00000000000067020876961949060,
    364 	 .00000000000016108575753932458,
    365 	 .00000000000058527188436251509,
    366 	-.00000000000035246757297904791,
    367 	-.00000000000018372084495629058,
    368 	 .00000000000088606689813494916,
    369 	 .00000000000066486268071468700,
    370 	 .00000000000063831615170646519,
    371 	 .00000000000025144230728376072,
    372 	-.00000000000017239444525614834
    373 };
    374 
    375 __weak_alias(log, _log)
    376 double
    377 log(double x)
    378 {
    379 	int m, j;
    380 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
    381 	volatile double u1;
    382 
    383 	/* Catch special cases */
    384 	if (x <= 0) {
    385 		if (_IEEE && x == zero)	/* log(0) = -Inf */
    386 			return (-one/zero);
    387 		else if (_IEEE)		/* log(neg) = NaN */
    388 			return (zero/zero);
    389 		else if (x == zero)	/* NOT REACHED IF _IEEE */
    390 			return (infnan(-ERANGE));
    391 		else
    392 			return (infnan(EDOM));
    393 	} else if (!finite(x)) {
    394 		if (_IEEE)		/* x = NaN, Inf */
    395 			return (x+x);
    396 		else
    397 			return (infnan(ERANGE));
    398 	}
    399 
    400 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    401 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    402 
    403 	m = logb(x);
    404 	g = ldexp(x, -m);
    405 	if (_IEEE && m == -1022) {
    406 		j = logb(g), m += j;
    407 		g = ldexp(g, -j);
    408 	}
    409 	j = N*(g-1) + .5;
    410 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
    411 	f = g - F;
    412 
    413 	/* Approximate expansion for log(1+f/F) ~= u + q */
    414 	g = 1/(2*F+f);
    415 	u = 2*f*g;
    416 	v = u*u;
    417 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    418 
    419     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    420      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    421      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    422     */
    423 	if (m | j)
    424 		u1 = u + 513, u1 -= 513;
    425 
    426     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
    427      * 		u1 = u to 24 bits.
    428     */
    429 	else
    430 		u1 = u, TRUNC(u1);
    431 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    432 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
    433 
    434 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
    435 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
    436 	/* (exact) + (tiny)						*/
    437 
    438 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
    439 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
    440 	u2 += logF_tail[N]*m;
    441 	return (u1 + u2);
    442 }
    443 
    444 /*
    445  * Extra precision variant, returning struct {double a, b;};
    446  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
    447  */
    448 struct Double
    449 __log__D(double x)
    450 {
    451 	int m, j;
    452 	double F, f, g, q, u, v, u2;
    453 	volatile double u1;
    454 	struct Double r;
    455 
    456 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    457 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    458 
    459 	m = logb(x);
    460 	g = ldexp(x, -m);
    461 	if (_IEEE && m == -1022) {
    462 		j = logb(g), m += j;
    463 		g = ldexp(g, -j);
    464 	}
    465 	j = N*(g-1) + .5;
    466 	F = (1.0/N) * j + 1;
    467 	f = g - F;
    468 
    469 	g = 1/(2*F+f);
    470 	u = 2*f*g;
    471 	v = u*u;
    472 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    473 	if (m | j)
    474 		u1 = u + 513, u1 -= 513;
    475 	else
    476 		u1 = u, TRUNC(u1);
    477 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    478 
    479 	u1 += m*logF_head[N] + logF_head[j];
    480 
    481 	u2 +=  logF_tail[j]; u2 += q;
    482 	u2 += logF_tail[N]*m;
    483 	r.a = u1 + u2;			/* Only difference is here */
    484 	TRUNC(r.a);
    485 	r.b = (u1 - r.a) + u2;
    486 	return (r);
    487 }
    488 
    489 __weak_alias(logf, _logf)
    490 float
    491 logf(float x)
    492 {
    493 	return(log((double)x));
    494 }
    495