Home | History | Annotate | Line # | Download | only in noieee_src
n_log.c revision 1.7.42.1
      1  1.7.42.1  martin /*      $NetBSD: n_log.c,v 1.7.42.1 2014/10/13 19:34:58 martin Exp $ */
      2       1.1   ragge /*
      3       1.1   ragge  * Copyright (c) 1992, 1993
      4       1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5       1.1   ragge  *
      6       1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7       1.1   ragge  * modification, are permitted provided that the following conditions
      8       1.1   ragge  * are met:
      9       1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10       1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11       1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12       1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13       1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14       1.6     agc  * 3. Neither the name of the University nor the names of its contributors
     15       1.1   ragge  *    may be used to endorse or promote products derived from this software
     16       1.1   ragge  *    without specific prior written permission.
     17       1.1   ragge  *
     18       1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19       1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20       1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21       1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22       1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23       1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24       1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25       1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26       1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27       1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28       1.1   ragge  * SUCH DAMAGE.
     29       1.1   ragge  */
     30       1.1   ragge 
     31       1.1   ragge #ifndef lint
     32       1.2   ragge #if 0
     33       1.1   ragge static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
     34       1.2   ragge #endif
     35       1.1   ragge #endif /* not lint */
     36       1.1   ragge 
     37       1.7  mhitch #include "../src/namespace.h"
     38       1.7  mhitch 
     39       1.1   ragge #include <math.h>
     40       1.1   ragge #include <errno.h>
     41       1.1   ragge 
     42       1.1   ragge #include "mathimpl.h"
     43       1.1   ragge 
     44       1.7  mhitch #ifdef __weak_alias
     45       1.7  mhitch __weak_alias(log, _log);
     46  1.7.42.1  martin __weak_alias(_logl, _log);
     47       1.7  mhitch __weak_alias(logf, _logf);
     48       1.7  mhitch #endif
     49       1.7  mhitch 
     50       1.1   ragge /* Table-driven natural logarithm.
     51       1.1   ragge  *
     52       1.1   ragge  * This code was derived, with minor modifications, from:
     53       1.1   ragge  *	Peter Tang, "Table-Driven Implementation of the
     54       1.1   ragge  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
     55       1.1   ragge  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
     56       1.1   ragge  *
     57       1.1   ragge  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
     58       1.1   ragge  * where F = j/128 for j an integer in [0, 128].
     59       1.1   ragge  *
     60       1.1   ragge  * log(2^m) = log2_hi*m + log2_tail*m
     61       1.1   ragge  * since m is an integer, the dominant term is exact.
     62       1.1   ragge  * m has at most 10 digits (for subnormal numbers),
     63       1.1   ragge  * and log2_hi has 11 trailing zero bits.
     64       1.1   ragge  *
     65       1.1   ragge  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
     66       1.1   ragge  * logF_hi[] + 512 is exact.
     67       1.1   ragge  *
     68       1.1   ragge  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
     69       1.1   ragge  * the leading term is calculated to extra precision in two
     70       1.1   ragge  * parts, the larger of which adds exactly to the dominant
     71       1.1   ragge  * m and F terms.
     72       1.1   ragge  * There are two cases:
     73       1.1   ragge  *	1. when m, j are non-zero (m | j), use absolute
     74       1.1   ragge  *	   precision for the leading term.
     75       1.1   ragge  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
     76       1.1   ragge  *	   In this case, use a relative precision of 24 bits.
     77       1.1   ragge  * (This is done differently in the original paper)
     78       1.1   ragge  *
     79       1.1   ragge  * Special cases:
     80       1.1   ragge  *	0	return signalling -Inf
     81       1.1   ragge  *	neg	return signalling NaN
     82       1.1   ragge  *	+Inf	return +Inf
     83       1.1   ragge */
     84       1.1   ragge 
     85       1.3    matt #if defined(__vax__) || defined(tahoe)
     86       1.1   ragge #define _IEEE		0
     87       1.1   ragge #define TRUNC(x)	x = (double) (float) (x)
     88       1.1   ragge #else
     89       1.1   ragge #define _IEEE		1
     90       1.1   ragge #define endian		(((*(int *) &one)) ? 1 : 0)
     91       1.1   ragge #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     92       1.1   ragge #define infnan(x)	0.0
     93       1.1   ragge #endif
     94       1.1   ragge 
     95       1.1   ragge #define N 128
     96       1.1   ragge 
     97       1.1   ragge /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     98       1.1   ragge  * Used for generation of extend precision logarithms.
     99       1.1   ragge  * The constant 35184372088832 is 2^45, so the divide is exact.
    100       1.1   ragge  * It ensures correct reading of logF_head, even for inaccurate
    101       1.1   ragge  * decimal-to-binary conversion routines.  (Everybody gets the
    102       1.1   ragge  * right answer for integers less than 2^53.)
    103       1.1   ragge  * Values for log(F) were generated using error < 10^-57 absolute
    104       1.1   ragge  * with the bc -l package.
    105       1.1   ragge */
    106       1.5    matt static const double	A1 = 	  .08333333333333178827;
    107       1.5    matt static const double	A2 = 	  .01250000000377174923;
    108       1.5    matt static const double	A3 =	 .002232139987919447809;
    109       1.5    matt static const double	A4 =	.0004348877777076145742;
    110       1.1   ragge 
    111       1.5    matt static const double logF_head[N+1] = {
    112       1.1   ragge 	0.,
    113       1.1   ragge 	.007782140442060381246,
    114       1.1   ragge 	.015504186535963526694,
    115       1.1   ragge 	.023167059281547608406,
    116       1.1   ragge 	.030771658666765233647,
    117       1.1   ragge 	.038318864302141264488,
    118       1.1   ragge 	.045809536031242714670,
    119       1.1   ragge 	.053244514518837604555,
    120       1.1   ragge 	.060624621816486978786,
    121       1.1   ragge 	.067950661908525944454,
    122       1.1   ragge 	.075223421237524235039,
    123       1.1   ragge 	.082443669210988446138,
    124       1.1   ragge 	.089612158689760690322,
    125       1.1   ragge 	.096729626458454731618,
    126       1.1   ragge 	.103796793681567578460,
    127       1.1   ragge 	.110814366340264314203,
    128       1.1   ragge 	.117783035656430001836,
    129       1.1   ragge 	.124703478501032805070,
    130       1.1   ragge 	.131576357788617315236,
    131       1.1   ragge 	.138402322859292326029,
    132       1.1   ragge 	.145182009844575077295,
    133       1.1   ragge 	.151916042025732167530,
    134       1.1   ragge 	.158605030176659056451,
    135       1.1   ragge 	.165249572895390883786,
    136       1.1   ragge 	.171850256926518341060,
    137       1.1   ragge 	.178407657472689606947,
    138       1.1   ragge 	.184922338493834104156,
    139       1.1   ragge 	.191394852999565046047,
    140       1.1   ragge 	.197825743329758552135,
    141       1.1   ragge 	.204215541428766300668,
    142       1.1   ragge 	.210564769107350002741,
    143       1.1   ragge 	.216873938300523150246,
    144       1.1   ragge 	.223143551314024080056,
    145       1.1   ragge 	.229374101064877322642,
    146       1.1   ragge 	.235566071312860003672,
    147       1.1   ragge 	.241719936886966024758,
    148       1.1   ragge 	.247836163904594286577,
    149       1.1   ragge 	.253915209980732470285,
    150       1.1   ragge 	.259957524436686071567,
    151       1.1   ragge 	.265963548496984003577,
    152       1.1   ragge 	.271933715484010463114,
    153       1.1   ragge 	.277868451003087102435,
    154       1.1   ragge 	.283768173130738432519,
    155       1.1   ragge 	.289633292582948342896,
    156       1.1   ragge 	.295464212893421063199,
    157       1.1   ragge 	.301261330578199704177,
    158       1.1   ragge 	.307025035294827830512,
    159       1.1   ragge 	.312755710004239517729,
    160       1.1   ragge 	.318453731118097493890,
    161       1.1   ragge 	.324119468654316733591,
    162       1.1   ragge 	.329753286372579168528,
    163       1.1   ragge 	.335355541920762334484,
    164       1.1   ragge 	.340926586970454081892,
    165       1.1   ragge 	.346466767346100823488,
    166       1.1   ragge 	.351976423156884266063,
    167       1.1   ragge 	.357455888922231679316,
    168       1.1   ragge 	.362905493689140712376,
    169       1.1   ragge 	.368325561158599157352,
    170       1.1   ragge 	.373716409793814818840,
    171       1.1   ragge 	.379078352934811846353,
    172       1.1   ragge 	.384411698910298582632,
    173       1.1   ragge 	.389716751140440464951,
    174       1.1   ragge 	.394993808240542421117,
    175       1.1   ragge 	.400243164127459749579,
    176       1.1   ragge 	.405465108107819105498,
    177       1.1   ragge 	.410659924985338875558,
    178       1.1   ragge 	.415827895143593195825,
    179       1.1   ragge 	.420969294644237379543,
    180       1.1   ragge 	.426084395310681429691,
    181       1.1   ragge 	.431173464818130014464,
    182       1.1   ragge 	.436236766774527495726,
    183       1.1   ragge 	.441274560805140936281,
    184       1.1   ragge 	.446287102628048160113,
    185       1.1   ragge 	.451274644139630254358,
    186       1.1   ragge 	.456237433481874177232,
    187       1.1   ragge 	.461175715122408291790,
    188       1.1   ragge 	.466089729924533457960,
    189       1.1   ragge 	.470979715219073113985,
    190       1.1   ragge 	.475845904869856894947,
    191       1.1   ragge 	.480688529345570714212,
    192       1.1   ragge 	.485507815781602403149,
    193       1.1   ragge 	.490303988045525329653,
    194       1.1   ragge 	.495077266798034543171,
    195       1.1   ragge 	.499827869556611403822,
    196       1.1   ragge 	.504556010751912253908,
    197       1.1   ragge 	.509261901790523552335,
    198       1.1   ragge 	.513945751101346104405,
    199       1.1   ragge 	.518607764208354637958,
    200       1.1   ragge 	.523248143765158602036,
    201       1.1   ragge 	.527867089620485785417,
    202       1.1   ragge 	.532464798869114019908,
    203       1.1   ragge 	.537041465897345915436,
    204       1.1   ragge 	.541597282432121573947,
    205       1.1   ragge 	.546132437597407260909,
    206       1.1   ragge 	.550647117952394182793,
    207       1.1   ragge 	.555141507540611200965,
    208       1.1   ragge 	.559615787935399566777,
    209       1.1   ragge 	.564070138285387656651,
    210       1.1   ragge 	.568504735352689749561,
    211       1.1   ragge 	.572919753562018740922,
    212       1.1   ragge 	.577315365035246941260,
    213       1.1   ragge 	.581691739635061821900,
    214       1.1   ragge 	.586049045003164792433,
    215       1.1   ragge 	.590387446602107957005,
    216       1.1   ragge 	.594707107746216934174,
    217       1.1   ragge 	.599008189645246602594,
    218       1.1   ragge 	.603290851438941899687,
    219       1.1   ragge 	.607555250224322662688,
    220       1.1   ragge 	.611801541106615331955,
    221       1.1   ragge 	.616029877215623855590,
    222       1.1   ragge 	.620240409751204424537,
    223       1.1   ragge 	.624433288012369303032,
    224       1.1   ragge 	.628608659422752680256,
    225       1.1   ragge 	.632766669570628437213,
    226       1.1   ragge 	.636907462236194987781,
    227       1.1   ragge 	.641031179420679109171,
    228       1.1   ragge 	.645137961373620782978,
    229       1.1   ragge 	.649227946625615004450,
    230       1.1   ragge 	.653301272011958644725,
    231       1.1   ragge 	.657358072709030238911,
    232       1.1   ragge 	.661398482245203922502,
    233       1.1   ragge 	.665422632544505177065,
    234       1.1   ragge 	.669430653942981734871,
    235       1.1   ragge 	.673422675212350441142,
    236       1.1   ragge 	.677398823590920073911,
    237       1.1   ragge 	.681359224807238206267,
    238       1.1   ragge 	.685304003098281100392,
    239       1.1   ragge 	.689233281238557538017,
    240       1.1   ragge 	.693147180560117703862
    241       1.1   ragge };
    242       1.1   ragge 
    243       1.5    matt static const double logF_tail[N+1] = {
    244       1.1   ragge 	0.,
    245       1.1   ragge 	-.00000000000000543229938420049,
    246       1.1   ragge 	 .00000000000000172745674997061,
    247       1.1   ragge 	-.00000000000001323017818229233,
    248       1.1   ragge 	-.00000000000001154527628289872,
    249       1.1   ragge 	-.00000000000000466529469958300,
    250       1.1   ragge 	 .00000000000005148849572685810,
    251       1.1   ragge 	-.00000000000002532168943117445,
    252       1.1   ragge 	-.00000000000005213620639136504,
    253       1.1   ragge 	-.00000000000001819506003016881,
    254       1.1   ragge 	 .00000000000006329065958724544,
    255       1.1   ragge 	 .00000000000008614512936087814,
    256       1.1   ragge 	-.00000000000007355770219435028,
    257       1.1   ragge 	 .00000000000009638067658552277,
    258       1.1   ragge 	 .00000000000007598636597194141,
    259       1.1   ragge 	 .00000000000002579999128306990,
    260       1.1   ragge 	-.00000000000004654729747598444,
    261       1.1   ragge 	-.00000000000007556920687451336,
    262       1.1   ragge 	 .00000000000010195735223708472,
    263       1.1   ragge 	-.00000000000017319034406422306,
    264       1.1   ragge 	-.00000000000007718001336828098,
    265       1.1   ragge 	 .00000000000010980754099855238,
    266       1.1   ragge 	-.00000000000002047235780046195,
    267       1.1   ragge 	-.00000000000008372091099235912,
    268       1.1   ragge 	 .00000000000014088127937111135,
    269       1.1   ragge 	 .00000000000012869017157588257,
    270       1.1   ragge 	 .00000000000017788850778198106,
    271       1.1   ragge 	 .00000000000006440856150696891,
    272       1.1   ragge 	 .00000000000016132822667240822,
    273       1.1   ragge 	-.00000000000007540916511956188,
    274       1.1   ragge 	-.00000000000000036507188831790,
    275       1.1   ragge 	 .00000000000009120937249914984,
    276       1.1   ragge 	 .00000000000018567570959796010,
    277       1.1   ragge 	-.00000000000003149265065191483,
    278       1.1   ragge 	-.00000000000009309459495196889,
    279       1.1   ragge 	 .00000000000017914338601329117,
    280       1.1   ragge 	-.00000000000001302979717330866,
    281       1.1   ragge 	 .00000000000023097385217586939,
    282       1.1   ragge 	 .00000000000023999540484211737,
    283       1.1   ragge 	 .00000000000015393776174455408,
    284       1.1   ragge 	-.00000000000036870428315837678,
    285       1.1   ragge 	 .00000000000036920375082080089,
    286       1.1   ragge 	-.00000000000009383417223663699,
    287       1.1   ragge 	 .00000000000009433398189512690,
    288       1.1   ragge 	 .00000000000041481318704258568,
    289       1.1   ragge 	-.00000000000003792316480209314,
    290       1.1   ragge 	 .00000000000008403156304792424,
    291       1.1   ragge 	-.00000000000034262934348285429,
    292       1.1   ragge 	 .00000000000043712191957429145,
    293       1.1   ragge 	-.00000000000010475750058776541,
    294       1.1   ragge 	-.00000000000011118671389559323,
    295       1.1   ragge 	 .00000000000037549577257259853,
    296       1.1   ragge 	 .00000000000013912841212197565,
    297       1.1   ragge 	 .00000000000010775743037572640,
    298       1.1   ragge 	 .00000000000029391859187648000,
    299       1.1   ragge 	-.00000000000042790509060060774,
    300       1.1   ragge 	 .00000000000022774076114039555,
    301       1.1   ragge 	 .00000000000010849569622967912,
    302       1.1   ragge 	-.00000000000023073801945705758,
    303       1.1   ragge 	 .00000000000015761203773969435,
    304       1.1   ragge 	 .00000000000003345710269544082,
    305       1.1   ragge 	-.00000000000041525158063436123,
    306       1.1   ragge 	 .00000000000032655698896907146,
    307       1.1   ragge 	-.00000000000044704265010452446,
    308       1.1   ragge 	 .00000000000034527647952039772,
    309       1.1   ragge 	-.00000000000007048962392109746,
    310       1.1   ragge 	 .00000000000011776978751369214,
    311       1.1   ragge 	-.00000000000010774341461609578,
    312       1.1   ragge 	 .00000000000021863343293215910,
    313       1.1   ragge 	 .00000000000024132639491333131,
    314       1.1   ragge 	 .00000000000039057462209830700,
    315       1.1   ragge 	-.00000000000026570679203560751,
    316       1.1   ragge 	 .00000000000037135141919592021,
    317       1.1   ragge 	-.00000000000017166921336082431,
    318       1.1   ragge 	-.00000000000028658285157914353,
    319       1.1   ragge 	-.00000000000023812542263446809,
    320       1.1   ragge 	 .00000000000006576659768580062,
    321       1.1   ragge 	-.00000000000028210143846181267,
    322       1.1   ragge 	 .00000000000010701931762114254,
    323       1.1   ragge 	 .00000000000018119346366441110,
    324       1.1   ragge 	 .00000000000009840465278232627,
    325       1.1   ragge 	-.00000000000033149150282752542,
    326       1.1   ragge 	-.00000000000018302857356041668,
    327       1.1   ragge 	-.00000000000016207400156744949,
    328       1.1   ragge 	 .00000000000048303314949553201,
    329       1.1   ragge 	-.00000000000071560553172382115,
    330       1.1   ragge 	 .00000000000088821239518571855,
    331       1.1   ragge 	-.00000000000030900580513238244,
    332       1.1   ragge 	-.00000000000061076551972851496,
    333       1.1   ragge 	 .00000000000035659969663347830,
    334       1.1   ragge 	 .00000000000035782396591276383,
    335       1.1   ragge 	-.00000000000046226087001544578,
    336       1.1   ragge 	 .00000000000062279762917225156,
    337       1.1   ragge 	 .00000000000072838947272065741,
    338       1.1   ragge 	 .00000000000026809646615211673,
    339       1.1   ragge 	-.00000000000010960825046059278,
    340       1.1   ragge 	 .00000000000002311949383800537,
    341       1.1   ragge 	-.00000000000058469058005299247,
    342       1.1   ragge 	-.00000000000002103748251144494,
    343       1.1   ragge 	-.00000000000023323182945587408,
    344       1.1   ragge 	-.00000000000042333694288141916,
    345       1.1   ragge 	-.00000000000043933937969737844,
    346       1.1   ragge 	 .00000000000041341647073835565,
    347       1.1   ragge 	 .00000000000006841763641591466,
    348       1.1   ragge 	 .00000000000047585534004430641,
    349       1.1   ragge 	 .00000000000083679678674757695,
    350       1.1   ragge 	-.00000000000085763734646658640,
    351       1.1   ragge 	 .00000000000021913281229340092,
    352       1.1   ragge 	-.00000000000062242842536431148,
    353       1.1   ragge 	-.00000000000010983594325438430,
    354       1.1   ragge 	 .00000000000065310431377633651,
    355       1.1   ragge 	-.00000000000047580199021710769,
    356       1.1   ragge 	-.00000000000037854251265457040,
    357       1.1   ragge 	 .00000000000040939233218678664,
    358       1.1   ragge 	 .00000000000087424383914858291,
    359       1.1   ragge 	 .00000000000025218188456842882,
    360       1.1   ragge 	-.00000000000003608131360422557,
    361       1.1   ragge 	-.00000000000050518555924280902,
    362       1.1   ragge 	 .00000000000078699403323355317,
    363       1.1   ragge 	-.00000000000067020876961949060,
    364       1.1   ragge 	 .00000000000016108575753932458,
    365       1.1   ragge 	 .00000000000058527188436251509,
    366       1.1   ragge 	-.00000000000035246757297904791,
    367       1.1   ragge 	-.00000000000018372084495629058,
    368       1.1   ragge 	 .00000000000088606689813494916,
    369       1.1   ragge 	 .00000000000066486268071468700,
    370       1.1   ragge 	 .00000000000063831615170646519,
    371       1.1   ragge 	 .00000000000025144230728376072,
    372       1.1   ragge 	-.00000000000017239444525614834
    373       1.1   ragge };
    374       1.1   ragge 
    375       1.1   ragge double
    376       1.1   ragge log(double x)
    377       1.1   ragge {
    378       1.1   ragge 	int m, j;
    379       1.1   ragge 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
    380       1.1   ragge 	volatile double u1;
    381       1.1   ragge 
    382       1.1   ragge 	/* Catch special cases */
    383       1.3    matt 	if (x <= 0) {
    384       1.1   ragge 		if (_IEEE && x == zero)	/* log(0) = -Inf */
    385       1.1   ragge 			return (-one/zero);
    386       1.1   ragge 		else if (_IEEE)		/* log(neg) = NaN */
    387       1.1   ragge 			return (zero/zero);
    388       1.1   ragge 		else if (x == zero)	/* NOT REACHED IF _IEEE */
    389       1.1   ragge 			return (infnan(-ERANGE));
    390       1.1   ragge 		else
    391       1.1   ragge 			return (infnan(EDOM));
    392       1.3    matt 	} else if (!finite(x)) {
    393       1.1   ragge 		if (_IEEE)		/* x = NaN, Inf */
    394       1.1   ragge 			return (x+x);
    395       1.1   ragge 		else
    396       1.1   ragge 			return (infnan(ERANGE));
    397       1.3    matt 	}
    398       1.4  simonb 
    399       1.1   ragge 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    400       1.1   ragge 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    401       1.1   ragge 
    402       1.1   ragge 	m = logb(x);
    403       1.1   ragge 	g = ldexp(x, -m);
    404       1.1   ragge 	if (_IEEE && m == -1022) {
    405       1.1   ragge 		j = logb(g), m += j;
    406       1.1   ragge 		g = ldexp(g, -j);
    407       1.1   ragge 	}
    408       1.1   ragge 	j = N*(g-1) + .5;
    409       1.1   ragge 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
    410       1.1   ragge 	f = g - F;
    411       1.1   ragge 
    412       1.1   ragge 	/* Approximate expansion for log(1+f/F) ~= u + q */
    413       1.1   ragge 	g = 1/(2*F+f);
    414       1.1   ragge 	u = 2*f*g;
    415       1.1   ragge 	v = u*u;
    416       1.1   ragge 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    417       1.1   ragge 
    418       1.1   ragge     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    419       1.1   ragge      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    420       1.1   ragge      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    421       1.1   ragge     */
    422       1.1   ragge 	if (m | j)
    423       1.1   ragge 		u1 = u + 513, u1 -= 513;
    424       1.1   ragge 
    425       1.1   ragge     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
    426       1.1   ragge      * 		u1 = u to 24 bits.
    427       1.1   ragge     */
    428       1.1   ragge 	else
    429       1.1   ragge 		u1 = u, TRUNC(u1);
    430       1.1   ragge 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    431       1.1   ragge 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
    432       1.1   ragge 
    433       1.1   ragge 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
    434       1.1   ragge 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
    435       1.1   ragge 	/* (exact) + (tiny)						*/
    436       1.1   ragge 
    437       1.1   ragge 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
    438       1.1   ragge 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
    439       1.1   ragge 	u2 += logF_tail[N]*m;
    440       1.1   ragge 	return (u1 + u2);
    441       1.1   ragge }
    442       1.1   ragge 
    443       1.1   ragge /*
    444       1.1   ragge  * Extra precision variant, returning struct {double a, b;};
    445       1.1   ragge  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
    446       1.1   ragge  */
    447       1.1   ragge struct Double
    448       1.1   ragge __log__D(double x)
    449       1.1   ragge {
    450       1.1   ragge 	int m, j;
    451       1.2   ragge 	double F, f, g, q, u, v, u2;
    452       1.1   ragge 	volatile double u1;
    453       1.1   ragge 	struct Double r;
    454       1.1   ragge 
    455       1.1   ragge 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    456       1.1   ragge 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    457       1.1   ragge 
    458       1.1   ragge 	m = logb(x);
    459       1.1   ragge 	g = ldexp(x, -m);
    460       1.1   ragge 	if (_IEEE && m == -1022) {
    461       1.1   ragge 		j = logb(g), m += j;
    462       1.1   ragge 		g = ldexp(g, -j);
    463       1.1   ragge 	}
    464       1.1   ragge 	j = N*(g-1) + .5;
    465       1.1   ragge 	F = (1.0/N) * j + 1;
    466       1.1   ragge 	f = g - F;
    467       1.1   ragge 
    468       1.1   ragge 	g = 1/(2*F+f);
    469       1.1   ragge 	u = 2*f*g;
    470       1.1   ragge 	v = u*u;
    471       1.1   ragge 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    472       1.1   ragge 	if (m | j)
    473       1.1   ragge 		u1 = u + 513, u1 -= 513;
    474       1.1   ragge 	else
    475       1.1   ragge 		u1 = u, TRUNC(u1);
    476       1.1   ragge 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    477       1.1   ragge 
    478       1.1   ragge 	u1 += m*logF_head[N] + logF_head[j];
    479       1.1   ragge 
    480       1.1   ragge 	u2 +=  logF_tail[j]; u2 += q;
    481       1.1   ragge 	u2 += logF_tail[N]*m;
    482       1.1   ragge 	r.a = u1 + u2;			/* Only difference is here */
    483       1.1   ragge 	TRUNC(r.a);
    484       1.1   ragge 	r.b = (u1 - r.a) + u2;
    485       1.1   ragge 	return (r);
    486       1.1   ragge }
    487       1.7  mhitch 
    488       1.7  mhitch float
    489       1.7  mhitch logf(float x)
    490       1.7  mhitch {
    491       1.7  mhitch 	return(log((double)x));
    492       1.7  mhitch }
    493