Home | History | Annotate | Line # | Download | only in noieee_src
n_log.c revision 1.1
      1 /*      $NetBSD: n_log.c,v 1.1 1995/10/10 23:36:57 ragge Exp $ */
      2 /*
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
     37 #endif /* not lint */
     38 
     39 #include <math.h>
     40 #include <errno.h>
     41 
     42 #include "mathimpl.h"
     43 
     44 /* Table-driven natural logarithm.
     45  *
     46  * This code was derived, with minor modifications, from:
     47  *	Peter Tang, "Table-Driven Implementation of the
     48  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
     49  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
     50  *
     51  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
     52  * where F = j/128 for j an integer in [0, 128].
     53  *
     54  * log(2^m) = log2_hi*m + log2_tail*m
     55  * since m is an integer, the dominant term is exact.
     56  * m has at most 10 digits (for subnormal numbers),
     57  * and log2_hi has 11 trailing zero bits.
     58  *
     59  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
     60  * logF_hi[] + 512 is exact.
     61  *
     62  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
     63  * the leading term is calculated to extra precision in two
     64  * parts, the larger of which adds exactly to the dominant
     65  * m and F terms.
     66  * There are two cases:
     67  *	1. when m, j are non-zero (m | j), use absolute
     68  *	   precision for the leading term.
     69  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
     70  *	   In this case, use a relative precision of 24 bits.
     71  * (This is done differently in the original paper)
     72  *
     73  * Special cases:
     74  *	0	return signalling -Inf
     75  *	neg	return signalling NaN
     76  *	+Inf	return +Inf
     77 */
     78 
     79 #if defined(vax) || defined(tahoe)
     80 #define _IEEE		0
     81 #define TRUNC(x)	x = (double) (float) (x)
     82 #else
     83 #define _IEEE		1
     84 #define endian		(((*(int *) &one)) ? 1 : 0)
     85 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     86 #define infnan(x)	0.0
     87 #endif
     88 
     89 #define N 128
     90 
     91 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     92  * Used for generation of extend precision logarithms.
     93  * The constant 35184372088832 is 2^45, so the divide is exact.
     94  * It ensures correct reading of logF_head, even for inaccurate
     95  * decimal-to-binary conversion routines.  (Everybody gets the
     96  * right answer for integers less than 2^53.)
     97  * Values for log(F) were generated using error < 10^-57 absolute
     98  * with the bc -l package.
     99 */
    100 static double	A1 = 	  .08333333333333178827;
    101 static double	A2 = 	  .01250000000377174923;
    102 static double	A3 =	 .002232139987919447809;
    103 static double	A4 =	.0004348877777076145742;
    104 
    105 static double logF_head[N+1] = {
    106 	0.,
    107 	.007782140442060381246,
    108 	.015504186535963526694,
    109 	.023167059281547608406,
    110 	.030771658666765233647,
    111 	.038318864302141264488,
    112 	.045809536031242714670,
    113 	.053244514518837604555,
    114 	.060624621816486978786,
    115 	.067950661908525944454,
    116 	.075223421237524235039,
    117 	.082443669210988446138,
    118 	.089612158689760690322,
    119 	.096729626458454731618,
    120 	.103796793681567578460,
    121 	.110814366340264314203,
    122 	.117783035656430001836,
    123 	.124703478501032805070,
    124 	.131576357788617315236,
    125 	.138402322859292326029,
    126 	.145182009844575077295,
    127 	.151916042025732167530,
    128 	.158605030176659056451,
    129 	.165249572895390883786,
    130 	.171850256926518341060,
    131 	.178407657472689606947,
    132 	.184922338493834104156,
    133 	.191394852999565046047,
    134 	.197825743329758552135,
    135 	.204215541428766300668,
    136 	.210564769107350002741,
    137 	.216873938300523150246,
    138 	.223143551314024080056,
    139 	.229374101064877322642,
    140 	.235566071312860003672,
    141 	.241719936886966024758,
    142 	.247836163904594286577,
    143 	.253915209980732470285,
    144 	.259957524436686071567,
    145 	.265963548496984003577,
    146 	.271933715484010463114,
    147 	.277868451003087102435,
    148 	.283768173130738432519,
    149 	.289633292582948342896,
    150 	.295464212893421063199,
    151 	.301261330578199704177,
    152 	.307025035294827830512,
    153 	.312755710004239517729,
    154 	.318453731118097493890,
    155 	.324119468654316733591,
    156 	.329753286372579168528,
    157 	.335355541920762334484,
    158 	.340926586970454081892,
    159 	.346466767346100823488,
    160 	.351976423156884266063,
    161 	.357455888922231679316,
    162 	.362905493689140712376,
    163 	.368325561158599157352,
    164 	.373716409793814818840,
    165 	.379078352934811846353,
    166 	.384411698910298582632,
    167 	.389716751140440464951,
    168 	.394993808240542421117,
    169 	.400243164127459749579,
    170 	.405465108107819105498,
    171 	.410659924985338875558,
    172 	.415827895143593195825,
    173 	.420969294644237379543,
    174 	.426084395310681429691,
    175 	.431173464818130014464,
    176 	.436236766774527495726,
    177 	.441274560805140936281,
    178 	.446287102628048160113,
    179 	.451274644139630254358,
    180 	.456237433481874177232,
    181 	.461175715122408291790,
    182 	.466089729924533457960,
    183 	.470979715219073113985,
    184 	.475845904869856894947,
    185 	.480688529345570714212,
    186 	.485507815781602403149,
    187 	.490303988045525329653,
    188 	.495077266798034543171,
    189 	.499827869556611403822,
    190 	.504556010751912253908,
    191 	.509261901790523552335,
    192 	.513945751101346104405,
    193 	.518607764208354637958,
    194 	.523248143765158602036,
    195 	.527867089620485785417,
    196 	.532464798869114019908,
    197 	.537041465897345915436,
    198 	.541597282432121573947,
    199 	.546132437597407260909,
    200 	.550647117952394182793,
    201 	.555141507540611200965,
    202 	.559615787935399566777,
    203 	.564070138285387656651,
    204 	.568504735352689749561,
    205 	.572919753562018740922,
    206 	.577315365035246941260,
    207 	.581691739635061821900,
    208 	.586049045003164792433,
    209 	.590387446602107957005,
    210 	.594707107746216934174,
    211 	.599008189645246602594,
    212 	.603290851438941899687,
    213 	.607555250224322662688,
    214 	.611801541106615331955,
    215 	.616029877215623855590,
    216 	.620240409751204424537,
    217 	.624433288012369303032,
    218 	.628608659422752680256,
    219 	.632766669570628437213,
    220 	.636907462236194987781,
    221 	.641031179420679109171,
    222 	.645137961373620782978,
    223 	.649227946625615004450,
    224 	.653301272011958644725,
    225 	.657358072709030238911,
    226 	.661398482245203922502,
    227 	.665422632544505177065,
    228 	.669430653942981734871,
    229 	.673422675212350441142,
    230 	.677398823590920073911,
    231 	.681359224807238206267,
    232 	.685304003098281100392,
    233 	.689233281238557538017,
    234 	.693147180560117703862
    235 };
    236 
    237 static double logF_tail[N+1] = {
    238 	0.,
    239 	-.00000000000000543229938420049,
    240 	 .00000000000000172745674997061,
    241 	-.00000000000001323017818229233,
    242 	-.00000000000001154527628289872,
    243 	-.00000000000000466529469958300,
    244 	 .00000000000005148849572685810,
    245 	-.00000000000002532168943117445,
    246 	-.00000000000005213620639136504,
    247 	-.00000000000001819506003016881,
    248 	 .00000000000006329065958724544,
    249 	 .00000000000008614512936087814,
    250 	-.00000000000007355770219435028,
    251 	 .00000000000009638067658552277,
    252 	 .00000000000007598636597194141,
    253 	 .00000000000002579999128306990,
    254 	-.00000000000004654729747598444,
    255 	-.00000000000007556920687451336,
    256 	 .00000000000010195735223708472,
    257 	-.00000000000017319034406422306,
    258 	-.00000000000007718001336828098,
    259 	 .00000000000010980754099855238,
    260 	-.00000000000002047235780046195,
    261 	-.00000000000008372091099235912,
    262 	 .00000000000014088127937111135,
    263 	 .00000000000012869017157588257,
    264 	 .00000000000017788850778198106,
    265 	 .00000000000006440856150696891,
    266 	 .00000000000016132822667240822,
    267 	-.00000000000007540916511956188,
    268 	-.00000000000000036507188831790,
    269 	 .00000000000009120937249914984,
    270 	 .00000000000018567570959796010,
    271 	-.00000000000003149265065191483,
    272 	-.00000000000009309459495196889,
    273 	 .00000000000017914338601329117,
    274 	-.00000000000001302979717330866,
    275 	 .00000000000023097385217586939,
    276 	 .00000000000023999540484211737,
    277 	 .00000000000015393776174455408,
    278 	-.00000000000036870428315837678,
    279 	 .00000000000036920375082080089,
    280 	-.00000000000009383417223663699,
    281 	 .00000000000009433398189512690,
    282 	 .00000000000041481318704258568,
    283 	-.00000000000003792316480209314,
    284 	 .00000000000008403156304792424,
    285 	-.00000000000034262934348285429,
    286 	 .00000000000043712191957429145,
    287 	-.00000000000010475750058776541,
    288 	-.00000000000011118671389559323,
    289 	 .00000000000037549577257259853,
    290 	 .00000000000013912841212197565,
    291 	 .00000000000010775743037572640,
    292 	 .00000000000029391859187648000,
    293 	-.00000000000042790509060060774,
    294 	 .00000000000022774076114039555,
    295 	 .00000000000010849569622967912,
    296 	-.00000000000023073801945705758,
    297 	 .00000000000015761203773969435,
    298 	 .00000000000003345710269544082,
    299 	-.00000000000041525158063436123,
    300 	 .00000000000032655698896907146,
    301 	-.00000000000044704265010452446,
    302 	 .00000000000034527647952039772,
    303 	-.00000000000007048962392109746,
    304 	 .00000000000011776978751369214,
    305 	-.00000000000010774341461609578,
    306 	 .00000000000021863343293215910,
    307 	 .00000000000024132639491333131,
    308 	 .00000000000039057462209830700,
    309 	-.00000000000026570679203560751,
    310 	 .00000000000037135141919592021,
    311 	-.00000000000017166921336082431,
    312 	-.00000000000028658285157914353,
    313 	-.00000000000023812542263446809,
    314 	 .00000000000006576659768580062,
    315 	-.00000000000028210143846181267,
    316 	 .00000000000010701931762114254,
    317 	 .00000000000018119346366441110,
    318 	 .00000000000009840465278232627,
    319 	-.00000000000033149150282752542,
    320 	-.00000000000018302857356041668,
    321 	-.00000000000016207400156744949,
    322 	 .00000000000048303314949553201,
    323 	-.00000000000071560553172382115,
    324 	 .00000000000088821239518571855,
    325 	-.00000000000030900580513238244,
    326 	-.00000000000061076551972851496,
    327 	 .00000000000035659969663347830,
    328 	 .00000000000035782396591276383,
    329 	-.00000000000046226087001544578,
    330 	 .00000000000062279762917225156,
    331 	 .00000000000072838947272065741,
    332 	 .00000000000026809646615211673,
    333 	-.00000000000010960825046059278,
    334 	 .00000000000002311949383800537,
    335 	-.00000000000058469058005299247,
    336 	-.00000000000002103748251144494,
    337 	-.00000000000023323182945587408,
    338 	-.00000000000042333694288141916,
    339 	-.00000000000043933937969737844,
    340 	 .00000000000041341647073835565,
    341 	 .00000000000006841763641591466,
    342 	 .00000000000047585534004430641,
    343 	 .00000000000083679678674757695,
    344 	-.00000000000085763734646658640,
    345 	 .00000000000021913281229340092,
    346 	-.00000000000062242842536431148,
    347 	-.00000000000010983594325438430,
    348 	 .00000000000065310431377633651,
    349 	-.00000000000047580199021710769,
    350 	-.00000000000037854251265457040,
    351 	 .00000000000040939233218678664,
    352 	 .00000000000087424383914858291,
    353 	 .00000000000025218188456842882,
    354 	-.00000000000003608131360422557,
    355 	-.00000000000050518555924280902,
    356 	 .00000000000078699403323355317,
    357 	-.00000000000067020876961949060,
    358 	 .00000000000016108575753932458,
    359 	 .00000000000058527188436251509,
    360 	-.00000000000035246757297904791,
    361 	-.00000000000018372084495629058,
    362 	 .00000000000088606689813494916,
    363 	 .00000000000066486268071468700,
    364 	 .00000000000063831615170646519,
    365 	 .00000000000025144230728376072,
    366 	-.00000000000017239444525614834
    367 };
    368 
    369 double
    370 #ifdef _ANSI_SOURCE
    371 log(double x)
    372 #else
    373 log(x) double x;
    374 #endif
    375 {
    376 	int m, j;
    377 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
    378 	volatile double u1;
    379 
    380 	/* Catch special cases */
    381 	if (x <= 0)
    382 		if (_IEEE && x == zero)	/* log(0) = -Inf */
    383 			return (-one/zero);
    384 		else if (_IEEE)		/* log(neg) = NaN */
    385 			return (zero/zero);
    386 		else if (x == zero)	/* NOT REACHED IF _IEEE */
    387 			return (infnan(-ERANGE));
    388 		else
    389 			return (infnan(EDOM));
    390 	else if (!finite(x))
    391 		if (_IEEE)		/* x = NaN, Inf */
    392 			return (x+x);
    393 		else
    394 			return (infnan(ERANGE));
    395 
    396 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    397 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    398 
    399 	m = logb(x);
    400 	g = ldexp(x, -m);
    401 	if (_IEEE && m == -1022) {
    402 		j = logb(g), m += j;
    403 		g = ldexp(g, -j);
    404 	}
    405 	j = N*(g-1) + .5;
    406 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
    407 	f = g - F;
    408 
    409 	/* Approximate expansion for log(1+f/F) ~= u + q */
    410 	g = 1/(2*F+f);
    411 	u = 2*f*g;
    412 	v = u*u;
    413 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    414 
    415     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    416      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    417      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    418     */
    419 	if (m | j)
    420 		u1 = u + 513, u1 -= 513;
    421 
    422     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
    423      * 		u1 = u to 24 bits.
    424     */
    425 	else
    426 		u1 = u, TRUNC(u1);
    427 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    428 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
    429 
    430 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
    431 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
    432 	/* (exact) + (tiny)						*/
    433 
    434 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
    435 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
    436 	u2 += logF_tail[N]*m;
    437 	return (u1 + u2);
    438 }
    439 
    440 /*
    441  * Extra precision variant, returning struct {double a, b;};
    442  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
    443  */
    444 struct Double
    445 #ifdef _ANSI_SOURCE
    446 __log__D(double x)
    447 #else
    448 __log__D(x) double x;
    449 #endif
    450 {
    451 	int m, j;
    452 	double F, f, g, q, u, v, u2, one = 1.0;
    453 	volatile double u1;
    454 	struct Double r;
    455 
    456 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    457 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    458 
    459 	m = logb(x);
    460 	g = ldexp(x, -m);
    461 	if (_IEEE && m == -1022) {
    462 		j = logb(g), m += j;
    463 		g = ldexp(g, -j);
    464 	}
    465 	j = N*(g-1) + .5;
    466 	F = (1.0/N) * j + 1;
    467 	f = g - F;
    468 
    469 	g = 1/(2*F+f);
    470 	u = 2*f*g;
    471 	v = u*u;
    472 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    473 	if (m | j)
    474 		u1 = u + 513, u1 -= 513;
    475 	else
    476 		u1 = u, TRUNC(u1);
    477 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    478 
    479 	u1 += m*logF_head[N] + logF_head[j];
    480 
    481 	u2 +=  logF_tail[j]; u2 += q;
    482 	u2 += logF_tail[N]*m;
    483 	r.a = u1 + u2;			/* Only difference is here */
    484 	TRUNC(r.a);
    485 	r.b = (u1 - r.a) + u2;
    486 	return (r);
    487 }
    488