n_log.c revision 1.1 1 1.1 ragge /* $NetBSD: n_log.c,v 1.1 1995/10/10 23:36:57 ragge Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.1 ragge static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
37 1.1 ragge #endif /* not lint */
38 1.1 ragge
39 1.1 ragge #include <math.h>
40 1.1 ragge #include <errno.h>
41 1.1 ragge
42 1.1 ragge #include "mathimpl.h"
43 1.1 ragge
44 1.1 ragge /* Table-driven natural logarithm.
45 1.1 ragge *
46 1.1 ragge * This code was derived, with minor modifications, from:
47 1.1 ragge * Peter Tang, "Table-Driven Implementation of the
48 1.1 ragge * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
49 1.1 ragge * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
50 1.1 ragge *
51 1.1 ragge * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
52 1.1 ragge * where F = j/128 for j an integer in [0, 128].
53 1.1 ragge *
54 1.1 ragge * log(2^m) = log2_hi*m + log2_tail*m
55 1.1 ragge * since m is an integer, the dominant term is exact.
56 1.1 ragge * m has at most 10 digits (for subnormal numbers),
57 1.1 ragge * and log2_hi has 11 trailing zero bits.
58 1.1 ragge *
59 1.1 ragge * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
60 1.1 ragge * logF_hi[] + 512 is exact.
61 1.1 ragge *
62 1.1 ragge * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
63 1.1 ragge * the leading term is calculated to extra precision in two
64 1.1 ragge * parts, the larger of which adds exactly to the dominant
65 1.1 ragge * m and F terms.
66 1.1 ragge * There are two cases:
67 1.1 ragge * 1. when m, j are non-zero (m | j), use absolute
68 1.1 ragge * precision for the leading term.
69 1.1 ragge * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
70 1.1 ragge * In this case, use a relative precision of 24 bits.
71 1.1 ragge * (This is done differently in the original paper)
72 1.1 ragge *
73 1.1 ragge * Special cases:
74 1.1 ragge * 0 return signalling -Inf
75 1.1 ragge * neg return signalling NaN
76 1.1 ragge * +Inf return +Inf
77 1.1 ragge */
78 1.1 ragge
79 1.1 ragge #if defined(vax) || defined(tahoe)
80 1.1 ragge #define _IEEE 0
81 1.1 ragge #define TRUNC(x) x = (double) (float) (x)
82 1.1 ragge #else
83 1.1 ragge #define _IEEE 1
84 1.1 ragge #define endian (((*(int *) &one)) ? 1 : 0)
85 1.1 ragge #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
86 1.1 ragge #define infnan(x) 0.0
87 1.1 ragge #endif
88 1.1 ragge
89 1.1 ragge #define N 128
90 1.1 ragge
91 1.1 ragge /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
92 1.1 ragge * Used for generation of extend precision logarithms.
93 1.1 ragge * The constant 35184372088832 is 2^45, so the divide is exact.
94 1.1 ragge * It ensures correct reading of logF_head, even for inaccurate
95 1.1 ragge * decimal-to-binary conversion routines. (Everybody gets the
96 1.1 ragge * right answer for integers less than 2^53.)
97 1.1 ragge * Values for log(F) were generated using error < 10^-57 absolute
98 1.1 ragge * with the bc -l package.
99 1.1 ragge */
100 1.1 ragge static double A1 = .08333333333333178827;
101 1.1 ragge static double A2 = .01250000000377174923;
102 1.1 ragge static double A3 = .002232139987919447809;
103 1.1 ragge static double A4 = .0004348877777076145742;
104 1.1 ragge
105 1.1 ragge static double logF_head[N+1] = {
106 1.1 ragge 0.,
107 1.1 ragge .007782140442060381246,
108 1.1 ragge .015504186535963526694,
109 1.1 ragge .023167059281547608406,
110 1.1 ragge .030771658666765233647,
111 1.1 ragge .038318864302141264488,
112 1.1 ragge .045809536031242714670,
113 1.1 ragge .053244514518837604555,
114 1.1 ragge .060624621816486978786,
115 1.1 ragge .067950661908525944454,
116 1.1 ragge .075223421237524235039,
117 1.1 ragge .082443669210988446138,
118 1.1 ragge .089612158689760690322,
119 1.1 ragge .096729626458454731618,
120 1.1 ragge .103796793681567578460,
121 1.1 ragge .110814366340264314203,
122 1.1 ragge .117783035656430001836,
123 1.1 ragge .124703478501032805070,
124 1.1 ragge .131576357788617315236,
125 1.1 ragge .138402322859292326029,
126 1.1 ragge .145182009844575077295,
127 1.1 ragge .151916042025732167530,
128 1.1 ragge .158605030176659056451,
129 1.1 ragge .165249572895390883786,
130 1.1 ragge .171850256926518341060,
131 1.1 ragge .178407657472689606947,
132 1.1 ragge .184922338493834104156,
133 1.1 ragge .191394852999565046047,
134 1.1 ragge .197825743329758552135,
135 1.1 ragge .204215541428766300668,
136 1.1 ragge .210564769107350002741,
137 1.1 ragge .216873938300523150246,
138 1.1 ragge .223143551314024080056,
139 1.1 ragge .229374101064877322642,
140 1.1 ragge .235566071312860003672,
141 1.1 ragge .241719936886966024758,
142 1.1 ragge .247836163904594286577,
143 1.1 ragge .253915209980732470285,
144 1.1 ragge .259957524436686071567,
145 1.1 ragge .265963548496984003577,
146 1.1 ragge .271933715484010463114,
147 1.1 ragge .277868451003087102435,
148 1.1 ragge .283768173130738432519,
149 1.1 ragge .289633292582948342896,
150 1.1 ragge .295464212893421063199,
151 1.1 ragge .301261330578199704177,
152 1.1 ragge .307025035294827830512,
153 1.1 ragge .312755710004239517729,
154 1.1 ragge .318453731118097493890,
155 1.1 ragge .324119468654316733591,
156 1.1 ragge .329753286372579168528,
157 1.1 ragge .335355541920762334484,
158 1.1 ragge .340926586970454081892,
159 1.1 ragge .346466767346100823488,
160 1.1 ragge .351976423156884266063,
161 1.1 ragge .357455888922231679316,
162 1.1 ragge .362905493689140712376,
163 1.1 ragge .368325561158599157352,
164 1.1 ragge .373716409793814818840,
165 1.1 ragge .379078352934811846353,
166 1.1 ragge .384411698910298582632,
167 1.1 ragge .389716751140440464951,
168 1.1 ragge .394993808240542421117,
169 1.1 ragge .400243164127459749579,
170 1.1 ragge .405465108107819105498,
171 1.1 ragge .410659924985338875558,
172 1.1 ragge .415827895143593195825,
173 1.1 ragge .420969294644237379543,
174 1.1 ragge .426084395310681429691,
175 1.1 ragge .431173464818130014464,
176 1.1 ragge .436236766774527495726,
177 1.1 ragge .441274560805140936281,
178 1.1 ragge .446287102628048160113,
179 1.1 ragge .451274644139630254358,
180 1.1 ragge .456237433481874177232,
181 1.1 ragge .461175715122408291790,
182 1.1 ragge .466089729924533457960,
183 1.1 ragge .470979715219073113985,
184 1.1 ragge .475845904869856894947,
185 1.1 ragge .480688529345570714212,
186 1.1 ragge .485507815781602403149,
187 1.1 ragge .490303988045525329653,
188 1.1 ragge .495077266798034543171,
189 1.1 ragge .499827869556611403822,
190 1.1 ragge .504556010751912253908,
191 1.1 ragge .509261901790523552335,
192 1.1 ragge .513945751101346104405,
193 1.1 ragge .518607764208354637958,
194 1.1 ragge .523248143765158602036,
195 1.1 ragge .527867089620485785417,
196 1.1 ragge .532464798869114019908,
197 1.1 ragge .537041465897345915436,
198 1.1 ragge .541597282432121573947,
199 1.1 ragge .546132437597407260909,
200 1.1 ragge .550647117952394182793,
201 1.1 ragge .555141507540611200965,
202 1.1 ragge .559615787935399566777,
203 1.1 ragge .564070138285387656651,
204 1.1 ragge .568504735352689749561,
205 1.1 ragge .572919753562018740922,
206 1.1 ragge .577315365035246941260,
207 1.1 ragge .581691739635061821900,
208 1.1 ragge .586049045003164792433,
209 1.1 ragge .590387446602107957005,
210 1.1 ragge .594707107746216934174,
211 1.1 ragge .599008189645246602594,
212 1.1 ragge .603290851438941899687,
213 1.1 ragge .607555250224322662688,
214 1.1 ragge .611801541106615331955,
215 1.1 ragge .616029877215623855590,
216 1.1 ragge .620240409751204424537,
217 1.1 ragge .624433288012369303032,
218 1.1 ragge .628608659422752680256,
219 1.1 ragge .632766669570628437213,
220 1.1 ragge .636907462236194987781,
221 1.1 ragge .641031179420679109171,
222 1.1 ragge .645137961373620782978,
223 1.1 ragge .649227946625615004450,
224 1.1 ragge .653301272011958644725,
225 1.1 ragge .657358072709030238911,
226 1.1 ragge .661398482245203922502,
227 1.1 ragge .665422632544505177065,
228 1.1 ragge .669430653942981734871,
229 1.1 ragge .673422675212350441142,
230 1.1 ragge .677398823590920073911,
231 1.1 ragge .681359224807238206267,
232 1.1 ragge .685304003098281100392,
233 1.1 ragge .689233281238557538017,
234 1.1 ragge .693147180560117703862
235 1.1 ragge };
236 1.1 ragge
237 1.1 ragge static double logF_tail[N+1] = {
238 1.1 ragge 0.,
239 1.1 ragge -.00000000000000543229938420049,
240 1.1 ragge .00000000000000172745674997061,
241 1.1 ragge -.00000000000001323017818229233,
242 1.1 ragge -.00000000000001154527628289872,
243 1.1 ragge -.00000000000000466529469958300,
244 1.1 ragge .00000000000005148849572685810,
245 1.1 ragge -.00000000000002532168943117445,
246 1.1 ragge -.00000000000005213620639136504,
247 1.1 ragge -.00000000000001819506003016881,
248 1.1 ragge .00000000000006329065958724544,
249 1.1 ragge .00000000000008614512936087814,
250 1.1 ragge -.00000000000007355770219435028,
251 1.1 ragge .00000000000009638067658552277,
252 1.1 ragge .00000000000007598636597194141,
253 1.1 ragge .00000000000002579999128306990,
254 1.1 ragge -.00000000000004654729747598444,
255 1.1 ragge -.00000000000007556920687451336,
256 1.1 ragge .00000000000010195735223708472,
257 1.1 ragge -.00000000000017319034406422306,
258 1.1 ragge -.00000000000007718001336828098,
259 1.1 ragge .00000000000010980754099855238,
260 1.1 ragge -.00000000000002047235780046195,
261 1.1 ragge -.00000000000008372091099235912,
262 1.1 ragge .00000000000014088127937111135,
263 1.1 ragge .00000000000012869017157588257,
264 1.1 ragge .00000000000017788850778198106,
265 1.1 ragge .00000000000006440856150696891,
266 1.1 ragge .00000000000016132822667240822,
267 1.1 ragge -.00000000000007540916511956188,
268 1.1 ragge -.00000000000000036507188831790,
269 1.1 ragge .00000000000009120937249914984,
270 1.1 ragge .00000000000018567570959796010,
271 1.1 ragge -.00000000000003149265065191483,
272 1.1 ragge -.00000000000009309459495196889,
273 1.1 ragge .00000000000017914338601329117,
274 1.1 ragge -.00000000000001302979717330866,
275 1.1 ragge .00000000000023097385217586939,
276 1.1 ragge .00000000000023999540484211737,
277 1.1 ragge .00000000000015393776174455408,
278 1.1 ragge -.00000000000036870428315837678,
279 1.1 ragge .00000000000036920375082080089,
280 1.1 ragge -.00000000000009383417223663699,
281 1.1 ragge .00000000000009433398189512690,
282 1.1 ragge .00000000000041481318704258568,
283 1.1 ragge -.00000000000003792316480209314,
284 1.1 ragge .00000000000008403156304792424,
285 1.1 ragge -.00000000000034262934348285429,
286 1.1 ragge .00000000000043712191957429145,
287 1.1 ragge -.00000000000010475750058776541,
288 1.1 ragge -.00000000000011118671389559323,
289 1.1 ragge .00000000000037549577257259853,
290 1.1 ragge .00000000000013912841212197565,
291 1.1 ragge .00000000000010775743037572640,
292 1.1 ragge .00000000000029391859187648000,
293 1.1 ragge -.00000000000042790509060060774,
294 1.1 ragge .00000000000022774076114039555,
295 1.1 ragge .00000000000010849569622967912,
296 1.1 ragge -.00000000000023073801945705758,
297 1.1 ragge .00000000000015761203773969435,
298 1.1 ragge .00000000000003345710269544082,
299 1.1 ragge -.00000000000041525158063436123,
300 1.1 ragge .00000000000032655698896907146,
301 1.1 ragge -.00000000000044704265010452446,
302 1.1 ragge .00000000000034527647952039772,
303 1.1 ragge -.00000000000007048962392109746,
304 1.1 ragge .00000000000011776978751369214,
305 1.1 ragge -.00000000000010774341461609578,
306 1.1 ragge .00000000000021863343293215910,
307 1.1 ragge .00000000000024132639491333131,
308 1.1 ragge .00000000000039057462209830700,
309 1.1 ragge -.00000000000026570679203560751,
310 1.1 ragge .00000000000037135141919592021,
311 1.1 ragge -.00000000000017166921336082431,
312 1.1 ragge -.00000000000028658285157914353,
313 1.1 ragge -.00000000000023812542263446809,
314 1.1 ragge .00000000000006576659768580062,
315 1.1 ragge -.00000000000028210143846181267,
316 1.1 ragge .00000000000010701931762114254,
317 1.1 ragge .00000000000018119346366441110,
318 1.1 ragge .00000000000009840465278232627,
319 1.1 ragge -.00000000000033149150282752542,
320 1.1 ragge -.00000000000018302857356041668,
321 1.1 ragge -.00000000000016207400156744949,
322 1.1 ragge .00000000000048303314949553201,
323 1.1 ragge -.00000000000071560553172382115,
324 1.1 ragge .00000000000088821239518571855,
325 1.1 ragge -.00000000000030900580513238244,
326 1.1 ragge -.00000000000061076551972851496,
327 1.1 ragge .00000000000035659969663347830,
328 1.1 ragge .00000000000035782396591276383,
329 1.1 ragge -.00000000000046226087001544578,
330 1.1 ragge .00000000000062279762917225156,
331 1.1 ragge .00000000000072838947272065741,
332 1.1 ragge .00000000000026809646615211673,
333 1.1 ragge -.00000000000010960825046059278,
334 1.1 ragge .00000000000002311949383800537,
335 1.1 ragge -.00000000000058469058005299247,
336 1.1 ragge -.00000000000002103748251144494,
337 1.1 ragge -.00000000000023323182945587408,
338 1.1 ragge -.00000000000042333694288141916,
339 1.1 ragge -.00000000000043933937969737844,
340 1.1 ragge .00000000000041341647073835565,
341 1.1 ragge .00000000000006841763641591466,
342 1.1 ragge .00000000000047585534004430641,
343 1.1 ragge .00000000000083679678674757695,
344 1.1 ragge -.00000000000085763734646658640,
345 1.1 ragge .00000000000021913281229340092,
346 1.1 ragge -.00000000000062242842536431148,
347 1.1 ragge -.00000000000010983594325438430,
348 1.1 ragge .00000000000065310431377633651,
349 1.1 ragge -.00000000000047580199021710769,
350 1.1 ragge -.00000000000037854251265457040,
351 1.1 ragge .00000000000040939233218678664,
352 1.1 ragge .00000000000087424383914858291,
353 1.1 ragge .00000000000025218188456842882,
354 1.1 ragge -.00000000000003608131360422557,
355 1.1 ragge -.00000000000050518555924280902,
356 1.1 ragge .00000000000078699403323355317,
357 1.1 ragge -.00000000000067020876961949060,
358 1.1 ragge .00000000000016108575753932458,
359 1.1 ragge .00000000000058527188436251509,
360 1.1 ragge -.00000000000035246757297904791,
361 1.1 ragge -.00000000000018372084495629058,
362 1.1 ragge .00000000000088606689813494916,
363 1.1 ragge .00000000000066486268071468700,
364 1.1 ragge .00000000000063831615170646519,
365 1.1 ragge .00000000000025144230728376072,
366 1.1 ragge -.00000000000017239444525614834
367 1.1 ragge };
368 1.1 ragge
369 1.1 ragge double
370 1.1 ragge #ifdef _ANSI_SOURCE
371 1.1 ragge log(double x)
372 1.1 ragge #else
373 1.1 ragge log(x) double x;
374 1.1 ragge #endif
375 1.1 ragge {
376 1.1 ragge int m, j;
377 1.1 ragge double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
378 1.1 ragge volatile double u1;
379 1.1 ragge
380 1.1 ragge /* Catch special cases */
381 1.1 ragge if (x <= 0)
382 1.1 ragge if (_IEEE && x == zero) /* log(0) = -Inf */
383 1.1 ragge return (-one/zero);
384 1.1 ragge else if (_IEEE) /* log(neg) = NaN */
385 1.1 ragge return (zero/zero);
386 1.1 ragge else if (x == zero) /* NOT REACHED IF _IEEE */
387 1.1 ragge return (infnan(-ERANGE));
388 1.1 ragge else
389 1.1 ragge return (infnan(EDOM));
390 1.1 ragge else if (!finite(x))
391 1.1 ragge if (_IEEE) /* x = NaN, Inf */
392 1.1 ragge return (x+x);
393 1.1 ragge else
394 1.1 ragge return (infnan(ERANGE));
395 1.1 ragge
396 1.1 ragge /* Argument reduction: 1 <= g < 2; x/2^m = g; */
397 1.1 ragge /* y = F*(1 + f/F) for |f| <= 2^-8 */
398 1.1 ragge
399 1.1 ragge m = logb(x);
400 1.1 ragge g = ldexp(x, -m);
401 1.1 ragge if (_IEEE && m == -1022) {
402 1.1 ragge j = logb(g), m += j;
403 1.1 ragge g = ldexp(g, -j);
404 1.1 ragge }
405 1.1 ragge j = N*(g-1) + .5;
406 1.1 ragge F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
407 1.1 ragge f = g - F;
408 1.1 ragge
409 1.1 ragge /* Approximate expansion for log(1+f/F) ~= u + q */
410 1.1 ragge g = 1/(2*F+f);
411 1.1 ragge u = 2*f*g;
412 1.1 ragge v = u*u;
413 1.1 ragge q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
414 1.1 ragge
415 1.1 ragge /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
416 1.1 ragge * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
417 1.1 ragge * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
418 1.1 ragge */
419 1.1 ragge if (m | j)
420 1.1 ragge u1 = u + 513, u1 -= 513;
421 1.1 ragge
422 1.1 ragge /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
423 1.1 ragge * u1 = u to 24 bits.
424 1.1 ragge */
425 1.1 ragge else
426 1.1 ragge u1 = u, TRUNC(u1);
427 1.1 ragge u2 = (2.0*(f - F*u1) - u1*f) * g;
428 1.1 ragge /* u1 + u2 = 2f/(2F+f) to extra precision. */
429 1.1 ragge
430 1.1 ragge /* log(x) = log(2^m*F*(1+f/F)) = */
431 1.1 ragge /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
432 1.1 ragge /* (exact) + (tiny) */
433 1.1 ragge
434 1.1 ragge u1 += m*logF_head[N] + logF_head[j]; /* exact */
435 1.1 ragge u2 = (u2 + logF_tail[j]) + q; /* tiny */
436 1.1 ragge u2 += logF_tail[N]*m;
437 1.1 ragge return (u1 + u2);
438 1.1 ragge }
439 1.1 ragge
440 1.1 ragge /*
441 1.1 ragge * Extra precision variant, returning struct {double a, b;};
442 1.1 ragge * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
443 1.1 ragge */
444 1.1 ragge struct Double
445 1.1 ragge #ifdef _ANSI_SOURCE
446 1.1 ragge __log__D(double x)
447 1.1 ragge #else
448 1.1 ragge __log__D(x) double x;
449 1.1 ragge #endif
450 1.1 ragge {
451 1.1 ragge int m, j;
452 1.1 ragge double F, f, g, q, u, v, u2, one = 1.0;
453 1.1 ragge volatile double u1;
454 1.1 ragge struct Double r;
455 1.1 ragge
456 1.1 ragge /* Argument reduction: 1 <= g < 2; x/2^m = g; */
457 1.1 ragge /* y = F*(1 + f/F) for |f| <= 2^-8 */
458 1.1 ragge
459 1.1 ragge m = logb(x);
460 1.1 ragge g = ldexp(x, -m);
461 1.1 ragge if (_IEEE && m == -1022) {
462 1.1 ragge j = logb(g), m += j;
463 1.1 ragge g = ldexp(g, -j);
464 1.1 ragge }
465 1.1 ragge j = N*(g-1) + .5;
466 1.1 ragge F = (1.0/N) * j + 1;
467 1.1 ragge f = g - F;
468 1.1 ragge
469 1.1 ragge g = 1/(2*F+f);
470 1.1 ragge u = 2*f*g;
471 1.1 ragge v = u*u;
472 1.1 ragge q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
473 1.1 ragge if (m | j)
474 1.1 ragge u1 = u + 513, u1 -= 513;
475 1.1 ragge else
476 1.1 ragge u1 = u, TRUNC(u1);
477 1.1 ragge u2 = (2.0*(f - F*u1) - u1*f) * g;
478 1.1 ragge
479 1.1 ragge u1 += m*logF_head[N] + logF_head[j];
480 1.1 ragge
481 1.1 ragge u2 += logF_tail[j]; u2 += q;
482 1.1 ragge u2 += logF_tail[N]*m;
483 1.1 ragge r.a = u1 + u2; /* Only difference is here */
484 1.1 ragge TRUNC(r.a);
485 1.1 ragge r.b = (u1 - r.a) + u2;
486 1.1 ragge return (r);
487 1.1 ragge }
488