n_log.c revision 1.7.42.1 1 1.7.42.1 martin /* $NetBSD: n_log.c,v 1.7.42.1 2014/10/13 19:34:58 martin Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1992, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.6 agc * 3. Neither the name of the University nor the names of its contributors
15 1.1 ragge * may be used to endorse or promote products derived from this software
16 1.1 ragge * without specific prior written permission.
17 1.1 ragge *
18 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 ragge * SUCH DAMAGE.
29 1.1 ragge */
30 1.1 ragge
31 1.1 ragge #ifndef lint
32 1.2 ragge #if 0
33 1.1 ragge static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
34 1.2 ragge #endif
35 1.1 ragge #endif /* not lint */
36 1.1 ragge
37 1.7 mhitch #include "../src/namespace.h"
38 1.7 mhitch
39 1.1 ragge #include <math.h>
40 1.1 ragge #include <errno.h>
41 1.1 ragge
42 1.1 ragge #include "mathimpl.h"
43 1.1 ragge
44 1.7 mhitch #ifdef __weak_alias
45 1.7 mhitch __weak_alias(log, _log);
46 1.7.42.1 martin __weak_alias(_logl, _log);
47 1.7 mhitch __weak_alias(logf, _logf);
48 1.7 mhitch #endif
49 1.7 mhitch
50 1.1 ragge /* Table-driven natural logarithm.
51 1.1 ragge *
52 1.1 ragge * This code was derived, with minor modifications, from:
53 1.1 ragge * Peter Tang, "Table-Driven Implementation of the
54 1.1 ragge * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
55 1.1 ragge * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
56 1.1 ragge *
57 1.1 ragge * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
58 1.1 ragge * where F = j/128 for j an integer in [0, 128].
59 1.1 ragge *
60 1.1 ragge * log(2^m) = log2_hi*m + log2_tail*m
61 1.1 ragge * since m is an integer, the dominant term is exact.
62 1.1 ragge * m has at most 10 digits (for subnormal numbers),
63 1.1 ragge * and log2_hi has 11 trailing zero bits.
64 1.1 ragge *
65 1.1 ragge * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
66 1.1 ragge * logF_hi[] + 512 is exact.
67 1.1 ragge *
68 1.1 ragge * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
69 1.1 ragge * the leading term is calculated to extra precision in two
70 1.1 ragge * parts, the larger of which adds exactly to the dominant
71 1.1 ragge * m and F terms.
72 1.1 ragge * There are two cases:
73 1.1 ragge * 1. when m, j are non-zero (m | j), use absolute
74 1.1 ragge * precision for the leading term.
75 1.1 ragge * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
76 1.1 ragge * In this case, use a relative precision of 24 bits.
77 1.1 ragge * (This is done differently in the original paper)
78 1.1 ragge *
79 1.1 ragge * Special cases:
80 1.1 ragge * 0 return signalling -Inf
81 1.1 ragge * neg return signalling NaN
82 1.1 ragge * +Inf return +Inf
83 1.1 ragge */
84 1.1 ragge
85 1.3 matt #if defined(__vax__) || defined(tahoe)
86 1.1 ragge #define _IEEE 0
87 1.1 ragge #define TRUNC(x) x = (double) (float) (x)
88 1.1 ragge #else
89 1.1 ragge #define _IEEE 1
90 1.1 ragge #define endian (((*(int *) &one)) ? 1 : 0)
91 1.1 ragge #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
92 1.1 ragge #define infnan(x) 0.0
93 1.1 ragge #endif
94 1.1 ragge
95 1.1 ragge #define N 128
96 1.1 ragge
97 1.1 ragge /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
98 1.1 ragge * Used for generation of extend precision logarithms.
99 1.1 ragge * The constant 35184372088832 is 2^45, so the divide is exact.
100 1.1 ragge * It ensures correct reading of logF_head, even for inaccurate
101 1.1 ragge * decimal-to-binary conversion routines. (Everybody gets the
102 1.1 ragge * right answer for integers less than 2^53.)
103 1.1 ragge * Values for log(F) were generated using error < 10^-57 absolute
104 1.1 ragge * with the bc -l package.
105 1.1 ragge */
106 1.5 matt static const double A1 = .08333333333333178827;
107 1.5 matt static const double A2 = .01250000000377174923;
108 1.5 matt static const double A3 = .002232139987919447809;
109 1.5 matt static const double A4 = .0004348877777076145742;
110 1.1 ragge
111 1.5 matt static const double logF_head[N+1] = {
112 1.1 ragge 0.,
113 1.1 ragge .007782140442060381246,
114 1.1 ragge .015504186535963526694,
115 1.1 ragge .023167059281547608406,
116 1.1 ragge .030771658666765233647,
117 1.1 ragge .038318864302141264488,
118 1.1 ragge .045809536031242714670,
119 1.1 ragge .053244514518837604555,
120 1.1 ragge .060624621816486978786,
121 1.1 ragge .067950661908525944454,
122 1.1 ragge .075223421237524235039,
123 1.1 ragge .082443669210988446138,
124 1.1 ragge .089612158689760690322,
125 1.1 ragge .096729626458454731618,
126 1.1 ragge .103796793681567578460,
127 1.1 ragge .110814366340264314203,
128 1.1 ragge .117783035656430001836,
129 1.1 ragge .124703478501032805070,
130 1.1 ragge .131576357788617315236,
131 1.1 ragge .138402322859292326029,
132 1.1 ragge .145182009844575077295,
133 1.1 ragge .151916042025732167530,
134 1.1 ragge .158605030176659056451,
135 1.1 ragge .165249572895390883786,
136 1.1 ragge .171850256926518341060,
137 1.1 ragge .178407657472689606947,
138 1.1 ragge .184922338493834104156,
139 1.1 ragge .191394852999565046047,
140 1.1 ragge .197825743329758552135,
141 1.1 ragge .204215541428766300668,
142 1.1 ragge .210564769107350002741,
143 1.1 ragge .216873938300523150246,
144 1.1 ragge .223143551314024080056,
145 1.1 ragge .229374101064877322642,
146 1.1 ragge .235566071312860003672,
147 1.1 ragge .241719936886966024758,
148 1.1 ragge .247836163904594286577,
149 1.1 ragge .253915209980732470285,
150 1.1 ragge .259957524436686071567,
151 1.1 ragge .265963548496984003577,
152 1.1 ragge .271933715484010463114,
153 1.1 ragge .277868451003087102435,
154 1.1 ragge .283768173130738432519,
155 1.1 ragge .289633292582948342896,
156 1.1 ragge .295464212893421063199,
157 1.1 ragge .301261330578199704177,
158 1.1 ragge .307025035294827830512,
159 1.1 ragge .312755710004239517729,
160 1.1 ragge .318453731118097493890,
161 1.1 ragge .324119468654316733591,
162 1.1 ragge .329753286372579168528,
163 1.1 ragge .335355541920762334484,
164 1.1 ragge .340926586970454081892,
165 1.1 ragge .346466767346100823488,
166 1.1 ragge .351976423156884266063,
167 1.1 ragge .357455888922231679316,
168 1.1 ragge .362905493689140712376,
169 1.1 ragge .368325561158599157352,
170 1.1 ragge .373716409793814818840,
171 1.1 ragge .379078352934811846353,
172 1.1 ragge .384411698910298582632,
173 1.1 ragge .389716751140440464951,
174 1.1 ragge .394993808240542421117,
175 1.1 ragge .400243164127459749579,
176 1.1 ragge .405465108107819105498,
177 1.1 ragge .410659924985338875558,
178 1.1 ragge .415827895143593195825,
179 1.1 ragge .420969294644237379543,
180 1.1 ragge .426084395310681429691,
181 1.1 ragge .431173464818130014464,
182 1.1 ragge .436236766774527495726,
183 1.1 ragge .441274560805140936281,
184 1.1 ragge .446287102628048160113,
185 1.1 ragge .451274644139630254358,
186 1.1 ragge .456237433481874177232,
187 1.1 ragge .461175715122408291790,
188 1.1 ragge .466089729924533457960,
189 1.1 ragge .470979715219073113985,
190 1.1 ragge .475845904869856894947,
191 1.1 ragge .480688529345570714212,
192 1.1 ragge .485507815781602403149,
193 1.1 ragge .490303988045525329653,
194 1.1 ragge .495077266798034543171,
195 1.1 ragge .499827869556611403822,
196 1.1 ragge .504556010751912253908,
197 1.1 ragge .509261901790523552335,
198 1.1 ragge .513945751101346104405,
199 1.1 ragge .518607764208354637958,
200 1.1 ragge .523248143765158602036,
201 1.1 ragge .527867089620485785417,
202 1.1 ragge .532464798869114019908,
203 1.1 ragge .537041465897345915436,
204 1.1 ragge .541597282432121573947,
205 1.1 ragge .546132437597407260909,
206 1.1 ragge .550647117952394182793,
207 1.1 ragge .555141507540611200965,
208 1.1 ragge .559615787935399566777,
209 1.1 ragge .564070138285387656651,
210 1.1 ragge .568504735352689749561,
211 1.1 ragge .572919753562018740922,
212 1.1 ragge .577315365035246941260,
213 1.1 ragge .581691739635061821900,
214 1.1 ragge .586049045003164792433,
215 1.1 ragge .590387446602107957005,
216 1.1 ragge .594707107746216934174,
217 1.1 ragge .599008189645246602594,
218 1.1 ragge .603290851438941899687,
219 1.1 ragge .607555250224322662688,
220 1.1 ragge .611801541106615331955,
221 1.1 ragge .616029877215623855590,
222 1.1 ragge .620240409751204424537,
223 1.1 ragge .624433288012369303032,
224 1.1 ragge .628608659422752680256,
225 1.1 ragge .632766669570628437213,
226 1.1 ragge .636907462236194987781,
227 1.1 ragge .641031179420679109171,
228 1.1 ragge .645137961373620782978,
229 1.1 ragge .649227946625615004450,
230 1.1 ragge .653301272011958644725,
231 1.1 ragge .657358072709030238911,
232 1.1 ragge .661398482245203922502,
233 1.1 ragge .665422632544505177065,
234 1.1 ragge .669430653942981734871,
235 1.1 ragge .673422675212350441142,
236 1.1 ragge .677398823590920073911,
237 1.1 ragge .681359224807238206267,
238 1.1 ragge .685304003098281100392,
239 1.1 ragge .689233281238557538017,
240 1.1 ragge .693147180560117703862
241 1.1 ragge };
242 1.1 ragge
243 1.5 matt static const double logF_tail[N+1] = {
244 1.1 ragge 0.,
245 1.1 ragge -.00000000000000543229938420049,
246 1.1 ragge .00000000000000172745674997061,
247 1.1 ragge -.00000000000001323017818229233,
248 1.1 ragge -.00000000000001154527628289872,
249 1.1 ragge -.00000000000000466529469958300,
250 1.1 ragge .00000000000005148849572685810,
251 1.1 ragge -.00000000000002532168943117445,
252 1.1 ragge -.00000000000005213620639136504,
253 1.1 ragge -.00000000000001819506003016881,
254 1.1 ragge .00000000000006329065958724544,
255 1.1 ragge .00000000000008614512936087814,
256 1.1 ragge -.00000000000007355770219435028,
257 1.1 ragge .00000000000009638067658552277,
258 1.1 ragge .00000000000007598636597194141,
259 1.1 ragge .00000000000002579999128306990,
260 1.1 ragge -.00000000000004654729747598444,
261 1.1 ragge -.00000000000007556920687451336,
262 1.1 ragge .00000000000010195735223708472,
263 1.1 ragge -.00000000000017319034406422306,
264 1.1 ragge -.00000000000007718001336828098,
265 1.1 ragge .00000000000010980754099855238,
266 1.1 ragge -.00000000000002047235780046195,
267 1.1 ragge -.00000000000008372091099235912,
268 1.1 ragge .00000000000014088127937111135,
269 1.1 ragge .00000000000012869017157588257,
270 1.1 ragge .00000000000017788850778198106,
271 1.1 ragge .00000000000006440856150696891,
272 1.1 ragge .00000000000016132822667240822,
273 1.1 ragge -.00000000000007540916511956188,
274 1.1 ragge -.00000000000000036507188831790,
275 1.1 ragge .00000000000009120937249914984,
276 1.1 ragge .00000000000018567570959796010,
277 1.1 ragge -.00000000000003149265065191483,
278 1.1 ragge -.00000000000009309459495196889,
279 1.1 ragge .00000000000017914338601329117,
280 1.1 ragge -.00000000000001302979717330866,
281 1.1 ragge .00000000000023097385217586939,
282 1.1 ragge .00000000000023999540484211737,
283 1.1 ragge .00000000000015393776174455408,
284 1.1 ragge -.00000000000036870428315837678,
285 1.1 ragge .00000000000036920375082080089,
286 1.1 ragge -.00000000000009383417223663699,
287 1.1 ragge .00000000000009433398189512690,
288 1.1 ragge .00000000000041481318704258568,
289 1.1 ragge -.00000000000003792316480209314,
290 1.1 ragge .00000000000008403156304792424,
291 1.1 ragge -.00000000000034262934348285429,
292 1.1 ragge .00000000000043712191957429145,
293 1.1 ragge -.00000000000010475750058776541,
294 1.1 ragge -.00000000000011118671389559323,
295 1.1 ragge .00000000000037549577257259853,
296 1.1 ragge .00000000000013912841212197565,
297 1.1 ragge .00000000000010775743037572640,
298 1.1 ragge .00000000000029391859187648000,
299 1.1 ragge -.00000000000042790509060060774,
300 1.1 ragge .00000000000022774076114039555,
301 1.1 ragge .00000000000010849569622967912,
302 1.1 ragge -.00000000000023073801945705758,
303 1.1 ragge .00000000000015761203773969435,
304 1.1 ragge .00000000000003345710269544082,
305 1.1 ragge -.00000000000041525158063436123,
306 1.1 ragge .00000000000032655698896907146,
307 1.1 ragge -.00000000000044704265010452446,
308 1.1 ragge .00000000000034527647952039772,
309 1.1 ragge -.00000000000007048962392109746,
310 1.1 ragge .00000000000011776978751369214,
311 1.1 ragge -.00000000000010774341461609578,
312 1.1 ragge .00000000000021863343293215910,
313 1.1 ragge .00000000000024132639491333131,
314 1.1 ragge .00000000000039057462209830700,
315 1.1 ragge -.00000000000026570679203560751,
316 1.1 ragge .00000000000037135141919592021,
317 1.1 ragge -.00000000000017166921336082431,
318 1.1 ragge -.00000000000028658285157914353,
319 1.1 ragge -.00000000000023812542263446809,
320 1.1 ragge .00000000000006576659768580062,
321 1.1 ragge -.00000000000028210143846181267,
322 1.1 ragge .00000000000010701931762114254,
323 1.1 ragge .00000000000018119346366441110,
324 1.1 ragge .00000000000009840465278232627,
325 1.1 ragge -.00000000000033149150282752542,
326 1.1 ragge -.00000000000018302857356041668,
327 1.1 ragge -.00000000000016207400156744949,
328 1.1 ragge .00000000000048303314949553201,
329 1.1 ragge -.00000000000071560553172382115,
330 1.1 ragge .00000000000088821239518571855,
331 1.1 ragge -.00000000000030900580513238244,
332 1.1 ragge -.00000000000061076551972851496,
333 1.1 ragge .00000000000035659969663347830,
334 1.1 ragge .00000000000035782396591276383,
335 1.1 ragge -.00000000000046226087001544578,
336 1.1 ragge .00000000000062279762917225156,
337 1.1 ragge .00000000000072838947272065741,
338 1.1 ragge .00000000000026809646615211673,
339 1.1 ragge -.00000000000010960825046059278,
340 1.1 ragge .00000000000002311949383800537,
341 1.1 ragge -.00000000000058469058005299247,
342 1.1 ragge -.00000000000002103748251144494,
343 1.1 ragge -.00000000000023323182945587408,
344 1.1 ragge -.00000000000042333694288141916,
345 1.1 ragge -.00000000000043933937969737844,
346 1.1 ragge .00000000000041341647073835565,
347 1.1 ragge .00000000000006841763641591466,
348 1.1 ragge .00000000000047585534004430641,
349 1.1 ragge .00000000000083679678674757695,
350 1.1 ragge -.00000000000085763734646658640,
351 1.1 ragge .00000000000021913281229340092,
352 1.1 ragge -.00000000000062242842536431148,
353 1.1 ragge -.00000000000010983594325438430,
354 1.1 ragge .00000000000065310431377633651,
355 1.1 ragge -.00000000000047580199021710769,
356 1.1 ragge -.00000000000037854251265457040,
357 1.1 ragge .00000000000040939233218678664,
358 1.1 ragge .00000000000087424383914858291,
359 1.1 ragge .00000000000025218188456842882,
360 1.1 ragge -.00000000000003608131360422557,
361 1.1 ragge -.00000000000050518555924280902,
362 1.1 ragge .00000000000078699403323355317,
363 1.1 ragge -.00000000000067020876961949060,
364 1.1 ragge .00000000000016108575753932458,
365 1.1 ragge .00000000000058527188436251509,
366 1.1 ragge -.00000000000035246757297904791,
367 1.1 ragge -.00000000000018372084495629058,
368 1.1 ragge .00000000000088606689813494916,
369 1.1 ragge .00000000000066486268071468700,
370 1.1 ragge .00000000000063831615170646519,
371 1.1 ragge .00000000000025144230728376072,
372 1.1 ragge -.00000000000017239444525614834
373 1.1 ragge };
374 1.1 ragge
375 1.1 ragge double
376 1.1 ragge log(double x)
377 1.1 ragge {
378 1.1 ragge int m, j;
379 1.1 ragge double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
380 1.1 ragge volatile double u1;
381 1.1 ragge
382 1.1 ragge /* Catch special cases */
383 1.3 matt if (x <= 0) {
384 1.1 ragge if (_IEEE && x == zero) /* log(0) = -Inf */
385 1.1 ragge return (-one/zero);
386 1.1 ragge else if (_IEEE) /* log(neg) = NaN */
387 1.1 ragge return (zero/zero);
388 1.1 ragge else if (x == zero) /* NOT REACHED IF _IEEE */
389 1.1 ragge return (infnan(-ERANGE));
390 1.1 ragge else
391 1.1 ragge return (infnan(EDOM));
392 1.3 matt } else if (!finite(x)) {
393 1.1 ragge if (_IEEE) /* x = NaN, Inf */
394 1.1 ragge return (x+x);
395 1.1 ragge else
396 1.1 ragge return (infnan(ERANGE));
397 1.3 matt }
398 1.4 simonb
399 1.1 ragge /* Argument reduction: 1 <= g < 2; x/2^m = g; */
400 1.1 ragge /* y = F*(1 + f/F) for |f| <= 2^-8 */
401 1.1 ragge
402 1.1 ragge m = logb(x);
403 1.1 ragge g = ldexp(x, -m);
404 1.1 ragge if (_IEEE && m == -1022) {
405 1.1 ragge j = logb(g), m += j;
406 1.1 ragge g = ldexp(g, -j);
407 1.1 ragge }
408 1.1 ragge j = N*(g-1) + .5;
409 1.1 ragge F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
410 1.1 ragge f = g - F;
411 1.1 ragge
412 1.1 ragge /* Approximate expansion for log(1+f/F) ~= u + q */
413 1.1 ragge g = 1/(2*F+f);
414 1.1 ragge u = 2*f*g;
415 1.1 ragge v = u*u;
416 1.1 ragge q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
417 1.1 ragge
418 1.1 ragge /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
419 1.1 ragge * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
420 1.1 ragge * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
421 1.1 ragge */
422 1.1 ragge if (m | j)
423 1.1 ragge u1 = u + 513, u1 -= 513;
424 1.1 ragge
425 1.1 ragge /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
426 1.1 ragge * u1 = u to 24 bits.
427 1.1 ragge */
428 1.1 ragge else
429 1.1 ragge u1 = u, TRUNC(u1);
430 1.1 ragge u2 = (2.0*(f - F*u1) - u1*f) * g;
431 1.1 ragge /* u1 + u2 = 2f/(2F+f) to extra precision. */
432 1.1 ragge
433 1.1 ragge /* log(x) = log(2^m*F*(1+f/F)) = */
434 1.1 ragge /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
435 1.1 ragge /* (exact) + (tiny) */
436 1.1 ragge
437 1.1 ragge u1 += m*logF_head[N] + logF_head[j]; /* exact */
438 1.1 ragge u2 = (u2 + logF_tail[j]) + q; /* tiny */
439 1.1 ragge u2 += logF_tail[N]*m;
440 1.1 ragge return (u1 + u2);
441 1.1 ragge }
442 1.1 ragge
443 1.1 ragge /*
444 1.1 ragge * Extra precision variant, returning struct {double a, b;};
445 1.1 ragge * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
446 1.1 ragge */
447 1.1 ragge struct Double
448 1.1 ragge __log__D(double x)
449 1.1 ragge {
450 1.1 ragge int m, j;
451 1.2 ragge double F, f, g, q, u, v, u2;
452 1.1 ragge volatile double u1;
453 1.1 ragge struct Double r;
454 1.1 ragge
455 1.1 ragge /* Argument reduction: 1 <= g < 2; x/2^m = g; */
456 1.1 ragge /* y = F*(1 + f/F) for |f| <= 2^-8 */
457 1.1 ragge
458 1.1 ragge m = logb(x);
459 1.1 ragge g = ldexp(x, -m);
460 1.1 ragge if (_IEEE && m == -1022) {
461 1.1 ragge j = logb(g), m += j;
462 1.1 ragge g = ldexp(g, -j);
463 1.1 ragge }
464 1.1 ragge j = N*(g-1) + .5;
465 1.1 ragge F = (1.0/N) * j + 1;
466 1.1 ragge f = g - F;
467 1.1 ragge
468 1.1 ragge g = 1/(2*F+f);
469 1.1 ragge u = 2*f*g;
470 1.1 ragge v = u*u;
471 1.1 ragge q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
472 1.1 ragge if (m | j)
473 1.1 ragge u1 = u + 513, u1 -= 513;
474 1.1 ragge else
475 1.1 ragge u1 = u, TRUNC(u1);
476 1.1 ragge u2 = (2.0*(f - F*u1) - u1*f) * g;
477 1.1 ragge
478 1.1 ragge u1 += m*logF_head[N] + logF_head[j];
479 1.1 ragge
480 1.1 ragge u2 += logF_tail[j]; u2 += q;
481 1.1 ragge u2 += logF_tail[N]*m;
482 1.1 ragge r.a = u1 + u2; /* Only difference is here */
483 1.1 ragge TRUNC(r.a);
484 1.1 ragge r.b = (u1 - r.a) + u2;
485 1.1 ragge return (r);
486 1.1 ragge }
487 1.7 mhitch
488 1.7 mhitch float
489 1.7 mhitch logf(float x)
490 1.7 mhitch {
491 1.7 mhitch return(log((double)x));
492 1.7 mhitch }
493