n_log.c revision 1.5 1 1.5 matt /* $NetBSD: n_log.c,v 1.5 2002/06/15 00:10:17 matt Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge */
34 1.1 ragge
35 1.1 ragge #ifndef lint
36 1.2 ragge #if 0
37 1.1 ragge static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
38 1.2 ragge #endif
39 1.1 ragge #endif /* not lint */
40 1.1 ragge
41 1.1 ragge #include <math.h>
42 1.1 ragge #include <errno.h>
43 1.1 ragge
44 1.1 ragge #include "mathimpl.h"
45 1.1 ragge
46 1.1 ragge /* Table-driven natural logarithm.
47 1.1 ragge *
48 1.1 ragge * This code was derived, with minor modifications, from:
49 1.1 ragge * Peter Tang, "Table-Driven Implementation of the
50 1.1 ragge * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
51 1.1 ragge * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
52 1.1 ragge *
53 1.1 ragge * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
54 1.1 ragge * where F = j/128 for j an integer in [0, 128].
55 1.1 ragge *
56 1.1 ragge * log(2^m) = log2_hi*m + log2_tail*m
57 1.1 ragge * since m is an integer, the dominant term is exact.
58 1.1 ragge * m has at most 10 digits (for subnormal numbers),
59 1.1 ragge * and log2_hi has 11 trailing zero bits.
60 1.1 ragge *
61 1.1 ragge * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
62 1.1 ragge * logF_hi[] + 512 is exact.
63 1.1 ragge *
64 1.1 ragge * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
65 1.1 ragge * the leading term is calculated to extra precision in two
66 1.1 ragge * parts, the larger of which adds exactly to the dominant
67 1.1 ragge * m and F terms.
68 1.1 ragge * There are two cases:
69 1.1 ragge * 1. when m, j are non-zero (m | j), use absolute
70 1.1 ragge * precision for the leading term.
71 1.1 ragge * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
72 1.1 ragge * In this case, use a relative precision of 24 bits.
73 1.1 ragge * (This is done differently in the original paper)
74 1.1 ragge *
75 1.1 ragge * Special cases:
76 1.1 ragge * 0 return signalling -Inf
77 1.1 ragge * neg return signalling NaN
78 1.1 ragge * +Inf return +Inf
79 1.1 ragge */
80 1.1 ragge
81 1.3 matt #if defined(__vax__) || defined(tahoe)
82 1.1 ragge #define _IEEE 0
83 1.1 ragge #define TRUNC(x) x = (double) (float) (x)
84 1.1 ragge #else
85 1.1 ragge #define _IEEE 1
86 1.1 ragge #define endian (((*(int *) &one)) ? 1 : 0)
87 1.1 ragge #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
88 1.1 ragge #define infnan(x) 0.0
89 1.1 ragge #endif
90 1.1 ragge
91 1.1 ragge #define N 128
92 1.1 ragge
93 1.1 ragge /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
94 1.1 ragge * Used for generation of extend precision logarithms.
95 1.1 ragge * The constant 35184372088832 is 2^45, so the divide is exact.
96 1.1 ragge * It ensures correct reading of logF_head, even for inaccurate
97 1.1 ragge * decimal-to-binary conversion routines. (Everybody gets the
98 1.1 ragge * right answer for integers less than 2^53.)
99 1.1 ragge * Values for log(F) were generated using error < 10^-57 absolute
100 1.1 ragge * with the bc -l package.
101 1.1 ragge */
102 1.5 matt static const double A1 = .08333333333333178827;
103 1.5 matt static const double A2 = .01250000000377174923;
104 1.5 matt static const double A3 = .002232139987919447809;
105 1.5 matt static const double A4 = .0004348877777076145742;
106 1.1 ragge
107 1.5 matt static const double logF_head[N+1] = {
108 1.1 ragge 0.,
109 1.1 ragge .007782140442060381246,
110 1.1 ragge .015504186535963526694,
111 1.1 ragge .023167059281547608406,
112 1.1 ragge .030771658666765233647,
113 1.1 ragge .038318864302141264488,
114 1.1 ragge .045809536031242714670,
115 1.1 ragge .053244514518837604555,
116 1.1 ragge .060624621816486978786,
117 1.1 ragge .067950661908525944454,
118 1.1 ragge .075223421237524235039,
119 1.1 ragge .082443669210988446138,
120 1.1 ragge .089612158689760690322,
121 1.1 ragge .096729626458454731618,
122 1.1 ragge .103796793681567578460,
123 1.1 ragge .110814366340264314203,
124 1.1 ragge .117783035656430001836,
125 1.1 ragge .124703478501032805070,
126 1.1 ragge .131576357788617315236,
127 1.1 ragge .138402322859292326029,
128 1.1 ragge .145182009844575077295,
129 1.1 ragge .151916042025732167530,
130 1.1 ragge .158605030176659056451,
131 1.1 ragge .165249572895390883786,
132 1.1 ragge .171850256926518341060,
133 1.1 ragge .178407657472689606947,
134 1.1 ragge .184922338493834104156,
135 1.1 ragge .191394852999565046047,
136 1.1 ragge .197825743329758552135,
137 1.1 ragge .204215541428766300668,
138 1.1 ragge .210564769107350002741,
139 1.1 ragge .216873938300523150246,
140 1.1 ragge .223143551314024080056,
141 1.1 ragge .229374101064877322642,
142 1.1 ragge .235566071312860003672,
143 1.1 ragge .241719936886966024758,
144 1.1 ragge .247836163904594286577,
145 1.1 ragge .253915209980732470285,
146 1.1 ragge .259957524436686071567,
147 1.1 ragge .265963548496984003577,
148 1.1 ragge .271933715484010463114,
149 1.1 ragge .277868451003087102435,
150 1.1 ragge .283768173130738432519,
151 1.1 ragge .289633292582948342896,
152 1.1 ragge .295464212893421063199,
153 1.1 ragge .301261330578199704177,
154 1.1 ragge .307025035294827830512,
155 1.1 ragge .312755710004239517729,
156 1.1 ragge .318453731118097493890,
157 1.1 ragge .324119468654316733591,
158 1.1 ragge .329753286372579168528,
159 1.1 ragge .335355541920762334484,
160 1.1 ragge .340926586970454081892,
161 1.1 ragge .346466767346100823488,
162 1.1 ragge .351976423156884266063,
163 1.1 ragge .357455888922231679316,
164 1.1 ragge .362905493689140712376,
165 1.1 ragge .368325561158599157352,
166 1.1 ragge .373716409793814818840,
167 1.1 ragge .379078352934811846353,
168 1.1 ragge .384411698910298582632,
169 1.1 ragge .389716751140440464951,
170 1.1 ragge .394993808240542421117,
171 1.1 ragge .400243164127459749579,
172 1.1 ragge .405465108107819105498,
173 1.1 ragge .410659924985338875558,
174 1.1 ragge .415827895143593195825,
175 1.1 ragge .420969294644237379543,
176 1.1 ragge .426084395310681429691,
177 1.1 ragge .431173464818130014464,
178 1.1 ragge .436236766774527495726,
179 1.1 ragge .441274560805140936281,
180 1.1 ragge .446287102628048160113,
181 1.1 ragge .451274644139630254358,
182 1.1 ragge .456237433481874177232,
183 1.1 ragge .461175715122408291790,
184 1.1 ragge .466089729924533457960,
185 1.1 ragge .470979715219073113985,
186 1.1 ragge .475845904869856894947,
187 1.1 ragge .480688529345570714212,
188 1.1 ragge .485507815781602403149,
189 1.1 ragge .490303988045525329653,
190 1.1 ragge .495077266798034543171,
191 1.1 ragge .499827869556611403822,
192 1.1 ragge .504556010751912253908,
193 1.1 ragge .509261901790523552335,
194 1.1 ragge .513945751101346104405,
195 1.1 ragge .518607764208354637958,
196 1.1 ragge .523248143765158602036,
197 1.1 ragge .527867089620485785417,
198 1.1 ragge .532464798869114019908,
199 1.1 ragge .537041465897345915436,
200 1.1 ragge .541597282432121573947,
201 1.1 ragge .546132437597407260909,
202 1.1 ragge .550647117952394182793,
203 1.1 ragge .555141507540611200965,
204 1.1 ragge .559615787935399566777,
205 1.1 ragge .564070138285387656651,
206 1.1 ragge .568504735352689749561,
207 1.1 ragge .572919753562018740922,
208 1.1 ragge .577315365035246941260,
209 1.1 ragge .581691739635061821900,
210 1.1 ragge .586049045003164792433,
211 1.1 ragge .590387446602107957005,
212 1.1 ragge .594707107746216934174,
213 1.1 ragge .599008189645246602594,
214 1.1 ragge .603290851438941899687,
215 1.1 ragge .607555250224322662688,
216 1.1 ragge .611801541106615331955,
217 1.1 ragge .616029877215623855590,
218 1.1 ragge .620240409751204424537,
219 1.1 ragge .624433288012369303032,
220 1.1 ragge .628608659422752680256,
221 1.1 ragge .632766669570628437213,
222 1.1 ragge .636907462236194987781,
223 1.1 ragge .641031179420679109171,
224 1.1 ragge .645137961373620782978,
225 1.1 ragge .649227946625615004450,
226 1.1 ragge .653301272011958644725,
227 1.1 ragge .657358072709030238911,
228 1.1 ragge .661398482245203922502,
229 1.1 ragge .665422632544505177065,
230 1.1 ragge .669430653942981734871,
231 1.1 ragge .673422675212350441142,
232 1.1 ragge .677398823590920073911,
233 1.1 ragge .681359224807238206267,
234 1.1 ragge .685304003098281100392,
235 1.1 ragge .689233281238557538017,
236 1.1 ragge .693147180560117703862
237 1.1 ragge };
238 1.1 ragge
239 1.5 matt static const double logF_tail[N+1] = {
240 1.1 ragge 0.,
241 1.1 ragge -.00000000000000543229938420049,
242 1.1 ragge .00000000000000172745674997061,
243 1.1 ragge -.00000000000001323017818229233,
244 1.1 ragge -.00000000000001154527628289872,
245 1.1 ragge -.00000000000000466529469958300,
246 1.1 ragge .00000000000005148849572685810,
247 1.1 ragge -.00000000000002532168943117445,
248 1.1 ragge -.00000000000005213620639136504,
249 1.1 ragge -.00000000000001819506003016881,
250 1.1 ragge .00000000000006329065958724544,
251 1.1 ragge .00000000000008614512936087814,
252 1.1 ragge -.00000000000007355770219435028,
253 1.1 ragge .00000000000009638067658552277,
254 1.1 ragge .00000000000007598636597194141,
255 1.1 ragge .00000000000002579999128306990,
256 1.1 ragge -.00000000000004654729747598444,
257 1.1 ragge -.00000000000007556920687451336,
258 1.1 ragge .00000000000010195735223708472,
259 1.1 ragge -.00000000000017319034406422306,
260 1.1 ragge -.00000000000007718001336828098,
261 1.1 ragge .00000000000010980754099855238,
262 1.1 ragge -.00000000000002047235780046195,
263 1.1 ragge -.00000000000008372091099235912,
264 1.1 ragge .00000000000014088127937111135,
265 1.1 ragge .00000000000012869017157588257,
266 1.1 ragge .00000000000017788850778198106,
267 1.1 ragge .00000000000006440856150696891,
268 1.1 ragge .00000000000016132822667240822,
269 1.1 ragge -.00000000000007540916511956188,
270 1.1 ragge -.00000000000000036507188831790,
271 1.1 ragge .00000000000009120937249914984,
272 1.1 ragge .00000000000018567570959796010,
273 1.1 ragge -.00000000000003149265065191483,
274 1.1 ragge -.00000000000009309459495196889,
275 1.1 ragge .00000000000017914338601329117,
276 1.1 ragge -.00000000000001302979717330866,
277 1.1 ragge .00000000000023097385217586939,
278 1.1 ragge .00000000000023999540484211737,
279 1.1 ragge .00000000000015393776174455408,
280 1.1 ragge -.00000000000036870428315837678,
281 1.1 ragge .00000000000036920375082080089,
282 1.1 ragge -.00000000000009383417223663699,
283 1.1 ragge .00000000000009433398189512690,
284 1.1 ragge .00000000000041481318704258568,
285 1.1 ragge -.00000000000003792316480209314,
286 1.1 ragge .00000000000008403156304792424,
287 1.1 ragge -.00000000000034262934348285429,
288 1.1 ragge .00000000000043712191957429145,
289 1.1 ragge -.00000000000010475750058776541,
290 1.1 ragge -.00000000000011118671389559323,
291 1.1 ragge .00000000000037549577257259853,
292 1.1 ragge .00000000000013912841212197565,
293 1.1 ragge .00000000000010775743037572640,
294 1.1 ragge .00000000000029391859187648000,
295 1.1 ragge -.00000000000042790509060060774,
296 1.1 ragge .00000000000022774076114039555,
297 1.1 ragge .00000000000010849569622967912,
298 1.1 ragge -.00000000000023073801945705758,
299 1.1 ragge .00000000000015761203773969435,
300 1.1 ragge .00000000000003345710269544082,
301 1.1 ragge -.00000000000041525158063436123,
302 1.1 ragge .00000000000032655698896907146,
303 1.1 ragge -.00000000000044704265010452446,
304 1.1 ragge .00000000000034527647952039772,
305 1.1 ragge -.00000000000007048962392109746,
306 1.1 ragge .00000000000011776978751369214,
307 1.1 ragge -.00000000000010774341461609578,
308 1.1 ragge .00000000000021863343293215910,
309 1.1 ragge .00000000000024132639491333131,
310 1.1 ragge .00000000000039057462209830700,
311 1.1 ragge -.00000000000026570679203560751,
312 1.1 ragge .00000000000037135141919592021,
313 1.1 ragge -.00000000000017166921336082431,
314 1.1 ragge -.00000000000028658285157914353,
315 1.1 ragge -.00000000000023812542263446809,
316 1.1 ragge .00000000000006576659768580062,
317 1.1 ragge -.00000000000028210143846181267,
318 1.1 ragge .00000000000010701931762114254,
319 1.1 ragge .00000000000018119346366441110,
320 1.1 ragge .00000000000009840465278232627,
321 1.1 ragge -.00000000000033149150282752542,
322 1.1 ragge -.00000000000018302857356041668,
323 1.1 ragge -.00000000000016207400156744949,
324 1.1 ragge .00000000000048303314949553201,
325 1.1 ragge -.00000000000071560553172382115,
326 1.1 ragge .00000000000088821239518571855,
327 1.1 ragge -.00000000000030900580513238244,
328 1.1 ragge -.00000000000061076551972851496,
329 1.1 ragge .00000000000035659969663347830,
330 1.1 ragge .00000000000035782396591276383,
331 1.1 ragge -.00000000000046226087001544578,
332 1.1 ragge .00000000000062279762917225156,
333 1.1 ragge .00000000000072838947272065741,
334 1.1 ragge .00000000000026809646615211673,
335 1.1 ragge -.00000000000010960825046059278,
336 1.1 ragge .00000000000002311949383800537,
337 1.1 ragge -.00000000000058469058005299247,
338 1.1 ragge -.00000000000002103748251144494,
339 1.1 ragge -.00000000000023323182945587408,
340 1.1 ragge -.00000000000042333694288141916,
341 1.1 ragge -.00000000000043933937969737844,
342 1.1 ragge .00000000000041341647073835565,
343 1.1 ragge .00000000000006841763641591466,
344 1.1 ragge .00000000000047585534004430641,
345 1.1 ragge .00000000000083679678674757695,
346 1.1 ragge -.00000000000085763734646658640,
347 1.1 ragge .00000000000021913281229340092,
348 1.1 ragge -.00000000000062242842536431148,
349 1.1 ragge -.00000000000010983594325438430,
350 1.1 ragge .00000000000065310431377633651,
351 1.1 ragge -.00000000000047580199021710769,
352 1.1 ragge -.00000000000037854251265457040,
353 1.1 ragge .00000000000040939233218678664,
354 1.1 ragge .00000000000087424383914858291,
355 1.1 ragge .00000000000025218188456842882,
356 1.1 ragge -.00000000000003608131360422557,
357 1.1 ragge -.00000000000050518555924280902,
358 1.1 ragge .00000000000078699403323355317,
359 1.1 ragge -.00000000000067020876961949060,
360 1.1 ragge .00000000000016108575753932458,
361 1.1 ragge .00000000000058527188436251509,
362 1.1 ragge -.00000000000035246757297904791,
363 1.1 ragge -.00000000000018372084495629058,
364 1.1 ragge .00000000000088606689813494916,
365 1.1 ragge .00000000000066486268071468700,
366 1.1 ragge .00000000000063831615170646519,
367 1.1 ragge .00000000000025144230728376072,
368 1.1 ragge -.00000000000017239444525614834
369 1.1 ragge };
370 1.1 ragge
371 1.1 ragge double
372 1.1 ragge log(double x)
373 1.1 ragge {
374 1.1 ragge int m, j;
375 1.1 ragge double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
376 1.1 ragge volatile double u1;
377 1.1 ragge
378 1.1 ragge /* Catch special cases */
379 1.3 matt if (x <= 0) {
380 1.1 ragge if (_IEEE && x == zero) /* log(0) = -Inf */
381 1.1 ragge return (-one/zero);
382 1.1 ragge else if (_IEEE) /* log(neg) = NaN */
383 1.1 ragge return (zero/zero);
384 1.1 ragge else if (x == zero) /* NOT REACHED IF _IEEE */
385 1.1 ragge return (infnan(-ERANGE));
386 1.1 ragge else
387 1.1 ragge return (infnan(EDOM));
388 1.3 matt } else if (!finite(x)) {
389 1.1 ragge if (_IEEE) /* x = NaN, Inf */
390 1.1 ragge return (x+x);
391 1.1 ragge else
392 1.1 ragge return (infnan(ERANGE));
393 1.3 matt }
394 1.4 simonb
395 1.1 ragge /* Argument reduction: 1 <= g < 2; x/2^m = g; */
396 1.1 ragge /* y = F*(1 + f/F) for |f| <= 2^-8 */
397 1.1 ragge
398 1.1 ragge m = logb(x);
399 1.1 ragge g = ldexp(x, -m);
400 1.1 ragge if (_IEEE && m == -1022) {
401 1.1 ragge j = logb(g), m += j;
402 1.1 ragge g = ldexp(g, -j);
403 1.1 ragge }
404 1.1 ragge j = N*(g-1) + .5;
405 1.1 ragge F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
406 1.1 ragge f = g - F;
407 1.1 ragge
408 1.1 ragge /* Approximate expansion for log(1+f/F) ~= u + q */
409 1.1 ragge g = 1/(2*F+f);
410 1.1 ragge u = 2*f*g;
411 1.1 ragge v = u*u;
412 1.1 ragge q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
413 1.1 ragge
414 1.1 ragge /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
415 1.1 ragge * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
416 1.1 ragge * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
417 1.1 ragge */
418 1.1 ragge if (m | j)
419 1.1 ragge u1 = u + 513, u1 -= 513;
420 1.1 ragge
421 1.1 ragge /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
422 1.1 ragge * u1 = u to 24 bits.
423 1.1 ragge */
424 1.1 ragge else
425 1.1 ragge u1 = u, TRUNC(u1);
426 1.1 ragge u2 = (2.0*(f - F*u1) - u1*f) * g;
427 1.1 ragge /* u1 + u2 = 2f/(2F+f) to extra precision. */
428 1.1 ragge
429 1.1 ragge /* log(x) = log(2^m*F*(1+f/F)) = */
430 1.1 ragge /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
431 1.1 ragge /* (exact) + (tiny) */
432 1.1 ragge
433 1.1 ragge u1 += m*logF_head[N] + logF_head[j]; /* exact */
434 1.1 ragge u2 = (u2 + logF_tail[j]) + q; /* tiny */
435 1.1 ragge u2 += logF_tail[N]*m;
436 1.1 ragge return (u1 + u2);
437 1.1 ragge }
438 1.1 ragge
439 1.1 ragge /*
440 1.1 ragge * Extra precision variant, returning struct {double a, b;};
441 1.1 ragge * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
442 1.1 ragge */
443 1.1 ragge struct Double
444 1.1 ragge __log__D(double x)
445 1.1 ragge {
446 1.1 ragge int m, j;
447 1.2 ragge double F, f, g, q, u, v, u2;
448 1.1 ragge volatile double u1;
449 1.1 ragge struct Double r;
450 1.1 ragge
451 1.1 ragge /* Argument reduction: 1 <= g < 2; x/2^m = g; */
452 1.1 ragge /* y = F*(1 + f/F) for |f| <= 2^-8 */
453 1.1 ragge
454 1.1 ragge m = logb(x);
455 1.1 ragge g = ldexp(x, -m);
456 1.1 ragge if (_IEEE && m == -1022) {
457 1.1 ragge j = logb(g), m += j;
458 1.1 ragge g = ldexp(g, -j);
459 1.1 ragge }
460 1.1 ragge j = N*(g-1) + .5;
461 1.1 ragge F = (1.0/N) * j + 1;
462 1.1 ragge f = g - F;
463 1.1 ragge
464 1.1 ragge g = 1/(2*F+f);
465 1.1 ragge u = 2*f*g;
466 1.1 ragge v = u*u;
467 1.1 ragge q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
468 1.1 ragge if (m | j)
469 1.1 ragge u1 = u + 513, u1 -= 513;
470 1.1 ragge else
471 1.1 ragge u1 = u, TRUNC(u1);
472 1.1 ragge u2 = (2.0*(f - F*u1) - u1*f) * g;
473 1.1 ragge
474 1.1 ragge u1 += m*logF_head[N] + logF_head[j];
475 1.1 ragge
476 1.1 ragge u2 += logF_tail[j]; u2 += q;
477 1.1 ragge u2 += logF_tail[N]*m;
478 1.1 ragge r.a = u1 + u2; /* Only difference is here */
479 1.1 ragge TRUNC(r.a);
480 1.1 ragge r.b = (u1 - r.a) + u2;
481 1.1 ragge return (r);
482 1.1 ragge }
483